:x‘)z

Personal Computer

Z-E6018

Double Precision
DISK BASIC MANUAL

SHARP

Personal Computer
MZ-80B

Double Precision

DISK BASIC

MANUAL

Copyright® by SHARP CORPORATION

Notice

This manual is applicable to the SB-6610 double precision DISK BASIC interpreter used
with the SHARP MZ-80B Personal Computer. The MZ-80B general-purpose personal
computer is supported by system software which is filed in software packