
Personal Computer

lllZ·OOrnJU
Double Precision

DISK BASIC MANUAL

SHARP

Personal Computer
MZ-808

Double Precision
DISK BASIC

MANUAL

Copyright© by SHARP CORPORATION

••••
•••
• •

•••
••••

Notice

This manual is applicable to the SB-6610 double precision DISK BASIC interpreter used

with the SHARP MZ-808 Personal Computer. The MZ-808 general-purpose personal

computer is supported by system software which is filed in software packs (cassette tapes

or diskettes).

All system software is subject to revision without prior notice, therefore, you are

requested to pay special attention to file version numbers.

This manual has been carefully prepared and checked for completeness, accuracy and

clarity. However, in the event that you should notice any errors or ambiguities, please feel

free to contact your local Sharp representative or your nearest dealer for clarification.

All system software packs provided for the MZ-808 are original products, and all rights

are reserved. No portion of any system software pack may be copied without approval of

the Sharp Corporation.

ii

Introduction

The greatest care must be taken in handling disk drives diskettes. Carefully read the notes in

"Handling Diskettes" on page 69 .

The master diskette and blank diskette will not be exchanged for new ones after purchase.

I t is recommended that the master diskette be copied using the disk copy utility (refer to page 36) to

generate a submaster diskette, and that the submaster diskette be used generally. Be sure to keep the

master diskette in a safe place .

. Master Diskette Protection

A write protect seal is affixed to the write protect notch of the master diskette to prevent its

contents from being accidentally erased through erroneous operation or accidents such as power

failure .

Never remove the write protect seal ; if it is damaged, replace it with a new one.

Contact your dealer for assistance if you should find any ambiguities in this manual.

Notes on converting BASIC text with BASIC Text Converter

When BASIC tex t for the double precision BASIC SP-6 115 is converted with the Text Converter

MZ- 80T l OC, " USING" of the statement " PRINT USING" is changed to " ERL" in the converted

BASIC text program.

Therefore, you should change the "ERL" to " USING".

iii

Contents

Notice . , . ii
Introduction . iii

Chapter 1 Outline of double precision DISK BASIC S(:J-661 0

1 . 1 Activating the DISK BASIC interpreter SB-66 1 0 . 2

1 . 2 Introduction to file control . 3

1 .3 Control of sequential access files . 5

1.4 Control of random access files . 8

1 .5 File access cancellation and how to detect file end . 1 1

1.6 Making a chain of p rograms . 1 2

1 .7 Swapping programs . 1 3

1 .8 USR function in a logical open statement . 1 5

Chapter 2 Instructions Unique to SB-6610 1 7

2 . 1 Direct commands . 1 8

2 . 1 . 1 DIR . 1 8

2 . 1 .2 DIR/P . 1 8

2 . 1 .3 SAVE 1 9

2 . 1 .4 LOAD . 1 9

2 . 1 .5 RUN 20

2 . 2 File control statements . 2 1

2 .2 . 1 LOCK . 2 1

2 .2 .2 UNLOCK . 2 1

2 . 2 .3 RENAME . 2 1

2 .2 .4 DELETE . 22

2 .2 .5 CHAIN . 22

2 .2 .6 SWAP . 23

2 .2 .7 WOPEN # . 23

2 .2 .8 PRINT # . 24

2 .2 .9 CLOSE # . 24

2 .2 . 1 0 KILL # 24

iv

2 . 2 . 1 1 ROPEN # . 25

2 .2. 1 2 INPUT # . 25

2 .2 . 1 3 XOPEN # . 26

2 .2 . 1 4 PRINT # () . 26

2 .2 . 1 5 INPUT # () . : 27

2 .2 . 1 6 IF EOF (#) THEN . 27

2 .3 Error processing control . 28

2 .3 . 1 ON ERROR GOTO . 28

2 .3 .2 IF ERN . 28

2.3.3 IF ERL . 29

2 .3 .4 RESUME . 30

2 .4 Updated command s . 3 1

2 .4. 1 PRINT USING . 3 1

2 .4 .2 DELETE . 33

2 .4.3 DIM . 34

2 .4.4 Function . 34

2.5 Use of utility programs . 35

2 .5 .I Use of utility program "Filing CMT" . 3 5

2 . 5 .2 Use of utility program "Utility" . 36

Chapter 3 Programming Instructions . 39

3 .I List of DISK BASIC interpreter SB-66 1 0 commands, statements and

functions . 40

3 . 1 . 1 Commands . 40

3 . 1 .2 File control statements . 42

3 . 1 .3 BSD (BASIC Sequential access Data file) control statements 43

3 . 1 .4 B RD (BASIC Random access Data file) control statements 43

3 .I. 5 Error processing statements . 44

3 . 1 .6 Cassette file input/output statements . 45

3 . 1 .7 Assignment statement . 45

3 . 1 .8 Input/output statements . 46

3 . 1 .9 Loop statement . 49

3 . 1 . 1 0 Branch statements . 49

3 . 1 . 1 1 Definition statements . 50

v

3 . 1 . 1 2 Comment and control statements . ;:, 1

3 . 1 . 1 3 Music control statements . 52

3 . 1 . 1 4 Graphic control statements . 5 2

3 . 1 . 1 5 Machine language control statements . 54

3 . 1 . 1 6 Printer control statements . 5 5

3 . 1 . 1 7 I/0 input/output statements . 5 6

3 . 1 . 1 8 Arithmetic functions . 5 7

3 . 1 . 1 9 String control functions . 5 7

3 . 1 .20 Tabulation function . 58

3 . 1 . 2 1 Arithmetic operators . 59

3 . 1 .22 Logical operators . 59

3 . 1 . 23 Other symbols . 60

3 .2 Specifi cations of Double Precision BASIC SB-66 1 0 Interpreter 6 1

APPENDIX . 63

A. l ASC II Code Table . 64

A. 2 Error Message Table . 66

A.3 Memory Map . 68

A.4 Handling diskettes . 69

vi

Chapter 1
Outline of double precision DISK BASIC SB-661 0

This chapter outlines programming procedures and use of the double precision DISK BASIC

interpreter SB-667 0.

The chapter begins with a description of the procedure for activating the BASIC SB-6610, fol­

lowed by general file control concepts.

For details of file control statements and use of the utility programs, see Chapter 2.
For other commands, statements, functions, operators and symbols, see Chapter 3.

1

2

1.1 Activating the DISK BASIC interpreter SB-6610

DISK BASIC SB-66 1 0 is st ored (along wit h MONITOR SB- 1 5 1 0) on a diskett e file and mu st

u ndergo init ial program loading whenever it is t o be u sed. Loading is easily performed. Ready t he disk

drive u nit, place t he mast er diskett e (or su bmast er diskett et , if available) in disk drive I and simply

tum on t he power of t he MZ-80 B.

The MZ -80 B' s bu ilt- in IPL (Init ial Program Loader) aut omat ically st art s loading bot h t he DISK

BASIC int erpret er SB-66 10 and t he MONITOR SB-1 5 10 .

The SB- 6 6 10 aut omat ically loads and execut es t he program assigned t he file name "AUTO RUN"

which is st ored on t he mast er (su bmast er) diskett e. This program defi nes t he fu nct ions assigned t o

t he I 0 special fu nct ion keys. By assigning "AUTO RUN" t o anot her program, t he program can be

aut omat ically loaded and execut ed aft er IPL.

In t his st age, syst em variables and defau lt valu es are init ialized as follows:

• Keyboard

1) Operat ion mode : normal

2) Lower case lett ers are ent ered wit h I sHIFT I key pressed.

3) The fu nct ion of each special fu nct ion key is defined by program "AUTO RUN"

F l : RUN � F2: LIST� F3 : CONSOLE"l- F4: CONT"""l F5: AUT01-

F6: CHR$ (F7: DIR F D l� F 8 : DIR FD2"1- F9: DIR1- F l O: LOAD i-

1) Charact er display mode : normal

2) Charact er size : 40 charact ers/line

3) Charact er display scrolling area : maximu m (line 0 t hrou gh line 24)

4) Graphic display input mode : graphic area I (graphic area I cleared)

Graphic display out put mode :

Posit ion point er :

• Array

I) No arrays are declared.

• Clock

bot h graphic areas off

POSH = 0, POSY = 0

1) The bu ilt -in clock is st art ed wit h TI$ set t o "000000 ".

• Mu sic fu nct ion

1) Tempo: 4 (mediu m t empo : m oderat o)

2) Du rat ion : 5 (qu art er not e : J)

t Procedures for making a submaster diskette are explained on page 38.

3

1.2 Introduction to file control

The DISK BASIC interpreter SB-66 1 0 is a system software which has a su perb file control fu nc­

tion. It fu lly u tilizes the large capacity and high speed accessing featu re of the floppy disk file system

·s o th at files can be u sed not only for data storage bu t also as a random access data area connected to

the system program. Fu rther, with this interpreter disk files can be u sed as program segments which

may be called for execu tion in j ob u nits by the program in memory with the CHAIN or SWAP state­

ments.

Data fi les are classified into two grou ps according to the file access method: sequ ential access files

and random access f iles.

A sequ ential access file is a block of file data which can be accessed sequ entially. Data are accessed

sequ entially from the beginning. by specifying the f ile name.

Write
System

Read

BASIC Sequential
access Data file (BSD)

A random access fi le is a set of fi le data which can be accessed at random. Each data item is

written in the file as an array element and is assigned with an expression with which the system

controls it .

Write
System

Read

EXPRESSION
•

(m)

I (n)

"file name"

BASIC Random
access Data file (BRD)

In general, when data can be treated in segments (e.g., decimal data u sed when coding a program

by POKE statement) or it is arranged according to a certain ru le (e.g. , elements of a table) , it is

effective to write it as a sequ ential access file. When particu lar data items need to be accessed (e.g. , in

the case of information retrieval), it is effective to write it as a random access fi le.

To access data, first specify the f ile (a set of data assigned a file name) with a logical file nu mber of

to 1 27. A logical file nu mber is assigned to a file with a logical open statement as an alternative to

the fi le name.

4

The file to which the specif ied logical file number has been assigned is accessed by the write or

read command issued by a PRINT # or INPUT # statement or by a file close statement.

CHAIN and SWAP are statements which overlay a program up on another program in the memory

and transfer control to the overlying program.

The CHAIN statement is used as a GOTO "file name" function.

Text "ABC" Text "DEF"

CHAIN "DEF"
goto "DEF"

The SWAP statement is used as a GOSUB "f ile nam e" function. Control will be returned to the

first program after the overlaid program has been completed. (In this case, overlay is performed again .)

gosub"JKL"
Text "GHI" J Text "JKL"

SWAP "JKL"

l return
END

Now we will discuss handling and control of various data and program files that m ake use of the

large storage capacity and high-speed access function of our floppy disk unit.

We have already noted that DISK BASIC is capable of handling three kinds of files : two data files

- the sequential access file (BSD) and random access file (BRD) - plus one program file - the BASIC

text (BTX) . One more file, the machine language program file (OBJ) , has been constructed using a sys­

tem program or MONITOR SB- 1 5 1 0 and recorded on the master diskette. This file is intended to be

run alone or used linked with the program in the BASIC text area ; hence, DISK BASIC can utilize it,

but cannot write it or change its contents.

DISK BASIC

Sequential access file BSD }
Data file

� Random access file B RD =r-BASIC text file BTX } Machine language program file OBJ
Program file

In discussing individual file control instr uctions, we will first explain pr ocedur es for constr ucting

and using the two kinds of data f iles ; second, we will explain use of the CHAIN and SWAP file state­

m ents .

5

1. 3 Control of sequential access files

A sequ enti al access file i s a dat a file whose dat a i s recorded or read wit h sequ enti al access proce­

du res, whi ch accesses dat a sequ enti ally st arti ng wit h t he first dat a it em .

You already know how t o handle dat a files on cassett e t ape u si ng BASIC SB-5 5 1 0. Sequ enti al

access wit h DISK BASIC i s t he same, except t hat t he mediu m i s not a cassett e t ape but a di skett e. The

met hod i s , of cou rse , far more practi cal and provi des high speed access, enabli ng more versati le file

cont rol t hrou gh seveal new file cont rol st at ement s.

Fi rst , let' s compare t he DISK BASIC and cassett e-based B ASIC sequ ent ial access st at ement s.

Recording files (writing data)

Fi le open st at ement

Dat a writ e st at ement

Fi le close st at ement

Cancel st at ement

Recalling files (reading data)

Fi le open st at ement

Dat a read st at ement

Fi le close st at ement

Fi le end det ecti on

DISK BASIC

WOPEN #n, "Fi le name"

PRINT #n, dat a

CLOSE #n

KILL #n

. �0:_�· · DISK BASIC .. : i .
ROPEN #n, "file name"

INPUT #n, vari able

CLOSE #n
IF E OF (#n) THEN

ssette-based BASIC

WOPEN " file name"

PRINT/ T dat a

CLOSE

. L Cassette-based BASIC
ROPEN "fi le name"

INPUT / T variable

CLOSE

Note: The general form of a file open statement includes specification of the drive number and diskette

volume number. These are not shown in the tables above.

A s you can see, t he st at ement s of t hese t wo BASICs closely correspond t o each ot her i n composi ­

ti on. Di d you noti ce t hat each DISK BASIC st at ement always cont ai ns t he symbol "#n"? Thi s i s

called a logi cal nu mber (any number from 1 through 1 27) , and it mu st be speci fied whenever a DISK­

BASIC-based fi le i s t o be accessed.

Cassett e-based BAS IC permit s eit her writi ng t o or readi ng from only one fi le, whereas DISK

BASIC st at ement uti li zes t he parallel arrangement of mu lti ple fi les i n t he di sk syst em to enable arbi ­

t rary access and cont rol o f mu lti ple files (maximum of 10 fil es) si mu lt aneou sly. In additi on, it i s

devi ced so that fi les opened can be defi ned wit h arbit rari ly chosen logi cal nu mbers, maki ng it u nneces­

sary t o writ e t hei r fi le names every ti me you want t o speci fy t hem t hereaft er.

(Thi s di fference i s a resu lt of di fferences i n hardware cassett e and di skett e; t hat i s, cassett e files

are essenti ally sequ enti al i n natu re, whi le di sk fi les are random.)

6

As a simple example of sequ ential access file control, let' s discu ss the recording of names and

addresses of persons' homes in a sequ ential access file. Ou r file, an address list in this example, mu st be

made in the following form.

Name I
Address I

Name I
Address J file name = "ADDRESS LIST" i-------------,-1-_____j

Name

Address I

The reason the above rectangles are not the same length is that data recorded with the sequ ential

access method is not fixed in length. In a random access file, as we will later mention, all data is given

a fixed length of 3 2 bytes. When all data is handled in the blocks as in this example, or when most of

the data (addresses in this example) is too long to be recorded in 3 2 bytes or is not fixed in length, the

sequ ential access file may be more su itable.

Shown below is a program which cau ses the system to behave as follows: su bstitu te string variables

alternately with names and addresses with the INPUT statement, record a combination of names and

addresses one by one to make "ADDRESS LIST" with 50 combinations in all, then read stored data

ou t of the file (list) and display it on the CRT screen in grou ps of 10 items.

(Writing)

100 WOPEN #3 , "ADDRESS LIST"

1 10 FOR P = 1 TO 50

1 20 INPUT "NAME=" ; NA$

1 30 INPUT "ADDRESS="; AD$

1 40 PRINT #3 , NA$, AD$

1 50 NEXT P

1 60 CLOSE #3

Dif ines the name of a sequ ential access file and
opens it with logical nu mber assigned.
In the program, the WOPEN statement defines the
name of the sequ ential access fi le as "ADDRESS
LIST" and assigns logical nu mber 3 to it.

This statement, when it follows the WOPEN state­
ment, generates a series of sequ ential access records.
When the PRINT # statement is execu ted, the
specified data record is added to a series of sequ en­
tial access records. The sequ ential access file is not
generated at this stage of program.

Writes a series of records generated by PRINT #
statements in a file. A sequ ential access file (BSD)
is generated when this statement is generated.

(Reading)

200 ROPEN #4, "ADDRESS LIST"
2 1 0 FOR P = 1 TO 5

2 1 5 F OR Q = l TO l O

220 I NPUT #4, NA$, AD $

230 PRI NT NA$: PRI NT AD$

240 NEXT Q

250 PRI NT " STRI KE ANYKEY"

260 GET X $: IF X$ = " " T HEN 260

270 NEXT P

280 PRINT " END"

7

Specifies t he name of t he s equ ent ial access file t o
be read and ass igns a logical nu mber t o it .
In t he program, "ADDRESS LIST" is s pecified and

t he logical nu mber #4 is ass igned t o it .

This st at ement , when it follows t he ROPEN
st at ement , reads records in s equ ent ial access. file
"ADDRESS L IST" from t he beginning one by one
int o t he s pecified variable.

290 CLOSE #4 . The CLOSE st at ement , when it follows t he
ROPEN st at ement, ends execut ion of ROPEN and
res ets t he logical file nu mber ass ignment .

8

1. 4 Control of random access files

A random access f ile is a dat a file which permit s dat a t o be recorded or recalled u sing t he "random

access" met hod. The t erm "random access" refers t o t he process of recording or recalling each dat a

it em by specifying it as an array element . Unlike sequ ent ial access fi les, random access fi les permit

addressing any dat a element s inclu ded in a collect ion of dat a.

The PRINT # and INPUT # st at ement s u sed in random access st at ement s cont ain an "expression"

which specifies t he array element s following t he logical nu mber, as shown below. This is becau se ran­

dom access fi les requ ire designat ion of t he arrays of dat a of which t hey are composed .

PRINT #n (expression) , dat a

INPU T #n (expression) , variable

t
Array element designation

The "expression" mu st be given as a nu merical valu e or variable. The st at ement

INPUT #7 (2 1) , A$

for example, commands t he syst em to read t he 2 1 st dat a element of a grou p in a random access file

opened wit h logical nu mber #7 int o variable A$.

Not e t hat random dat a access requ ires t hat every dat a it em be recorded in a fixed lengt h. I n ot her

words, random access files requ ire recording nu meric and st ring variables in 3 2 byt es or less.

expression
•
I

Random 2
access 3
file 4

5
6

32 bytes

+.I 2 3 4 5 6 7 8 + E I 0 --- Variable A = 0 . 1 2 345678+E I O �--������--�--�

r---
-------c

A
---,

B
:::-:::

C
:-

D __ E_F_G_H_I ___ ---1 - String "ABCDEFGHI"

�--=-A-=--=--B---'C'----------------------1 - String "ABC"

Nu meric variables, inclu ding t hose expressed in exponent ial not at ion, do not u su ally exceed 3 2

byt es, whereas st ring variables may ext end u p t o 25 5 byt es. St ring variables exceeding 3 2 byt es can­

not be recorded in one dat a element of a random access file.

Anot her difference bet ween random and sequ ent ial access fi les is t hat a random fi le can be ex­

panded aft er it has been init ially creat ed. Given random access fi le " RND 1" recorded u sing an " ex­

pression" of 20, for inst ance, t he file may be expanded t o accommodat e 3 0 "boxes" when dat a is

newly ent ered wit h t he " expression" set t o 3 0.

9

"RND 1 " "RND 1 "

1 1
When data is 2 2
added with � 3 > 3
the "expression"
set to 30.

20
30

Now, J et' s try to device a program for making a simple inventory J ist u sing a random access file. It

is assu med that individu al articles are given fixed item nu mbers from 1 to 5 0 and that the inventory

J ist inclu des five fields of information : item name, u nit price, nu mber of u nits in stock, valu e (u nit

price X nu mber items in) and comments.

When recording inventory data for each article, its item nu mber mu st be entered first.

Recording inventory data

I 00 XOPEN #5 , "STORE LI ST"

1 1 0 I NPUT "ITEM NO.="; K

1 20 IF K = O THEN 3 00

1 30 I NPUT "ITEM NAME="; N $

1 40 INPUT "UNIT PRICE="; P

1 50 INPU T "NO. OF UNITS=" ; S

1 60 INPUT "COMMENTS=" ; C$

1 70 T = P * S

18 0 PRINT #5 (K * 5- 4),
N$, P, S, T, C $

1 90 GOTO 1 1 0

3 00 CLOSE #5

3 1 0 END

Specifi es a fil e name and assigns a logical file
nu mber to the specified random access file for
access. When a random access file is logically open­
ed, no distinction is made between write and read
by the open statement.
Logical nu mber: 5 File name: " STORE LIST"

Writes data in the random access file assigned
logical file num ber. The nu mber of the first field in
the record in which data i s stored is indicated by
the expression.

Closes the BRD opened by XOPEN and resets the
logical file nu mber definition.

-----------------------------------·---

10

A random access file made wit h t he above program i s as follows. If t he it em number assigned is

K = 1 2, t he five kinds of dat a ent ered are st ored in element s indicat ed by t he expressions correspond­

ing t o 5 6 t hrough 60 .

expression
K*5-4 }
K= 12

55
.... 56

57
58
59
60

BRD file
"STORE LIST"

In t his way, dat a can be arbit rarily arrayed in t he file. Hence t he file, unlike a sequent ial access file

which is filled wit h dat a in succession, may include empt y locat ions, providing for simple dat a rewrit ­

ing. Next, let' s devise a program t o recall t he random access file "STORE LIST" made as shown above

and display invent ory dat a for a cert ain art icle.

R ec alli ng i nventory dat a

500 XOPEN #1 7J "STORE LIST"

5 10 INPUf "ITEM NO.="; J

5 1 5 IF J = 0 THEN 700

5 20 INPUf #1 7 (J * 5 -4) ,

N $, P, S, T, C $

5 30 PRINT "NO. "; J

5 3 5 PRINT "ITEM NAME : "; N $

5 40 PRINT "UNIT PRICE : "; P

5 50 PRINT "NO. OF UNITS: "; S

5 60 PRINT "VALUE: "; T

5 70 PRINT "COMMENTS: "; C$

5 80 GOTO 5 10

700 CLOSE # 1 7

7 1 0 END

Specifies a file name t o be read as "STORE LIST"
and assigns logical file number 1 7 t o it .

Reads t he record indicat ed by t he expression from
t he random access f ile assigned logical file number
1 7 int o t he specified variable.

Closes t he BRD opened by XOPEN and reset s t he
logical f ile number definit ion.

In t his way, random access files enable t he invent ory dat a on specific art icles t o be called at once

by inputt ing t heir art icle numbers, no matt er how many art icles are invent oried.

1 1

1. 5 File access cancellation and how to detect file end

1.5.1 KILL #n

This st at ement, when it follows t he WOPEN st at ement, cancels t he WOPEN command.

The execut ion of KILL st at ement cancels t he WOPEN and prevent s t he dat a array, even if it is

u nder const ru ct ion, from being recorded in t he sequ ent ial access file. The st at ement is pract ical if t he

need for cancellat ion occu rs du ring t he const ru ct ion of a sequ ent ial dat a array.

The KILL st at ement for t he ot her u se has same fu nct ions as t he CLOSE st at ement .

1.5.1 How to detect file end

What is t he resu lt when t he nu mber of dat a reads exceeds t he nu mber of recorded it ems? In su ch

cases, no error occu rs and t he variables are set wit h 0 or "nu ll", t hen a special fu nct ion, EOF (#n),

det ect s file end . EOF (#n), becomes "true" if it comes to the end of a file while data is being read

with the INP UT # statement. Hence, if t he st at ement

IF EOF (#n) THEN

is placed aft er an INPUT # st at ement, inst ru ct ions following THEN are execut ed when EOF (#n)

becomes t ru e (when t he file end is det ect ed).

The st at ement can be u sed in a random access file or a sequ ent ial access file to be read.

The following program reads st ring dat a from sequ ent ial access f ile "ABC" and displays it on t he

CRT screen u nt il t he file end is reached .

3 00 ROPEN #3 3, "ABC"

3 1 0 INPUT #3 3, A$

320 IF EOF (#33) THEN 3 50

330 PRINT A$

340 GOTO 3 1 0

3 5 0 CLOSE #33

12

1. 6 Making a chain of programs

The t opic of t his sect ion is t wo program file cont rol st at ement s. These are t he CHAIN are SWAP

st at ement s. When some programs are recorded on a diskett e, t he u se of t hese st at ement s enables you

t o call anot her program while ru nning t he recorded programs and moves t he cont rol t o it . In det ail,

t he CHAIN st at ement enables you t o connect any program t o t he ones recorded on a diskett e, and t he

SWAP st at ement ena bles you t o cal l any program in t he form of su brout ine. First is described t he

CHAIN stat ement t o connect or j oin programs.

The form of t he CHAIN st at ement is as follows.

CHAI N FDI @SO, "TEXT 2"

This st at ement commands t he syst em to clear a program t hen present in t he t ext area (it, however,

keeps t he valu es of variables), overlays t hat area wit h t he t ext named "TEXT 2" t hat is recorded on

t he diskett e of volu me nu mber 50 present in drive 1 and moves cont rol t o t he head of t hat t ext . The

execut ion of t his t ext frees t he syst em from t he cont rol of t he t hen ru nning BASIC t ext and comples

it t o read t he t ext "TEXT 2" anew, moving cont rol t o it s head. When two programs are connected, the

values of variables and the function defined by the DEF FN in t he original program are kept .

The fu nct ion of t he CHAIN st at ement can be grasped as one of "GOTO" st at ement .

TEXT "ABC" TEXT "DEF" TEXT "GHI"

goto "DEF" goto "GHI"

- - - - - -- go to "file name"

The u se of t he CHAIN st at ement enables you t o process su ch a hu ge program as t o overflow t he

BASIC t ext area by dividing it int o pieces and t hen u nit ing t hem again as illu st rat ed above. That is,

t he CHAIN st at ement j oins component programs every t ime t hey are processed. Therefore, t he st at e­

ment and t he SWAP st at ement we will next refer t o can be said t o be an indispensable aid in coping

wit h complicat ed, versat ile dat a processing in small bu sinesses.

Apart from su ch a sophist icat ed applicat ion, it is qu it e excit ing and int erest ing t o join variou s t ext s

on a diskett e . The DISK BASIC, as seen from t his, has an original world - which cannot be creat ed by

t he convent ional BASIC - in t hat enables programs t o ext end t hemselves.

13

1. 7 Swapping programs

The SWAP st at ement reads a program from a diskett e file, overlays anot her program wit h it or links

t hem, and leaves cont rol t o t hat program t ext, resu ming cont rol by t he original program t he inst ant

t he execut ion of t he t ext h as been complet ed. Su ch behaviou r is ju st t he same as referring t o a su b­

rout ine in a t ext; a fet ched program retu rns t o t he locat ion next t o t he one t hat has been su bject ed t o

t he SWAP st at ement, Hence, t he SWAP st at ement can be grasped as a su brout ine call. To achieve t he

above-ment ioned act ion correct ly a program t ext t hat has t he SWAP st at ement mu st be t emporarily

st ored in a diskett e before t he execut ion of swapping. The program cont rol process cannot t hen retu rn

t o t he st ored original program t ext before t he t ext area is renewed and t he su bprogram is called and

complet ely execut ed . The SWAP st at ement is generally available in t he following form.

SWAP FDd@v, " file name"

This form orders t he syst em t o swap a su bprogram specified by " f ile name" t hat is st ored on t he

diskett e wit h volu me nu mber v present in drive d (d = 1 t o 4). St oring of a program t ext prior t o

execut ion of a su bprogram occu rs ont o t he diskett e present in t he drive t hat has last execut ed t he DIR

FDd command. This means t hat t he drive mu st be loaded wit h a diskett e t hat allows t emporary writ ­

ing of a program t ext. The swapping level mu st be less t han 1 .

Let' s follow t he program file behaviou r by t aking a simple example in order t o u nderst and t he

SWAP st at ement . How does t he file when t he DIR FD 1 command is execut ed?

[Pr ogram present in t he t ext ar ea]

1 0 REM COMPOSER

20 M l $ = " A7B6 + C3A7A3 "

3 0 M2$ = " B + C + D + E6A3 "

40 M3 $ = " + F6A3 + E7"

5 0 PRINT " PLAY THE CELLO"

60 SWAP FD2@7 , "PLAYE R"

70 PRINT " VERY GOOD"

80 END

[Program file "PLAYER"]

I 0 REM CELLO PLAYER

20 MUSIC M l $, M2$, M3 $

3 0 PRINT " OK?"

40 END

l
This file is present on slave diskette
No. 7 inserted in drive No. 2.

14

Initially, the text "COM POSER",

present in the text area, is exe­

cuted.

First the SWAP statement, line

No. 60, shelters the text on the

diskette present in the drive FD 1

that has executed the DIR com-

mand, and renews the text area.

Second the text area is overlayed

with BTX " PLAYER". and the

program is executed to play mel­

odies.

On the completion of playing,

the sheltered COM POSER re­

turns, saying "VERY GOOD."

Text area

Sheltered
.---------,

NEW

Overlaying

Composer

"PLAY THE CELLO"

Player plays melodies.

"OK?"

Composer says,

"VERY GOOD."

15

1. 8 USR function in a logical open statement

T he USR function generally calls a subroutine coded in machine language. When it is used in a

logical open statement (WOPEN or ROPEN), however, logical open is performed with the assumpti on

that the USR function is a logical file which is executed when a subsequent PRINT # or INPUT #

statement is executed. Data input and output can be controlled in the same manner as for file access.

After the USR function has been logically opened, the PRINT # and INPUT # statements are execut­

ed as shoWI in the examples below.

(Wri te)

1 00 WOPEN #I O, USR (n)

200 PRINT #I 0, A$

300 CLOSE # 1 0

I 00 : Assigns logical file number I 0 to USR (n)

II 0 : Outputs the contents of string variable A$ to the write data buffer and sets the start address of

the write data buffer in the DE register and the data length in the BC register.

For example, when A $ = "ABCD", ASCII codes corresponding to "ABCD " are stored in the

buffer indicated by the DE register and the number o f ASCII codes (excluding /CRI codes) is

stored in the BC register.

DE _______ ____,.,_ '' A'' (4 1 H)

"B" (42H)

"C" (43H) BC +-- 0004 (hex.)

"D" (44H)

CR (ODH)

T hen, USR (n) is executed.

Program operation after control is returned from the machine language routine determined by

the form of the PRINT # statement as follows.

(I) When a semicolon follows the data, the next statement is executed.

(2) When no semicolon follows the data, a lc RI code (ODH) is set in the location indicated by

the DE register and OOOI H is set in the BC register, then USR (n) is executed again.

T herefore, when the machine language routine is, for instance, one for controlling the line

printer, a new line operation can be obtained by placing a semicolon in the PRINT# statement.

1 20 : Closes logical file # I 0.

1 6

(Read)

200 ROPEN # 1 1 , USR (n)

2 10 INPUT # 1 1 , B $

220 CLOSE # 1 1

200 : Assigns logical file number # 1 1 t o USR (n) and logically opens it .

2 10 : Execut es USR (n). The machine language rout ine called must load st ring dat a in t he read buffer

st art ing at t he address indicat ed by t he D E regist er and load t he lengt h of t he dat a st ring read in

t he BC regist er. Then, contr ol is ret urned t o t he INPUT st at ement and t he dat a read is st ored in

B $.

220 : Closes logical file # 1 1 .

[Note]

An error occurring during execut ion of t he machine language rout ine can be linked wit h t he

BASIC error rout ine in t he following manner. When USR (n) execut ed, t he IYand IX regist ers cont ain

special values. Therefore, when it is necessary t o process an error occurring during execut ion of t he

machine language rout ine and when t ON E RROR is declared, syst em cont rol can be t ransferred t o t he

error rout ine by coding t he machine language program t o set an appropriat e error code in t he IY area

indicat ed by t he IY regist er and t o jump t o t he address indicat ed by t he IX regist er.

t Refer t o "Error processing cont rol" on page 28 .

Chapter 2
Instructions Unique to SB-661 0

This chapter describes SB-667 0 direct commands, statements, updated commands and utilities

which are not supported by the ordinary cassette BASIC interpreter SB-5570.

•

•

•

•

Command and statement format

Commands and statements must be coded according to the following conventions.

Small/etters and reverse characters cannot be used for any commands and statements .

Operands which must be specified by the programmer are indicated in italics .

Items in brackets " < >" may be omitted or repeated any number of times. However, the bracket

marks should not be typed when marking the relevant input.

Separators (commas, semicolons, etc.) must be correctly placed in the specified positions .

1 7

r

18

2.1 Direct commands

2 . 1 . 1 DIR

Format

Function

Description

2 . 1 .2 DIR/P

Format

Function

DIR < FD d >

d drive number : 1 through 4

Displays the file directory of the diskette specified.

When FDd is omitted, the value defaults to the number of the drive against which

the last DIR FDd com mand was executed.

The contents of the directory are as follows:

• Volume number

For the master diskette, "MASTER" is displayed.

• The number of unused sectors remaining.

• Mode, lock condition and file name of each fi le on the diskette.

The four file modes are indicated with the following codes :

BTX : BASIC text fi le

BSD : BASIC sequential access fi le

B RD : BASIC random access fi le

OBJ : Object file

To indicate the lock condition, an asterisk is attached to the fi le mode.

Locked files cannot be overwritten or deleted, nor can their names be changed.

The fi le name specified during fi le creation must be always used to call the

f ile.

When many files are contained on a diskette, the directory cannot be displayed in

a single frame. The display is fixed once a frame is fi lled, and the cursor appears.

The frame containing the remainder of the directory can then be brought to the

screen by pressing the � key. When the display is fi xed, another command

can be executed.

DIR < FDd> /P

d drive number : 1 through 4

Prints the directory of the diskette in drive d on the line printer.

2. 1 .3 SAVE

Format

Function

Description

Example

2 . 1 .4 LO AD

Format

Function

Description

Example

19

SAVE < FDd@v, > "file name"

d drive number : 1 through 4

v t diskette volume number

Assigns the specified file name to the BASIC text contained in the text area and

stores it on the diskette in the specified drive.

The diskette on which the BASIC text is to be saved is specified with the FDd@v

operand.

When this operand is omitted, the text will be stored on the diskette in the de­

fault drive.

"file name" consists of a string of up to 1 6 characters enclosed with quotation

marks.

SAVE "D" . . . Assigns the file name "D" to the BASIC text in the text area and

stores it on the active diskette. The text is stored in the BTX file mode.

LOAD < FDd@v , > "file name"

d drive number : 1 through 4

v diskette volume number

Loads the specified BASIC text file into memory from the specified diskette.

The diskette is specified with the FDd@v operand.

When it is omitted , text is stored on the diskette in the default drive.

LOAD FD2, "A" ... Loads the BASIC text assigned the file name "A" from the

diskette in drive 2 into the text area.

LOAD "TEXT I" . . . Loads BASIC text "TEXT I" from the diskette in the

active drive into the text area.

tThe diskette volume number is assigned to a slave diskette when the diskette is made by using the
utility program " Utility". See page 3 7.

20

2.1.5 RUN

Format

Function

RUN < FDd @v, > "file name"

d drive number : 1 through 4

v diskette volume number

"file name" BTX file or OBJ file

Loads the BASIC text (BTX) assigned the file name "file name" from the dis­

kette, and then executes it from its beginning.

Therefore,

RUN "file name"= LOAD "file name" + RUN

Loads the machine language program (OBJ) assigned the file name "file name"

from the diskette, and then executes the program at the start address. In such

cases, system control is transferred from the BASIC interpreter to the machine

language program.

DIR, SAVE and RAN commands cannot be used as statement in programs.

21

2. 2 File control statements

2.2.1 LOCK

Format

Function

Description

2.2.2 UNLOCK

Format

Function

2.2.3 RENAME

Format

Function

Description

LOCK < FD d @v, > "file name"

d drive number : 1 through 4

v diskette volume number

This statement locks a specified file.

When a file is locked, requests to modify it will be denied. For example, the

command prohibits DELETE or RENAME operations or writing of data in the

case of random access fi les. It is good practice to loc k fi les of a permanent or

semi-permanent nature. The file mode symbols in the fi le directory display are

followed by an asterisk to indicate protected files.

(The write protect seal serves as a hardware lock for an entire diskette.)

UNLOCK < FDd@v, > "file name"

d drive number : 1 through 4

v diskette volume number

This statement unlocks a specified file.

RENAME < FDd@v,> "file name 1 ","file name 2"

d drive number : 1 through 4

v diskette volume number

This statement renames a specified file.

To rename a fi le, its current name and its new name must be specified in this

order. If a renamed fi le is identical in name and mode to any file currently stored

on the same diskette, an error occurs.

The RE NAME statement is prohibited for any locked file.

22

2.2.4 DELETE

Format

Function

Discription

2.2.5 CHAIN

Format

Function

Description

DELETE < FD d@v,> "file name "

d drive number : 1 through 4

v diskette volume number

This statement deletes a specified file from the diskette.

This statement is prohibited for any locked file. If you want to delete locked

files, it is necessary to execute the UNLOCK statement first, then the DELETE

statement.

CHAIN < FDd @v,> "file name"

d drive number : 1 through 4

v diskette volume number

This statement chains the program execution to BASIC text on the diskette.

CHAIN FD2@7, "TEXT B " . . . Chains the program in the BASIC text area to

BASIC program "TEXT B" on the diskette volume 7 in drive 2. That is, program

"TEXT B" is loaded in the BASIC text area and program execution is started at

its beginning. Before the text is loaded, the BASIC text area is cleared but all

variable values and contents of user functions are given to the program. The

CHAIN statement has the same function as GOTO "file name".

CHAIN "PROGRAM 3 " . . . Chains the program in the BASIC text area to

program "PROGRAM 3 " on the diskette in the active drive.

Statements LOCK, UNLOCK, RENAME and DELET E can be also used as direct commands.

2.2.6 SWAP

Format

Function

Description

23

SWAP < FDd@v ,> "file name"

d drive number : 1 through 4

v diskette volume number

This statement swaps the program execution to BASIC text on the diskette.

SWAP FD2@7, "TEXT S-R" . . . Swaps the current program for BASIC program

"TEXT S-R" on diskette volume 7 in drive 2. The current program text is saved

on the diskette in the drive specified in the last DIR FDd command, then pro­

gram "TEXT S-R" is loaded into the text area and is executed from its beginning.

When the swapped program is finished, the saved program is loaded again and

program execution is started at the statement following the SWAP statement. The

values of variables and the contents of user functions are transferred between the

two program. No SWAP statement can be used in a swapped program . The SWAP

statement has the same function as GO SUB "file name ".

• BSD (BASIC Sequantial access Data fi le) control

2.2.7 WOPEN#

Format

Function

Description

WOPEN #l, < FD d @v ,> "file name"

l logiG al num h er

d drive number : 1 through 4

v diskette volume number

This statement opens a diskette file to allow a sequential access file to be written

on the diskette.

WOPEN #3, FD2@7, "SEQ DATA 1 " . . . Defi nes the fi le name of a BSD (BASIC

sequential access data file) to be created as "SEQ DATA 1" and opens it with

logical number 3 assigned on diskette volume 7 in drive 2 .

24

2.2.8 PRINT #

Format

Fonction

Description

2.2.9 CLOSE #

Format

Function

Description

2.2.10 KILL#

Format

Function

Description

PRINT #l, d1, <, d2, • • • , dn >

l logical number

di write data

This statement writes the data d 1 , d2 • • • dv (numeric data or string data) in order

in the BSD assigned logical number l which was opened by a WOPEN# statement.

PRINT #3, A, A$. . . Writes the contents of variable A and string variable A$ in

order in the BSD assigned logical number 3 which was opened by a WOPEN#

statement.

CLOSE <# l >

l logical number

This statement closes a BSD assigned logical number l .

CLOSE #3 . . . Closes the B SD assigned logical number 3 which was opened by

the WOPEN #3 statement.

By closing the BSD, the BSD which has the fi le name defined in the WOP EN #

statement is created on the specified diskette, and the logical number assigned is

made undefined.

KILL <# l >

l logical number

This statement kills a BSD assigned logical number l.

KILL #3 . . . kills the BSD assigned logical number 3 by the WOPEN# statement.

Logical number 3 is made undefined.

2.2.1 1 ROPEN #

Format

Function

Description

2.2. 1 2 INPUT#

Format

Function

Description

25

ROPEN # I, < FD d @v, > "file name"

l logical number

d drive number : I through 4

v diskette volume number

This statement opens a diskette file to allow a sequential access fi le to be read

from the diskette.

ROPEN #4, FD2@7 , "SEQ DATA I " . . . Opens BSD "SEQ DATA l " on dis­

kette volume 7 in drive 2 with logical number 3 assigned to read data in BSD.

INPUT #I, v1 < , v2, . . . , vn >

I logical number

Vi read data

This statement reads data stored in the specified BSD in order and assignes to vari­

ables v 1 , v2 . . . vn (or array elements).

INPUT #4, A(1) , B$. . . Reads data sequentially from the beginning of the BSD

assigned logical number 4 which was opened by the ROPEN # statement and sub­

stitutes numerical data into array element A(l) and string data into string variable

B $.

CLOSE #4 statement closes the BSD assigned logical number 4 and the logical

number undefined.

26

• BRD (BASIC Random access Data file) control

2.2.1 3 XOPEN #

Format

Function

Description

2.2.1 4 PRINT# (

Format

Function

Description

XOPEN #1, < FD d @v, > "file name "

l logical number

d drive number : 1 through 4

v diskette volume number

Generally, XOPEN # opens a BRD for writing and reading data (CROSS opel)).

XOPEN # 5, FD3@ 1 8, "DATA R l " . . . This statement cross-opens B RD "DATA

R l " on diskette volume 1 8 in drive 3 with logical number 5 assigned or, if the file

does not exist on the diskette, cross-opens a B RD by defining its file name as

"DATA R l " to create it on the diskette with logical number 5 assigned.

PRINT #l (n) , d1 <, d2, . . . , dn >

l logical number

n item expression

di write data

This statement writes numeric or string data on elements n , n + 1 , . . . , n + n of

the B RD assigned logical number l which was opened by the XOPEN# statement.

PRINT #5 (1 1), R(l l) . . . Writes the contents of ! -dimensional array element

R(l l) on element 1 1 of the BRD assigned logical number 5 which was opened by

the X OPEN# statement.

PRINT # 5(20), AR$, AS$. . . Writes the contents of string variables AR$ and

AS$ on element 20 and element 2 1 of the B RD assigned logical number 5, respec­

tively. All BRD elements have a fixed length of 3 2 bytes and, if the length of

string variable exceeds 3 2 bytes, the excess part is discarded.

2 7

2.2. 1 5 INPUT# ()

Format INPUf#l(n), v 1 < , v2 , . . . , vn >

l logical number

Function

Description

n item expression

v; read data

This statement reads data stored in the specified elements of the specified B RD.

INPUT # 5(2 1), R$. . . Reads the content of element 2 1 of the B RD assigned

logical number 5 which was opened by the XOPEN# statement into string varia­

ble R$.

INPUT # 5(1 1), A(l l) , A $(1 2) . . . Reads the contents of element 1 1 and ele­

ment 1 2 of the B RD assigned logical number 5 into linear numeric array element

A(l l) and linear string array element A$(1 2), respectively.

CLOSE # 5 statement closes the BRD assigned logical number 5 which was

opened by the corresponding XOPEN # statement.

KILL # 5 statement kills the B RD assigned logical number 5 and the logical num­

ber undefined.

CLOSE Closes all open files.

KILL Kills all open files.

2.2 . 1 6 IF EOF(#) THEN

Format

Function

Example

IF EOF(# l) THEN lr (or statement)

l logical number

lr reference line number

Transfers program control to the routine starting to specified line number lr if an

EOF (End of file) is detected when as INPUT# statement is executed against a

BSD or a B RD.

IF EOF(# 5) THEN 1 200

28

2. 3 Error processing control

2.3 .1 ON E RROR GOTO

Format

Function

Description

2.3 .2 I F E RN

Format

Function

Description

ON E RROR GOTO lr

lr reference line number : error processing routine

This statement declares the number of the line to which program execution is to

be moved in order to correct errors.

Declaring an error processing routine with the ON ERROR GOTO statement

allows errors to be corrected during program execution without the system re­

turning to the BASIC command level. When the ON ERROR GOTO statement is

executed, program execution will be moved to (error processing routine) if any

error has occurred. This enables the t error number (ERN) and the number of the

line on which the error occurred (ERL) to be ascertained, and allows subsequent

processing to be performed in accordance with the IF ERN or ERL statements.

The RESUME statement serves to move program execution back to the point at

which the error occurred.

Execution of a new ON ERROR GOTO statement invalidates any preceding one.

IF ERN expression THEN lr

IF E RN expression THEN statement

IF ERN expression GOTO lr

lr reference line number

This statement ascertains the identification numbers of errors, and causes branch­

ing when those numbers are ones specified.

When an error occurs, the corresponding error number is placed in system variable

ERN. This enables an IF ERN statement in an error correcting routine declared

by the ON ERROR GOTO statement to determine what type of error has

occurred. The IF E RN statement may be used in either of the following forms;

either of the following forms:

(1) IF < relational expression of ERN> GOTO, or

(2) IF < relational expression of ERN > THEN statement or lr .

(See the descriptions of the IF � THEN and IF � GOTO statements.)

t For the error number, refer to the Error Message Table on page 66.

Example

2.3 .3 IF ERL

Format

Function

Description

Example

29

The statement shown below causes program execution to jump to line 1 200 when

Error 5 (String Overflow) occurs, indicating that the string length exceeded 2 5 5

characters.

800 IF E RN = 5 THEN 1 200

IF ERL expression THEN lr

IF ERL expression THEN statement

IF ERL expression GOTO lr

lr reference line number

This statement determines the number of the line on which an error has occurred

and causes branching to a specified line.

Since system variable ERL is loaded with the number of the line on which an

error occurred, the IF ERL statement in the routine declared by the ON ERROR

GOTO statement is able to ascertain this line number from system variable ERL.

The IF ERL statement, like the IF ERN statement, may be used in two forms:

IF - THEN or IF - GOTO.

The statement shown below causes program execution to jump to line 1 3 00 when

an error occurs on line 250 .

8 1 0 IF ERL = 250 THEN 1 300

30

2.3.4 RESUME

Format

Function

Description

RESUME < NEXT >

RESUME lr

lr reference line number or 0

This statement returns program execution to the main program after correction of

an error.

The system holds the number of the line on which the error occurred in memory

and returns program execution to that line or to another specified line after t1:1e

error is corrected.

The RESUME statement may be used in any of the following four forms :

RESUME : This returns program execution t o the statement i n which the error

occurred.

RESUME NEXT : This returns program execution t o the statement just after the

one in which the error occurred.

RESUME < line number) : This returns program execution to the line specified by

< line number) .

RESUME 0 : This returns program execution to the beginning of the program, or

to the line with the smallest line number.

If the system ecounters any RESUME statement when there is no error condi­

tion, Error 2 1 (RESUME - no ERROR) will occur.

31

2.4 Updated commands

2.4 . 1 PRINT USING

Format

Function

Description

PRINT USING format ; variable name list

format string variable consisting of special characters

variable name list . . . numeric variables and/or numeric expression

This statement displays the contents of the numeric variable indicated by hhe

variable name list operand in the specified format.

Special characters used in the format operand are explained below.

• # (used for specifying the number of digits)

The number of # 's is the number of digits to be displayed. Signs (+ and -) are not

counted as digits.

When the number of digits to be displayed is less than that specified, displayed

data is right-justified and vacant spaces are filled with blanks.

PRINT USING "##,###" ; 1 2345

1 2,345

PRINT USING "##,###" ; 1 234,567

u 1 , 23 4 uuuuuuu 5 6 7 Tabs are set every 1 0 digits.

PRINT USING "##.##" ; 1 2.345
"

u " represents a space.

1 2 .34 . Excess decimal places are omitted.

• + and - signs

+### : When data is positive, it is perfixed with a + sign and when it is negative,

it is prefixed with a - sign.

-### : When data is positive, a space precedes it and when it is negative, a - sign

precedes it.

One character space is reserved for the sign.

PRINT USING "+###,###" ; 1 23456

+ 1 23 ,456

A$ = "-#,###"

PRINT USING A $; - 1 234

- 1 ,234

tFor a variable name list, numeric variables (expressions) are separated with cammas.

32

, .

• Decimal point (.)

The decimal point separates the decimal part from the integral part. Only one

decimal point can be used in the format operand. When the number of specified

decimal places is more than the number of decimal places in the given data, Os are

displayed for the excess places. One character space is reserved for the decimal

point.

PRINT USING "+#.##" ; 1 .23

' + 1 . 23

PRINT USING "#.###" ; 1 .23

1 .230

• Comma (,)

Inserts a comma in the specified position. One character space is reserved for each

comma.

PRINT USING "##,###.#" ; 1 2345

1 2 ,3 45 .0

PRINT USING "##,###" ; 1 2

uuuu l 2

• When * s are used instead of #s, * s are displayed instead of spaces.

PRINT USING " * * · * * * " ; 1 2

* * * * 1 2

PRING USING "+ * * * * " ; 1 2

* * + 1 2

• £, @ and $

£, @ or $ can be attached to the beginning of numeric data.

• X

PRING USING "£##,###.##" ; 1 234.56

LJ £ 1 ,234.56

PRINT USING "@##.##" ; 1 2.3

@ 1 2.30

When Xs are specified, spaces are displayed where the Xs are specified.

PRING USING "##XXX##" ; 1 234

1 2 LJLJLJ 34

PRINT USING "#,###.XXX##" ; 1 23 .4

ULJ } 23 . ULJLJ. 40

2.4.2 DELETE

Format

Function

Description

33

• Format Over Display (%)

When the data length is longer than that specified, % preceeds the data displayed.

PRINT USING "##,###" ; 1 23456

% 1 23,456

• Other Characters except Format

When any other characters are specified at the beginning or end of the format

operand, they are displayed as they are.

PRINT USING "UNIT PRICE @##.## YEN" ; 1 2 .34

UNIT PRICE @ 1 2.34 YEN

A$ = "COMPUTER ### SYSTEMS"

PRINT USING A$; 1 2

COMPUTER L...J 1 2 SYSTEMS

PRINT USING "£#,###" ; 1 23 ,45678

u u £ 1 23 uuuu %£45 ,678

• Exchange of 0 (Zero) and 0
Either letter "0" or the numeric character "0" may be used for displaying or

printing zeros with the following POKE statements.

POKE $002D , l The letter 0 is used to display zeros.

POKE $002D,O The numeric character 0 is used to zeros.

DELETE lr

DELETE -lr

DELETE /r­

DELETE lr-lr

lr reference line number

Deletes all statements on lines specified.

Refer to the samples shown below.

DELETE 1 0 : Deletes the statement on line 1 0.

DELETE 1 0- : Deletes all statements after line 1 0.

DELETE - 1 0: Deletes all statements from the beginning of the program to line

1 0.

DELETE 1 0-50 : Deletes all statements between line 1 0 and line 50.

34

2.4.3 DIM

Format

Function

Description

Example

2.4.4 Function

Description

DIM a 1 Ut) < , a2 U2), , an Un) >

DIM b 1 Ut , jd < , b2 (i2 , j.2), . . . , bn Un , jn) >

ai one-dimensional array

bi two-dimensional array

in . jn dimensions

This statement declares the dimensions of one-dimensional or two-dimensional

arrays and secures necessary memory area.

Use of either one-dimensional or two-dimensional arrays (numeric or string arrays)

requires that the size of each array be declared by the DIM statement.

The subscripts which indicate the elements of an array can be expressed with any

numbers from 0 to 255, but the range of usable numbers may be limited accord­

ing to how the memory is used.

However, the number of array elements of an one-dimensional array is only

limited by the amount of unused memory area.

In the case, the subscripts can be expressed with any number over 255 .

DIM A (1 000), AB $ (300)

DIM B (80, 8 0), BC$ (1 00, 1 00)

SB-66 1 0 does not support the following functions.

SIN, COS, TAN, EXP, LOG, LN and (power)

Subroutines for these functions are filed on the master diskette under the file

name "FUNCTION"

These subroutines are referenced for calculating function. Use of the Disk BASIC

SB-65 1 0 is recommended when you need to calculate function.

35

2. 5 Use of utility programs

Utility programs "Filing CMT" (OBJ) and "Utility" (OBJ) are stored on the master diskette toge­

ther with DISK BASIC interpreter SB-66 1 0, MONITOR SB- 1 5 1 0 and some application programs.

In the following paragraphs, use of utility programs are explained.

2.5.1 Use of utility program "Filing CMT"

This utility program transfers machine language program from cassette file to the diskette as it is.

To call this utility program , enter

RUN "Filing CMT"

The display screen is as shown in Figure 2 . 1 .

* TRANSFER FROM CMT (OBJECf TAPE) TO FD *
SET TAPE! OK?

(B KEY : BOOT START)

DRIVE NO. �

FIGURE 2 . 1

Set ready the cassette tape file which has to be transferred into the diskette, and specify the drive

number.

The following example transfers BASIC interpreter SB-55 1 0 from the cassette file to the diskette

in drive 2 .

* TRANSFER F ROM CMT (OBJECT TAPE) TO F D *

SET TAPE! OK?

(B KEY : BOOT START)

DRIVE NO. 2

LOADING BASIC SB-5 5 1 0

(R) KEY : RESTART

OTHER KEY : BOOT START

FIGURE 2 .2

36

You obtain the object file (OBJ) "BASIC SB-5 5 1 0" on the diskette in drive 2 . Therefore, to call

BASIC interpreter SB-5 5 1 0 from the diskette file , simply enter

RUN "BASIC SB-5 5 1 0"

2.5 .2 Use of utility program "Utility"

This utility program has two functions, that is, initializing diskettes and copying diskettes. To call

this utility program , enter

RUN "Utility"

The display screen is as shown below.

* * UTILITY * *

[COMMAND TABLE]

DISKETTE INIT I

SLAVE-DISK INIT S

DISKETTE COPY C

BOOT START B

? f29

FIGURE 2 .3

When a I command is entered, the display is as shown in Figure 2 .4 .

[COMMAND TABLE]

DISKETTE INIT

SLAVE-DISK INIT S

DISKETTE COPY C

BOOT START B

? I

DRIVE NO. :=:::

FIGURE 2 .4

The utility program requests the operator to specify drive number.

When a new diskette is used, it must first be initialized (that is, formats the diskette so that data

are able to be written or read). During initialization, the diskette is formatted.

3 7

S command assigns a volume number t o a initialized diskette for making a slave diskette. Figure

2 .5 shows an example where the slave diskette in drive 1 is made with volume number 2.5 assigned.

[COMMAND TABLE]

DISKETTE INIT I

SLAVE-DISK INIT S

DISKETTE COPY C

BOOT START B

? s
VOLUME NO. 25

FIGURE 2.5

Any number from 1 through 1 27 can be specified for the volume number. Different numbers must

be assigned to each diskette so that a diskette can be specified with its volume number in a logical

open statement.

C command copies a diskette . The follo wing example copies the diskette in drive 1 on diskette in

drive 2 .

[COMMAND TABLE]

DISKETTE INIT I

SLAVE-DISK INIT S

DISKETTE COPY C

BOOT START B

? C

FROM

DRIVE NO. 1

TO

DRIVE NO. 2

COPY

FIGURE 2.6 Slave diskette copying

38

Any number of submaster diskettes can be made by copying the master diskette using this diskette

copy command explained above. However, submaster diskettes cannot be made by copying another

submaster diskette.

FIGURE 2.7

NOTE : It is recommended that a write protect seal be placed on the original diskette to prevent it

from being accidentally erased.

E RROR INDICATIONS DISK E RROR = 50 The disk drive is not ready.

DISK E RROR = 4 1 Disk drive hard ware error.

Chapter 3
Programming Instructions

This chapter summarizes all commands, statements, operators, symbols and specifications of the

double precision DISK BASIC interpreter SB-667 0.

39

! :

40

3. 1 List of DISK BASIC interpreter SB-6610 commands, statements and
functions

·

3 . 1 . 1 Commands

DIR DIR FDd

DIR FD3

DIR

LOAD LOAD "A"

LOAD FD2@ 1 0 "A"

LIMIT $DOOO: LOAD "B"

SAVE SAVE "D"

RUN RUN

RUN 1 000

RUN "F"

(BTX)

Displays the file directory of the diskette in drive d (d= 1�4).

The contents of the directory are as follows :

1) Volume number

2) Number of unused sectors

3) Mode, lock condition and file name of each file on the dis­

kette

Note : When a directory is listed on the CRT, the display is fixed

and the cursor appears when the frame is filled.

To display the next frame of the directory, press the

[CR] key. Other command may be executed once the

display is fixed.

Displays the files directory of the diskette in drive 3. When a DIR

FDd command is executed, the system stores the drive number so

that it may be omitted (if the same drive is specified) for the direct

execution instructions and file access instructions explained below.

Displays the file directory of the diskette in the active drive which

is last specified in a DIR FDd collUTiand.

Loads BASIC text (BTX) assigned the file name "A" from the

diskette in the active drive into the text area.

Loads the BASIC text assigned the file name "A" from volume 1 0

in drive 2 into the text area.

To load a machine language program file (OBJ) to be linked with a

BASIC text, the BASIC area of memory must be partitioned from

the machine language area by the LIMIT statement.

Assigns the file name "D" to the BASIC text in the text area and

stores it on the diskette in the active drive. The text is stored in the

BTX file mode.

Executes the BASIC text in the text area from the top.

Note : The RUN command clears all variables (fills them with 0 or

null string) before running text.

Executes the BASIC text starting at line number 1000.

Loads the BASIC text assigned the file name "F" from the diskette

in the active drive and executes it from its beginning.

AUTO

LIST

NEW

CONT

MON

BOOT

KLIST

DELETE

RUN FD3@7 "G"
t

(OBJ)

AUTO

AUTO 200, 20

LIST

LIST -500

NEW

CONI

MON

BOOT

KLIST

DELETE 10

DELETE 10-

DELETE - 1 00

DELETE 10- 100

41

Loads machine language program assigned the file name "F" from

the diskette of volume 7 in drive 3 , and then executes the program

starting at the start address. In such cases, system control is trans­

ferred from the BASIC interpreter to the machine language pro­

gram.

Automatically generates and assigns line numbers 10 , 20, 30

during creation.

Automatically generates line numbers at intervals 20 starting at line

200. 200, 220, 240

An AUTO command is terminated by pressing the (BREAK] key .

Displays all lines of BASIC text currently contained in the text

area.

Displays all lines of BASIC text up through line 500.

Clears the text area and variable area.

Further, disestablishes the machine language program area set by a

LIMIT statement by removing the partition.

Continues program execution which was halted by a STOP state­

ment or the (BREAK) key, starting at the statement following the

STOP statement or the statement halted by the [BREAK! key.

Transfers system control from the BASIC interpreter to the MONI­

TOR.

(To transfer system control from the MONITOR to the BASIC

interpreter , execute monitor command J .)

Activates the MZ-80B system initial program loader.

Displays a complete list of string definitions for special function

keys, thereby enabling you to determine how individual special

function keys are defined.

Deletes the statement on line 10 .

Deletes all statements after line 10 .

Deletes aU statements up to line 100.

Deletes all statements from line 10 to line 1 00 .

42

3 . 1 .2 File control statements

LOCK

UNLOCK

RENAME

DELETE

CHAIN

SWAP

LOCK "ABC"

LOCK FD4@7 "ABC"

UNLOCK "ABC"

100 UNLOCK F D l "A"

RENAME "A", "B"

DELETE "A"

CHAIN FD2@7 "TEXT B"

CHAIN "TEXT B"

Locks file "ABC" on the diskette in the active drive.

Locks file "ABC" on the diskette (whose volume number is 7), in

drive 4 .

The locked me cannot be updated or deleted.

When the me directory is listed, the locked file name is indicated

with an asterisk.

Unlocks file "ABC" on the diskette in the active drive.

Unlocks me "A" on the diskette in drive 1 .
(This is an example o f a statement used i n a program.)

Changes the name of me "A" on the diskette in the active drive to

"B".

Deletes file "A" from the diskette in the active drive .

Chains the program in the BASIC text area to BASIC program

"TEXT B" on the diskette volume 7 in drive 2. That is , program

"TEXT B" is loaded in the BASIC text area and program execution

is started at its beginning. Before the text is loaded, the BASIC text

area is cleared but all variable values and contents of user functions

are given to program "TEXT B".

The CHAIN statement has the same function as GOTO "file name" .

Chains the program in the BASIC text area to program "TEXT B"

on the diskette in the active drive.

SWAP FD2@7 "TEXT S-R" Swaps the current program for BASIC program "TEXT S-R" on

diskette volume 7 in drive 2 .

The current program text is saved on the diskette in the drive speci­

fied in the last DIR FDd command, then program "TEXT S-R" is

loaded into the BASIC text area and is executed from its beginning.

When the swapped program is finished, the saved program is loaded

again and program execution is started at the statement following

the SWAP statement. The values of variables and the contents of

user functions are transferred between the two programs. No

SWAP statement can be used in a swapped program. The SWAP

statement has the same function as GOSUB "file name".

43

3 .1 .3 BSD (BASIC Sequential access Data file) control statements

WOPEN #

PRINT #

CLOSE #

KILL #

ROPEN #

INPUT #

CLOSE #

WOPEN #3, FD2@7 ,

"SEQ DATA 1"

PRINT #3, A , A$

Defines the file name of a BSD (BASIC sequential access data file)

to be created as "SEQ DATA 1 " and opens it with logical number

3 assigned on diskette volume 7 in drive 2 .

For WOPEN # statements including a USR function operand, see

page 55 .

Writes the contents of variable A and string variable A$ in order in

the BSD assigned logical number 3 which was opened by a WOPEN

statement.

(In writing data, 256 bytes are treated as a unit.)

CLOSE #3 Closes the BSD assigned logical number 3 which was opened by the

(corresponding to WOPEN #) WOPEN #3 statement.

KILL # 3

ROPEN #4, FD2@7

"SEQ DATA 1 "

INPUT # 4, A (1), B$

CLOSE #4

By closing the BSD, the BSD which has the flle name defined in

the WOPEN # statement is created on the specified diskette , and

the logical number assigned is made undefmed.

Kills the BSD assigned logical number 3 by the WOPEN # state­

ment. Logical number 3 is made undefined.

Opens BSD "SEQ DATA 1" on diskette volume 7 in drive 2 with

logical number 3 assigned to read data in BSD.

For ROPEN # statements including· a USR function, see page 55 .

Reads data sequentially from the beginning of the BSD assigned

logical number 4 which was opened by the ROPEN # statement

and substitutes numerical data into array element A (I) and string

data into string variable B$.

Close the BSD assigned logical number 4 and makes the file

(corresponding to ROPEN #) number undefined.

3.1 .4 BRD (BASI C Random access Data file) control statements

XOPEN #

PRINT #()

XOPEN #5, FD3@ 18 ,

"DATA R1"

PRINT #5 (1 1) , R (3)

Generally, XOPEN # statement opens a BRD for writing and read­

ing data (Cross open).

This statement cross-opens BRD "DATA R 1 " on diskette volume

1 8 in drive 3 with logical number 5 assigned or, if the file does not

exist on the diskette, cross-opens a BRD by defining its file name

as "DATA R 1 " to create it on the diskette with logical number 5

assigned.

Writes the content of linear array element R (3) on field 1 1 of

the BRD assigned logical number 5 which was opened by the

XOPEN # statement.

44

PRINT #()

INPUT #()

CLOSE #

KILL #

IF EOF (#)

PRINT #5 (20), AR$, AS$

INPUT #5 (2 1), R$

INPUT #5 (1 I), A (I I),

A $ (1 2)

CLOSE #5

CLOSE

Writes the contents of string variables AR$ and AS$ on field 20

and field 2 I of the BRD assigned logical number 5 , respectively.

All BRD fields have a fixed length of 32 bytes and, if the length

of string variable exceeds 32 bytes, the excess part is discarded.

Reads the content of field 2 I of the BRD assigned logical number

5 which was opened by the XOPEN # statement into string vari­

able R$.

Reads the contents of field I I and field I2 of the BRD assigned

logical number 5 into linear numeric array element A (I l) and

linear string array element AR(1 2), respectively.

Close the BRD assigned logical number 5 which was opened by the

corresponding XOPEN # statement.

Closes all open files.

KILL Kills all open files.

1 0 IF EOF {#5) THEN 700 Transfers program control to the routine starting to line number

700 if an EOF (End of File) is detected when an INPUT # state­

ment is executed against a BSD or a BRD.

3 . 1 .5 Error processing statements

ON ERROR

GOTO

IF ERN

IF ERL

RESUME

ON ERROR GOTO 1 000

IF ERN=44 THEN I OSO

IF ERN=350 THEN 1 090

Declares that the number of the line to which program execution is

to be moved, if an error occurs is 1 000.

Jumps to the statement on line number 1 050 if the error number is

44.

Jumps to the statement on line number 1 090 if the error line num­

ber is 350 .

IF (ERN=53)* (ERL=700) Terminates the program if the error number 53 and the error line

THEN END number is 700.

650 RESUME

With DISK-BASIC, the error number and error line number are set

in special variables ERN and ERL, respectively, if an error occurs

during program execution.

Returns program execution to the main program after correction

of an error.

Returns program execution to the statement in which the error

occurred.

700 RESUME NEXT

750 RESUME 400

800 RESUME 0

45

Returns program execution to the statement just after the one in

which the error occurred.

Returns program execution to line number 400 .

Returns program execution to the beginning of the program.

3. 1 .6 Cassette file input/output statements

LOAD/T LOAD/T "C"

SAVE/T SAVE/T "E"

VERIFY VERIFY "H"

WOPEN/T 1 0 WOPEN/T "DATA· 1 "

PRINT/T 20 PRINT/T, A$

CLOSE/T 30 CLOSE/T

ROPEN/T 1 1 0 ROPEN/T "DATA-2"

INPUT/T 1 20 INPUT/T, B, B$

CLOSE/T 1 30 CLOSE/T

3.1 .7 Assignment statement

I LET I (LET) A=X+3

Loads the BASIC text assigned the file name "C" from the cassette

tape into the text area.

Note : When a LOAD command or a LOAD/T command is execut­

ed for a BASIC text file , the text area is cleared of any pro­

grams previously stored.

Assigns the file name "E" to the BASIC text in the text area and

automatically stores it on the cassette tape .

This command automatically compares the program contained in

the BASIC text area with its equivalent text assigned the file name

"H" in the cassette tape file .

Defines the file name of a cassette data file to be created as

"DAT A- 1 " and opens.

Writes the contents of variable A and string variable A$ in order in

the cassette data file which was opened by a WOPEN/T statement .

Closes the cassette data file which was opened by a WOPEN/T

statement.

Opens the cassette data file specified with file name "DAT A-2".

Reads data sequentially from the beginning of the cassette data file

which was opened by the ROPEN/T statement and substitutes

numerical data into variable B and string data into string variable

B$ respectively.

Closes the cassette data file which was opened by a ROPEN/T

statement.

I Substitutes X + 3 into numeric variable A. LET may be omitted.

46

3.1 .8 Input/output statements

PRINT 10 PRINT A

? A$

100 PRINT A; A$, B ; B$

1 10 PRINT "COST=" ; CS

1 20 PRINT

Displays the numeric value of A on the CRT screen.

Displays the character string of variable A$ on the CRT screen.

Combinations of numeric variables and string variables can be spe­

cified in a PRINT statement. When a semicolon is used as the sepa­

rator, no space is displayed between the data strings. When a colon

is used, variable data to the right of the colon is displayed from the

next tab set position.

(A tab is set every 10 character positions.)

Displays the string between double quotation marks as is, and CS.

Performs a new line operation (i .e . , advances the cursor one line).

PRINT USING PRINT USING "####' Displays data in the format specified with #'s. When the length of

the data to be displayed is shorter than that specified, the data is

right-justified and empty spaces are filled with blanks .

Specifies format
in which numeric
data is to be
output on the
CRT screen. 1 0 PRINT USING

"####" ; 1 23

Displays u 1 23 .

20 PRINT USING Displays u u 98.

"####' ; 98

PRINT USING Displays the decimal point and commas in the specified positions.

"##,###.##'

10 PRINT USING Displays u 5 ,32 1 .65 .

"##,###.##' ; 532 1 .65

PRINT USING When * 's are used instead of #s, * 's are displayed for spaces.
" * * * * · * * * "

1 0 PRINT USING Displays * 1 ,234 .

" * * · * * *" ; 1 234

PRINT USING

" £ * *· * * * "

"@ * * · * * * " Prefixes numeric data with £ , @ or $.

"$ * *·* * * "

1 0 PRINT USING Displays * £82,546.
"£* * * · * * * " ;

20 PRINT USING

" £###,###.##" ;

7658.35

30 PRINT USING

"@###,###' ; 2935

40 PRINT USING

"$###,###" ; 8 1965

PRINTUSING

"#XX#. ##"

10 PRINT USING

"#XX#.##' ; 98.76

PRINT USING

"+###.#'

PRINT USING

"-###.#"

10 PRINT USING

"+###.#' ; 1 2.3

20 PRINT USING

"+###.#' ; -5.6

30 PRINT USING

"-###.#' ; 58 .3

40 PRINT USING

"-###.#" ; -58.3

10 PRINT USING

"##.##' ; 1 3 5 .68

10 PRINT USING

"#.#' ; 1 .23

4 7

Displays uu £7 ,658.35 .

Displays u u @2,935 .

Displays u $8 1 ,965 .

Displays spaces for X's.

Displays 9 uu8. 76.

When data is positive, a + sign precedes it and when it is negative , a

- sign precedes it . (One character space is reserved for the sign.)

When data is positive, a space precedes it and when it is negative, a

- sign precedes it. (One character space is reserved for the sign.)

Displays u + 1 2.3 .

Displays u u -5 .6.

Displays uu 58.3 .

Displays u -58.3 .

When the length of the data to be displayed is longer than that

specified, % precedes the data displayed.

Displays % 1 3 5 .68.

When the number of decimal places specified is less than that of

the given data, the excess digits are omitted.

Displays 1 .2.

48

INPUT

GET

READ� DATA

RESTORE

10 A$= "###.##' The format operand can be specified with a string variable as

shown at the left.

20 PRINT USING A$; 1 .5 8 Displays u u 1 .5 8.

30 PRINT USING A$; 28.3 Displays u 28.30.

10 INPUT A

20 INPUT A$

30 INPUT "VALUE?" ; D

40 INPUT X, X$, Y, Y$

1 0 GET N

20 GET K$

10 READ A, B, C

10 10 DATA 25 , -0.5 , 500

10 READ H$, H, S$, S

30 DATA HEART, 3

3 5 DATA SPACE, 1 1

1 0 READ A, B, C

20 RESTORE

30 READ D, E

100 DATA 3 , 6, 9, 1 2, 1 5

Obtains numeric data for variable A from the keyboard.

Obtains string data for string variable A$ from the keyboard.

Displays "VALUE?" on the screen before obtaining data from the

keyboard. A semicolon separates the string from the variable .

Numeric variables and string variables can be used in combination

by separating them from each other with a comma. The types of

data entered from the keyboard must be the same as those of the

corresponding variables.

Obtains a numeral for variable N from the keyboard. When no key

is pressed, zero is substituted into N.

Obtains a character for variable K$ from the keyboard. When no

key i s pressed, a null i s substituted into K$.

Substitutes constants specified in the DATA statement into the

corresponding variables specified in the READ statement. The

corresponding constant and variable must be of the same data type.

In READ and DATA statements at left, values of 25, -0.5 and 500

are substitutes for variables A, B and C, respectively.

In the example at left, the first string constant of the DATA state­

ment on line number 1 0 is substituted into the first variable of the

READ statement; that is; "HEART" is substituted into H$. Then,

numeric constant 3 is substituted into numeric variable H, and so

on.

With a RESTORE statement, data in the following DATA state­

ment which has already been read by preceding READ statements

can be re-read from the beginning by the following READ state­

ments.

The READ statement on line number 10 substitutes 3 , 6 and 9 into

variables A, B and C, respectively. Because of the RESTORE state­

ment, the READ statement on line number 30 substitutes not 1 2

and 1 5 , but 3 and 6 again into D and E, respectively.

3 . 1 .9 Loop statement

FOR - TO

NEXT

1 0 FOR A= 1 TO 1 0

20 PRINT A

30 NEXT A

1 0 FOR B=2 TO 8 STEP 3

20 PRINT B ' 2

3 0 NEXT

10 FOR A=�J 0 3

20 FOR B= ! O TO 30] 30 PRINT A, B

40 NEXT B

50 NEXT A

60 NEXT B, A

70 NEXT A, B

3 . 1 . 1 0 Branch statements

GOTO

GO SUB

- RETURN

IF - THEN

IF - GOTO

100 GOTO 200

1 00 GOSUB 700

800 RETURN

1 0 IF A>20 THEN 200

50 IF B<3 THEN B=B+3

1 00 IF A>=B GOTO 1 0

49

The statement on line number 10 specifies that the value of vari­

able A is varied from 1 to 1 0 in increments of one. The initial value

of A is 1 . The statement on line number 20 displays the value of A.

The statement on line number 30 increments the value of A by one

and returns program execution to the statement on line number

10 . Thus, the loop is repeated until the value of A becomes 10.

(After the specified number of loops has been completed, the value

of A is 1 1 .)

The statement on line number 1 0 specifies that the value of vari­

able B is varied from 2 to 8 in increments of 3 . The value of STEP

may be made negative to decrement the value of B .

The FOR-NEXT loop for variable A includes the FOR-NEXT loop

for variable B. As is shown in this example, FOR·NEXT loops can

be enclosed in other FOR-NEXT loops at different levels. Lower

level loops must be completed within higher level loops. The maxi­

mum number of levels of FOR-NEXT loops is 1 6 .

In substitution for NEXT statement a t line numbers 40 and 50 , a

statement at line number 60 shown at left can be used. However,

statement at line number 70 cannot be used, causing an error to

occur.

Jumps to the statement on line number 200.

Calls the subroutine starting on line number 700. At the end of

subroutine , program execution returns to the statement following

the corresponding GOSUB statement .

Jumps to the statement on line number 200 when the value of

variable A is more than 20; otherwise the next line is executed.

Substitues B+ 3 into variable B when the value of B is less than 3 ;

otherwise the next line is executed.

Jumps to the statement � line number 10 when the value of vari­

able A is equal to or greater than the value of B; otherwise the next

I line is executed.

L------------------------------- · - ---- ·· --0

50

IF - GOSUB 30 IF A=B* 2 GOSUB 90

ON - GOTO 50 ON A GOTO 70, 80, 90

ON - GOSUB 90 ON A GOSUB 700, 800

3. 1 . 1 1 Definition statements

DIM

DEF FN

10 DIM A (300)

20 DIM B (79, 79)

30 DIM C I $ (1 0)

40 DIM K$ (7 , 5)

100 DEF FNA(X)=X ' 2-X

1 1 0 DEF FNB(X)=LOG (X)

+ I

1 20 DEF FNZ(Y)=LN (Y)

Jumps to the subroutine starting on line number 700 when the

value of variable A is twice the value of B ; otherwise the next state­

ment is executed.

(When other statements follow a conditional statement on the

same line and the conditions are not satisfied, those following an

ON statement are executed sequentially, but those following an IF

statement are ignored and the statement on the next line i s exe­

cuted.)

Jumps to the statement on line number 70 when the value of vari­
able A is 1 , to the statement on line number 80 when it is 2 and to

the statement on line number 90 when it is 3 . When the value of A

is 0 or more than 3, the next statement is executed. This statement

has the same function as the INT function, so that when the value

of A is 2 .7 , program execution jumps to the statement on line

number 80 .

Jumps to the subroutine on line number 700 when the value of

variable A is 1 and jumps to the subroutine on line number 800

when it is 2 .

When an array i s used, the number of array elements must be

declared with a DIM statement. For an one-dimensional array , the

number of array elements is only limited by the amount of the

unused memory area. For a two-dimensional array, however, it is

limited by the maximum value of each subscript which is 255 .

Declares that 30 I array elements, A (O) through A (300), are used

for one-dimensional numeric array A (n).

Declares that 6400 array elements, B (0, 0) through B (79, 79), are

used for two-dimensional numeric array B (m, n).

Declares that 1 1 array elements, C l $ (0) through C l $ (1 0), are

used for one-dimensional string array C 1 $ (n).

Declares that 48 array elements, K$ (0, 0) through K$ (7, 5), are

used for two-dimensional string array K$ (m, n).

A DEF FN statement defmes a function. The statement on line

number 1 00 defines FNA(X) as X2 -X. The statement on line

number 1 10 defines FNB(X) as Jog10 X + l and the statement on

line number 1 20 defines FNZ(Y) as loge Y. The number of vari­

ables included in the function must be 1 .

DEF KEY 1 5 DEF KEY(l)=LIST

25 DEF KEY(2)=LOAD !

RUN

3 . 1 . 1 2 Comment and control statements

REM

STOP

END

CLR

CURSOR

CSRH

CSRV

CONSOLE

CHANGE

200 REM JOB- I

850 STOP

1 999 END

300 CLR

50 CURSOR 25 , 1 5

60 PRINT "ABC"

1 0 CONSOLE S l O, 20

20 CONSOLE C80

30 CONSOLE C40

40 CONSOLE R

50 CONSOLE N

1 0 CHANGE

51

A DEF KEY statement defmes a function for any of the ten special

function keys. The statement on line number 1 5 defines special

function key 1 as LIST. The statement on line number 25 defines

special function key 2 as the multi-command LOAD: RUN.

Comment statement (not executed).

Stops program execution and awaits a command entry. When a

CONT command is entered, program execution is continued.

Declares the end of a program. Although the program is stopped,

the following program is executed if a CONT command is entered.

Clears all variables and arrays, that is, fills all numeric variables and

arrays with zeros and all string variables and arrays with nulls.

The CURSOR command moves the cursor to any position on the

screen. The first operand represents the horizontal location of the

destination, and must be between 0 and 39 in 40-character mode ,

and must be between 0 and 79 in 80-character mode. The second

operand represents the vertical location of the destination and

must be between 0 and 24. The left example displays "ABC" start­

ing at location (25 , 1 5) (the 26th position from the left side and

the 16th position from the top).

System variable indicating the X-coordinate (horizontal location)

of the cursor.

System variable indicating the Y-coordinate (vertical location) of

the cursor.

Sets the scrolling area to lines 10 through 20.

Sets the display in the 80 characters/line mode.

Sets the display in the 40 characters/line mode.

Sets the display in the reverse mode.

Sets the display in the normal mode .

Reverses the function of the [SHIFT] key concerned with alpha­

betic keys.

52

REW 7 1 0 REW

FAST 720 FAST

SIZE ? SIZE

T l$ 1 00 Tl$ = " 1 02030"

3 . 1 . 1 3 Music control sta tements

MUSIC

TEMPO

300 TEMPO 7

3 1 0 MUSIC "DE#FGA"

300 M 1 $ = "C3DG + C"

3 1 0 M2$ = "BGD - G"

Rewinds the cassette tape.

Fast-forwards the cassette tape.

Displays the amount of unused memory area in bytes.

Sets the built-in clock to 1 0 : 20 :30 AM. Data between the double

quotation marks must be numerals.

The MUSIC statement generates a melody from the speaker accord­

ing to the melody string data enclosed in quotation marks or string

variables at the tempo specified by the TEMPO statement.

The TEMPO statement on line number 300 specifies tempo 7. The

MUSIC statement on line number 3 1 0 generates a melody consist­

ing of D, E, F sharp, G and A. Each note is a quarter note. When

the TEMPO statement is omitted, default tempo is set .

In this example, the melody is divided into 3 parts and substituted

in 3 string variables. The following melody is generated from the

320 M3$ = "C8R5 " speaker at tempo 4. :

330 MUSIC M 1 $, M2$, M3$

3 . 1 . 1 4 Graphic control statements

GRAPH 1 0 GRAPH 1 1

20 GRAPH 01

30 GRAPH 02

40 GRAPH 0 1 2

5 0 GRAPH 00

60 GRAPH C

70 GRAPH F

80 GRAPH I I , C, 0 1

Places graphic area 1 in the input mode . (That is, data are to be

transferred to graphic area 1 ,)

Places graphic area 1 in the output mode .

Places graphic area 2 in the output mode.

Places graphic areas 1 and 2 in the output mode .

Resets the graphic output.

Clears graphic area that is in the input mode .

Fills graphic area that is in the input mode.

Places graphic area 1 in the input mode, then clears it and places it

in the output mode .

SET

RESET

LINE

300 SET 1 60, 1 00

3 1 0 RESET 1 60, 1 00

53

Sets a dot in the specified position ·in a graphic area operating in

the input mode.

The first operand specifies the X-coordinates (0-3 19) and the

second operand specifies the Y-coordinates (0- 1 99).

Displays a dot in the center of the screen.

Resets a dot in the specified position in a graphic area operating in

the input mode .

Resets a dot from the center of the screen.

Draws lines connecting positions specified by operands.

400 LINE 1 1 0, 50, 2 1 0, 50, Draws a square the length of whose side is 1 00 in the center of the

2 10, 1 50, 1 1 0, 1 50, 1 1 0, display screen.
50

BLINE Draws black lines connecting positions specified by operands.

POSITION Sets the location of the position pointer in a graphic area. The

PATTERN statement (see below) is executed starting at the loca­

tion indicated by the position pointer.

PATTERN

POINT

20 GRAPH 12, C, 02

30 POSITION 0, 50

40 PATTERN 8, A$

10 C$ = "ABCDEF"

20 PATTERN 4, C$

30 PATTERN -4, C$

1 00 ON POINT (X, Y)

GOTO 10 , 20, 30

Places graphic area 2 in the input mode, sets the position pointer to

the position corresponding to the position on the display screen

which is at (0, 50), then transfers data from variable A$ to graphic

area 2 so that the pattern corresponding to the contents of A$ is

drawn on the screen starting at (0, 50).

Draws the dot pattern specified by operands in a graphic area

which is in the input mode. Each dot pattern unit consists of 8

dots arranged horizontally and corresponds to 8 bits representing a

character. Elements are stacked in the number of layers specified

by the value of the first operand and the direction in which layers

are stacked is specified by the sign of the first operand.

Draws the dot pattern shown as follows.

4 1'Y'ffi f i l i i 00 I l l �
Draws the following dot pattern.

4 l'Y"' 1 1 1 1 1 1 1 1 1 M
Ascertains the dot (X, Y) whether it is set or reset, and branches

according to the result.

Result of the
POINT function

Point infonnation

0 Points in both graphic areas 1 and 2 are reset.

1 Only point in graphic area 1 is set.

2 Only point in graphic area 2 is set.

3 Points in both graphic areas 1 and 2 are set.

54

POSH

POSY

System variable indicating the X-coordinate (horizontal location)

of the position pointer.

System variable indicating the Y-coordinate (vertical location) of

the position pointer.

3. 1 . 1 5 Machine language control statements

LIMIT 100 LIMIT 49 1 5 1

1 00 LIMIT A

100 LIMIT $BFFF

300 LIMIT MAX

200 LIMIT $BFFF

2 1 0 LOAD FD2 "S-Rl "

POKE 1 20 POKE 49450, 1 75

1 30 POKE AD, DA

PEEK 1 50 A=PEEK (49450)

1 60 B=PEEK (C)

USR 500 USR (49 1 52)

550 USR (AD)

570 USR ($COOO)

Limits the area in which BASIC programs can be loaded to the area

up to address 49 1 5 1 ($BFFF in hexadecimal).

Limits the area in which BASIC programs can be loaded to the area

up to the address indicated by variable A.

Limits the area in which BASIC programs can be loaded to the area

up to $BFFF (hexadecimal). Hexadecimal numbers are indicated

by a dollar sign as shown at left.

Set the maximum address of the area in which BASIC programs

can be loaded to the maximum address of the memory installed.

Loads machine language program (object program) "S-R1" in the

machine language link area from the diskette in drive 2 when the

loading address of the program is $COOO or higher.

Stores 1 75 in address 49450.

Stores data (between 0 and 255) specified by variable DA into the

address indicated by variable AD.

Substitutes data stored in address 49450 into v {riable A.

Substitutes the contents of the address indicated by variable C into

variable B.

Transfers program control to address 49 1 52 . This function is the

same as that performed by the CALL instruction, which calls a

machine language program. When a RET command is encountered

in the machine language program , program control is returned to

the BASIC program.

Calls the program starting at the address specified by variable AD.

Calls the program starting at address $COOO.

600 WOPEN #8, USR

($COOO)

6 1 0 PRINT #8, A$

620 CLOSE #8

700 ROPEN #9, USR

($C 1 00)

7 1 0 INPUT #9, B $

720 CLOSE #9

3. 1 . 1 6 Printer control statements

PRINT/P

PRINT/P A$

PRINT /P CHR$ (N)

PRINT/P CHR$ (5)

PRINT/P CHR$ (6)

PRINT /P CHR$ (1 6)

PRINT /P CHR$ (1 7)

PRINT/P CHR$ (1 8)

55

The statement on line 600 opens a file which is to be written by

the machine language program called by USR ($COOO) with logical

number 8 assigned . At this stage of program execution the USR

function is not executed. The statement on line 6 10 loads the

beginning address of the memory area set with variable A$ into the

DE register of the CPU and its length (max. 255 bytes) into the BC

register. This enables the program called by USR (SCOOO) to obtain

data in A$. It then executes USR ($COOO).

The statement on line number 700 opens a file which is to be read

by the machine language program called by USR ($C 1 00) with

logical number 9 assigned. The statement on line number 7 1 0 exe­

cutes USR ($C 1 00). The machine language program called loads

string data in the memory area starting at the address indicated by

the DE register and loads the length of the data string read in the

BC register. It then returns program control to the BASIC program.

The BASIC program refers to this memory area as B$.

Performs the nearly same operation as the PRINT statement on the

optional printer.

Outputs to the printer just as it is the contents of string variable

A$.

For an N of 3 2�N�255, it considers this as an ASCII code, and

outputs a matching character to the printer.

Feeds paper to top of the form position on the next page . It is

called form feed. The function of the control button "TOP OF

FORM" of the printer i s controlled by software.

Returns the printing mode to its initial condition. Furthermore ,

the form feed is carried out. It is called initial mode set. Initial

mode means 80 digit mode , line space mode.

Sets the printing mode for line spacing. It is called line space mode.

Sets the printing mode , completely closing up printing line space.

Sets the mode to double the present printing size of the characters.

It is called double size mode. There is a 40 digit mode and a 68

digit mode .

56

IMAGE/P

COPY/P

PAGE/P

PRINT/P

USING

LIST/P

DIR/P

PRINT /P CHR$ (1 9)

PRINT/P CHR$ (20)

PRINT /P CHR$ (2 1)

30 IMAGE/P CHR$ (255),

"UU"

10 COPY/P 1

20 COPY/P 2

30 COPY/P 3

40 COPY/P 4

1 00 PAGE/P 20

The same as the

PRINT USING statement.

LIST/P

DIR FDd/P

3 . 1 . 1 7 1/0 inpu t/output statements

INP

OUT

10 INP @ 1 2 , A

20 PRINT A

30 8 = A ' 2 +0.3

40 OUT @ l 3 , 8

Cancels the double size mode. Returns to the 80 digit mode or 1 36

digit mode .

Sets the printing mode as reduced characters of the normal size

printing (80 digit mode). It is called reduced mode or 1 36 digit

mode.

With the bit image mode , it sets the 8 1 6 bit data in one line in the

printing mode.

Cancels the reduced mode.

Draws a desired dot pattern (image) specified in the operand on the

line printer according to the operating mode (image mode 1 or 2).

Causes the printer to copy the character display.

Causes the printer to copy the dot pattern set in graphic area 1 .

Causes the printer to copy the dot pattern set in graphic area 2 .

Causes the printer t o copy the dot pattern set in both graphic area

1 and graphic area 2 .

Specifies 2 0 lines t o b e contained in one page o f the MZ-80P5 line

printer.

Specifies the format in which numeric data is to be output on the

printer. (Refer to PRINT USING on page 46.)

Prints out all lines contained in the BASIC txext area on the line

printer.

Prints the file directory of the diskette in drive d on the line

printer.

Reads data on the specified 1/0 port.

The statement on line number 10 reads data on 1/0 port 1 2 .

Outputs data to the specified I/0 port.

The statement on line 40 outputs the value of 8 to 1/0 port 1 3 .

3. 1 . 1 8 Arithmetic functions

ABS

INT

SGN

SQR

RND

1 00 A = ABS (X)

1 00 A = INT (X)

1 00 A = SGN (X)

1 00 A = SQR (X)

1 00 A = RND (0)

1 10 C = RND (-3)

200 A = RND (1)

2 1 0 B = RND (1 0)

3. 1 . 1 9 String control functions

I LEFT s 1 1 0 A$ = LEFT$ (X$, N)

5 7

Substitutes the absolute value of variable X into variable A . X may

be either a constant or an expression.

Ex) ABS (-3) = 3

ABS (1 2) = 1 2

Substitutes the greatest integer which is less than X into variable A.

X may be either a numeric constant or an expression .

Ex) INT (3.87) = 3

INT (0.6) = 0

INT (-3.87) = -4

Substitutes one of the following values into variable A: -1 when

X<O, 0 when X = O and 1 when X>O. X may be either a constant

or an expression.

Ex) SGN (0.4) = 1

SGN (0) = 0

SGN (-400) = - 1

Substitutes the square root of variable X into variable A . X may

either a numeric constant or an expression ; however , it must be

greater than or equal to 0.

This function generates random numbers which take any value

between 0.00000000000000 1 and 0.999999999999999, and

works in three manners depending upon the value in parentheses.

When the value in parentheses is 0, the random number generating

routine is initialized and the function always gives the first number

of the random number group generated. Therefore , statement on

line 1 00 gives the same value to variables A and B.

When the value in parentheses is negative, the random number

generating routine is given time information from the built-in clock

and generates a random number between 0.00000000000000 1 and

0.999999999999999. The statement on line 1 1 0 generates a ran­

dom number in this manner .

When the value in parentheses is positive, as shown in the state­

ments on lines 200 and 2 1 0, the function gives the random number

following the one previously given in the random number group

generated.

The value obtained is independent of the value in parentheses.

I Substitutes the first N characters of string variable X$ into string I variable A$. N may be either a constant, a variable or an expression.

58

MID $

RIGHT $

SPACE $

STRING $

CHR $

ASC

STR$

VAL

LEN

20 B$ = MID$ (X$, M, N)

30 C$ = RIGHT$ (X$, N)

40 D$ = SPACE$ (N)

50 E$ = STRING $

(" * " , 10)
60 F$ = CHR $ (A)

70 A = ASC (X$)

80 N$ = STR$ (I)

90 I = VAL (N$)

1 00 LX = LEN (X$)

1 1 0 LS = LEN (X$ + Y$)

3. 1 .20 Tabulation function

I TAB 1 1 0 PRINT TAB (X) ; A

Substitutes the N characters following the Mth character from the

beginning of string variable X$ into string variable B$.

Substitutes the last N characters of string variable X$ into string

variable C$.

Substitutes the N spaces into string variable D$.

Substitutes the ten repetitions of " * " into string variable E$.

Substitutes the character corresponding to the ASCII code in

numeric variable A into string variable F$. A may be either a con­

stant, a variable or an expression.

Substitutes the ASCII code (in decimal) corresponding to the first

character of string variable X$ into numeric variable A.

Converts the numeric value of numeric variable I into string of

numerals and substitutes it into string variable N$.

Converts string of numerals contained in string variable N$ into the

numeric data as is and substitutes it into numeric variable I .

Substitutes the length (number of bytes) of string variable X$ into

numeric variable LX.

Substitutes the sum of the lengths (number of bytes) of string

variable X$ and Y$ into numeric variable LS.

I �isplays the value of variable A at the Xth position from the left I s1de.

59

3.1 .21 Arithmetic operators

The number to the left of each operator indicates its operational priority. Any group of operations enclosed in

parentheses has first priority.

• ·

(j -

• *

8 /

e +

1 0 A = x · y (power)

1 0 A = -B (negative sign)

1 0 A = X*Y

(multiplication)

Substitutes xY into variable A. (If X is negative and Y is not an

integer, an error results.)

Note that "-" in -B is the negative sign and "-" in 0-B represents

subtraction.

Multiplies X by Y and substritutes the result in to variable A.

1 0 A = X/Y (division) Divides X by Y and substitutes the result into variable A.

1 0 A = X + Y (addition) Adds X and Y and substitutes the result into variable A.

1 0 A = X - Y (subtraction) Subtracts X from Y and substitutes the result into variable A.

3. 1 .22 Logical operators

<> or ><

>= or = >

<= or = <

*

+

l 0 IF A = X THEN . . .

20 IF A$ = "XYZ"

THEN . . .

10 IF A <> X THEN . . .

10 IF A >= X THEN . . .

1 0 IF A <= X THEN .. .

40 IF (A>X)*(B>Y)

THEN . . .

50 IF (A> X) + (B> Y)

THEN . . .

If the value of variable A is equal to X , the statement following

THEN is executed.

If the content of variable A$ is "XYZ" , the statement following

THEN is executed.

If the value of variable A is not equal to X, the statement following

THEN is executed.

If the value of variable A is greater than or equal to X, the state­

ment following THEN is executed.

If the value of variable A is less than or equal to X, the statement

following THEN is executed.

If the value of variable A is greater than X and the value of variable

B is greater than Y, the statement following THEN is executed.

If the value of variable A is greater than X or the value of variable

B is greater than the value of Y, the statement following to THEN

is executed.

60

3. 1 .23 Other symbols

?

$

200 ? "A+ B=" ; A + B Can be used instead of PRINT. Therefore, the statement on line

2 1 0 PRINT "A+ B =" ; A+ B number 200 is identical in function to that on line number 2 10.

220 A=X : B=X ' 2 : ? A, B Separates two statements from each other. This separator is used

when multiple statements are written on the same line . Three state­

ments are written on line number 220.

230 PRINT "AB" ; "CD" ;

"EF"

240 INPUT "X=" ; X$

250 PRINT "AB", "CD" ,
"E"

Displays characters to the right of separators following characters

on the left . The statement on line 230 displays "ABCDEF " on the

screen with no spaces between characters.

Displays "X=" on the screen and awaits entry of data for X$ from

the keyboard.

Displays character strings in a tabulated format; i .e . AB first ap­

pears, then CD appears in the position corresponding to the start­

ing position of A plus 1 0 spaces and E appears in the position cor­

responding to the starting position of C plus 10 spaces.

300 DIM A(20), B$ (3 , 6) A comma is used to separate two variables.

320 A$ = "SHARP BASIC" Indicates that characters between double quotation marks form a

330 B$ = "MZ-80B" string constant.

340 C$= "ABC"+"CHR$ (3) Indicates that the variable followed by a dollar sign is a string vari­

able.

500 LIMIT $BFFF

550 S = SIN (X*n/ 1 80)

Indicates that numeric data following a dollar sign is represented in

hexadecimal notation.

n represents 3 . 1 4 1 5 92653589793 (ratio of the circumference of a

circle to its diameter) .

61

3. 2 Specifications of double precision BASIC SB-6610 interpreter

• Type

Interpreter system

Program size :

Start address:

• Numeric data

BCD floating point system

Real number :

Hexadecimal:

• Numeric variables

Numeric variable :

about 1 6 . 5K bytes

$ 1 2 20 (hexadecimal)

+ l E-48 � +9 .999999999999999E + 7 8

Can b e used only when a hexadecimal address is directly specified

in LIMIT, POKE, PEEK or USR. Expressed in 4-digit hexadecimal

notation following $.

Example : LIMIT $ 8F FF, U S R ($ AOOO)

Only the first two character variable name are significant. The first

character must be alphabetic. Special character, BASIC key words

or names including key words cannot be used.

Exam ple: A, X F 1 and AA are correct.

ABC and ABD are processed as the same name.

DATA, XDA T A, A#, etc. cannot be used.

One-dimensional array variable : The size of a one-dimensional array is limited only by the amount

of unused memory space. A one-dimensional array must be defin­

ed by a DIM statement. Conditions on characters which can be

used are the same as these shown above.

Example : DIM Q (500) -- Q (0) through Q (5 00)

Two-dimensional array variable : A variable with two subscripts. The m aximum value of each sub­

script is 2 5 5 , but it is limited by the amount of unused memory

space.

• String data

Maximum length:

Internal data string :

Example : DIM A3 (7 , 7) -- A3 (0, 0) through A3 (7 , 7)

2 55 characters

A train of ASCII character codes forming a data string followed by

a carriage return code (ODH).

62

• String variable

Kinds of string variables :

Format :

• O thers

Line numbers :

File name:

String variable

One-dimensional string variable

Two-dimensional string variable

A string variable is expressed by a name following $. Requirements

for string variable name are the same as those for numeric variable.

Example : A$, ST$ and Nl $ are normal string variables.

1 - 6 5 5 3 5

NAM E l $ and NAM E 2 $ are processed as the same

string variable.

TI$, CHR$ (), etc. are special string variables.

DIM S$ (3 , 3) defines a two-dimensional string array

including 1 6 elements S$ (0, 0) through S $ (3 , 3) .

Significant digits in a file name specified in LOAD, VERIFY or

SAVE commands are a m ax imum of 1 6 digits.

Cursor position in a CURSOR statement :

X = 0 - 79 }
y = 0 - 24

X = 0 - 3 9 }
y = 0 - 24

Point position in a SET or RESET statement :

X = 0 - 3 1 9

y = 0 - 1 99

80 characters/line mode

40 characters/line mode

Clock string TI $: 6-digit decimal string

The 1 st 2 characters = 00 - 23 (hour digits)

The 2nd 2 characters = 00 - 5 9 (minute digits)

The 3rd 2 characters = 00 - 59 (second digits)

Levels of FOR . . . NEXT loops: M ax imum of I S

Levels o f GOSUB loops: Maximum of 1 5

Levels of function definition routines with DEF FN :

Maximum of 6

Port address and data in INP or OUT statement :

Port address = 0 - 25 5

Data = 8 bit data or decimal numbers (0 - 2 5 5)

Value o f rr : rr = 3 . 1 4 1 5 9265 3 5 89793

APPENDIX

The Appendix includes the following;

• ASCII Code Table Table A. 7

• DISK BASIC interpreter SB-667 0 Error Message Table Table A.2

This table list all the possible errors which may occur during program execution. The interpreter

notifies the operator of occurrence of an error during program execution or operation in the direct

mode with the corresponding error number.

• Memory Map

• Handling diskettes

63

64

A. I ASCII Code Table

Code in parentheses represents a hexadecimal code.

o (00) jNULLj
I (0 1) [JJ
2 (02) [!_]
3 co3) G
4 co4) G
5 (05) jHOMEI
6 (06) §"]
7 (07) [ill]
8 (08) [�_ill]
9 (09) jsRPHj

1 0 (OA) []_]
I I (OB)

1 2 (OC) ffiD
1 3 (00)

1 4 (OE) [1;J
1 5 (OF) �
1 6 (1 0)

1 7 (1 1)

1 8 (1 2)

1 9 (1 3)

20 (1 4)

2 1 (1 5)

22 (1 6)

23 (1 7)

24 (1 8)

25 (1 9)

26 (I A)

27 (I B)

28 (I C)

29 (1 0)

30 (I E)

3 1 (I F) [f�
3 2 (20) D
33 (2 1) OJ
34 (22) B
35 (23) [jJ
36 (24) [I]
37 (25) l%1
38 (26) �
39 (27) �
40 (28) rn
4 1 (29) OJ
42 (2A) '*'
43 (2B) [±]
44 (2C) GJ
45 (20) 1 1
46 (2E) GJ
47 (2F) IZl
48 (30) 1 0 1
49 (3 1) [0
50 (32) 1 2 1
5 1 (33) @]

5 2 (34) @]
5 3 (35) [§]
54 (36) ls i
5 5 (37) 1 7 1
5 6 (38) I a !
5 7 (39) �
5X (3A) [J
59 (3 8) [}]
60 (3C) m
6 1 (30) 1 1
62 (3E) [I]
63 (3F) rn
64 (40) j@j
6 5 (4 1) ! A I
66 (42) �
67 (43) [g
68 (44) [QJ
69 (45) ! E I
70 (46) I F !
7 1 (47) I G I
12 (48) ! H I
73 (49) [0
74 (4A) � � �
75 (48) [KJ
76 (4C) [bJ
77 (40) IMI

78 (4E) I N !
79 (4F) I 0 I
xo (50) 1 P 1
X I (5 1) [g]
8 2 (52) [EJ
XJ (53) I s I
X4 (54) I T I
85 (55) 1 u 1
86 (56) 1 v 1
s 7 (57) 1w1
88 (58) 00
89 (59) [Y]
90 (5A) I z I
9 1 (5 8) []
9 2 (5C) [SJ
9 3 (50) [J]
94 (5 E) I A I
95 (SF) I I
96 (60) �
97 (6 1) [i]
98 (62) lliJ
99 (63) [f]

1 00 (64) [4]
1 0 1 (65) [i]
102 (66) [I]
1 03 (67) !]]

1 04 (68) [bJ
1 0 5 (69) OJ
1 06 (6A) []
1 07 (6B) [0
l OX (6C) [0
1 09 (6o) lml
1 1 0 (6E) CD]
I l l (6F) [QJ
1 1 2 (70) [EJ
1 1 3 (7 1) @]
1 1 4 (72) 0
1 1 5 (73) [§]
1 1 6 (74) [1]
1 1 7 (75) �
1 1 8 (76) [YJ
I I 9 (77) !w J
1 20 (78) [!::]
1 2 1 (79) [2]
1 22 (7A) [::!_]
1 23 (78) rn
1 24 (7C) [I]
1 25 (7D) []]
1 26 (7E) 1-1
1 27 (7F) ���

65

B m Gl
1 29 (8 1) [!] 1 5 5 (9B) B 1 8 1 (BS) m 207 (CF) m 233 (E9) n
1 30 (82) [!] 1 56 (9C) r:g 1 82 (B6) m 208 (DO) m 234 (EA) n
1 3 1 (83) 8] 1 5 7 (9D) En 1 83 (B7) 6 209 (Dl) m 235 (EB) II
1 3 2 (84) 8 1 5 8 (9E) EIJ 1 84 (B8) m 2 1 0 (D2) m 236 (EC) D
1 3 3 (85) [j] 1 59 (9F) [E 1 85 (B9) m 2 1 1 (D3) m 237 (ED) 1m
1 34 (86) � 1 60 (AO) - 1 86 (BA) II 2 1 2 (D4) D 238 (EE) m
1 35 (87) � 1 6 1 (AI) n 1 87 (BB) B 2 1 3 (DS) m 239 (EF) m
1 36 (88) [I] 1 6 2 (A2) II 1 88 (BC) B 2 1 4 (D6) m 240 (FO) m
1 3 7 (89) rn 1 63 (A3) rn 1 89 (BD) El 2 1 5 (D7) LVJ 24 1 (F I) m
1 38 (8A) §] 1 64 (A4) D 1 90 (BE) tJ 2 1 6 (D8) Et 242 (F2) II
1 39 (8B) � 1 65 (AS) � I 9 I (BF) D 2 1 7 (D9) a 243 (F3) m
1 40 (8C) � 1 66 (A6) m 1 92 (CO) � 2 1 8 (DA) fA 244 (F4) n
1 4 1 (8D) Ell 1 67 (A7) II 1 93 (C l) B 2 1 9 (DB) 1!1 245 (FS) m
1 42 (8E) � 1 68 (A8) II 1 94 (C2) m 220 (DC) - 246 (F6) II
1 43 (8F) 3]j 1 69 (A9) IJ 1 9 5 (C3) [I 22 1 (DD) � 247 (F7) 11
1 44 (90) § 1 70 (AA) E3 1 96 (C4) I!] 222 (DE) II 248 (F8) II
1 45 (9 1) � I 7 1 (AB) II 1 9 7 (CS) Iii 223 (DF) ii 249 (F9) 11
1 46 (92) � 1 72 (AC) II 1 98 (C6) Iii 224 (EO) 11 250 (FA) a
1 47 (93) [i] 1 73 (AD) = 1 99 (C7) m 225 (E l) m 25 1 (FB) D
1 48 (94) [Q] 1 74 (AE) II 200 (C8) m 226 (E2) m 252 (FC) D
1 49 (95) 5J 1 75 (AF) - 20 1 (C9) D 227 (E3) m 253 (FD) D
I SO (96) t:J 1 76 (BO) m 202 (CA) II 228 (E4) m 254 (FE) a
1 5 1 (97) [jj 1 77 (Bl) D 203 (CB) 13 229 (ES) m 2 5 5 (FF) [2IJ
1 52 (98) [g 1 78 (B2) m 204 (CC) II 230 (E6) D
1 53 (99) EE 1 79 (B3) m 205 (CD) mJ 23 1 (E7) m

66

A2. Error Message Table

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4

1 5

1 6

I 7

1 8

1 9

20

2 1

2 2

23

24

2 5

2 6

2 7

2 8

29

3 0

3 1

3 2

3 3

3 4

3 5

Syntax error

Operation result overflow

Illegal data

Data type mismatch

String length exceeded 2 5 5 characters

Insufficient memory capacity

The size of an array defined was larger than that d efined previously.

The length of a BASIC text line was too long.

The number of levels of GO SUB nests exceeded 1 5 .

The number o f levels of FOR-NEXT nests exceeded 1 5.

The num ber of levels of functions exceeded 6 .

Next was used without a corresponding FOR.

RETURN was used without a corresponding GOSUB.

Undefined function was used.

Unused reference line number was specified in a statement.

CONT command cannot be executed .

A writing statement was issued to the BASIC control area.

Direct mode commands and statements are mixed together.

RESUME statement cannot be executed.

A RESUME statement was used without a corresponding error process.

A READ statement was used without a corresponding DATA statement.

The num ber of SWAP levels exceeded l .

3 6

3 7

3 8

3 9

40

4 1

42

43

44

45

46

47

48

49

50

5 1

5 2

53

5 4

5 5

5 6

5 7

5 8

5 9

6 0

6 1

62

63

64

6 5

6 6

67

6 8

69

70

File was not found .

Disk drive hardware error.

A file name already u sed was defined again.

OPEN, DELETE, RENAME statements were issued to an open file.

An unopened file was reference or a CLOSE or K ILL statement was issued to it.

A file was accessed in different mode from ROPEN, WOPEN or XOPEN.

A protected file was accessed for writing.

The disk drive is not ready.

The total number of files on a volume exceeded 63.

Volume number error

File space on the diskette is insufficient.

A diskette which has not been initialized was loaded.

The number of data of a B SD file exceeded 64K bytes.

Data error occurred on an FDC routine call.

The d iskette cannot be used.

Illegal file name was specified .

Illegal file mode was specified .

Out of file

Illegal logical number was specified.

The printer is not ready.

Printer h ardware error

Out of p aper

Check sum error

6 7

68

A.3 Memory Map

$0000

$ 1 220

User's area

$FFF F L_ __________________ �

$ 1 220 : Cold start address
$ 1 280 : Hot start address

69

A.4 Handling diskettes

The m aster diskette must be handled especially carefully. Make a submaster diskette by means of

the diskette-copy program in the OBJ file "Utility" on the master diskette. Be s�re to keep the master

diskette in a safe place .

All optional blank diskettes supplied by the Sharp Co. are not initialized. Be sure to initialize them

before use.

Notes on handling of diskettes

• Fingerprints on a diskette may permanently render i t unusable. Never touch the diskette surface

through the head window.

• Insert the diskette straight into the drive until it stops, then close the front door gently. Rough

handling may damage the diskette.

• Do not fold or bend the diskette, or it may be rendered unusable.

• Write the index label before it is affixed to the jacket. If it is written after it is affixed to the

jacket, use a felt marker or other soft tip pen.

• Ashes and drinks are the most common contaminants to guard against.

• Ambient temperature : 4- 5 3 ° C.

Storage temperatures for the diskette are 4° C to 53° C. Do not leave the diskette exposed to direct

sunlight, or locate it in a place subject to the temperatures exceeding 53° C. This may cause the

jacket to be deformed and unusable.

When using the diskette, ensure that the temperature range described on the protective envelope is

observed. Environmental conditions may differ between the storage and operation places. This

requires the diskette to be placed under the proper operating environment for a while before use.

Notes on storing diskettes

• Keep the diskettes away from m agnets. Even a m agnet ring or m agnet necklace may damage data

on the diskette. Electrical equipment such as the display unit of the computer, a cassette tape

recorder, or a TV set generates magnetic flux, so keep diskettes away from such equipment.

• Keep the diskette in the envelope supplied. Make it a habit to put the diskette in the envelope im­

mediately after it has been take out of the drive. This will prevents almost all problems which

result from careless handling of diskettes. The master diskette must be handled especially carefully.

The envelopes supplied are made of special materials and guard against static electricity and mois­

ture.

• When storing diskettes for a long time, keep the envelopes in the storage case. Be sure the envel­

opes are stored vertically in the storage case. Do not incline or bend the envelope. The master

diskette is not supplied with a storage case.

• Do not clip diskettes with paper clips or the like.

• Do not place any heavy objects on diskettes.

SHAR P CORPORATION
T I N S E 00 1 8PAZZ [Mz:1ooPB J 8 1 0429-500-K . . Pr inted in Japan

PRECAUTION FOR USE OF

DISK BASIC SB-6510, AND

DOUBLE-PRECISION DISK BASIC SB-6610

Do not replace the disket with another until a KILL instruction has been executed, when

the disket is inserted into the floppy disk drive and the read/write operation is in action.

Replacing the disket with the file open will destroy the contents of the newly inserted

d isket.

To save the program into different diskets with SAVE instructions, each SAVE instruction

should be followed by execution of a Kl LL or Dl R instruction. If the disket is replaced

with another one immediately after the SAVE instruction and the SAVE instruction is

executed again, the contents of the replaced new disket will be destroyed.

SHARP CORPORATION

Printed in Japan

	a0001upr
	a0002
	b0000
	b0001
	b0002
	b0003
	b0004
	b0005
	d0001
	d0002
	d0003
	d0004
	d0005
	d0006
	d0007
	d0008
	d0009
	d0010
	d0011
	d0012
	d0013
	d0014
	d0015
	d0016
	d0017
	d0018
	d0019
	d0020
	d0021
	d0022
	d0023
	d0024
	d0025
	d0026
	d0027
	d0028
	d0029
	d0030
	d0031
	d0032
	d0033
	d0034
	d0035
	d0036
	d0037
	d0038
	d0039
	d0040
	d0041
	d0042
	d0043
	d0044
	d0045
	d0046
	d0047
	d0048
	d0049
	d0050
	d0051
	d0052
	d0053
	d0054
	d0055
	d0056
	d0057
	d0058
	d0059
	d0060
	d0061
	d0062
	d0063
	d0064
	d0065
	d0066
	d0067
	d0068
	d0069
	d0070
	d0071
	d0072

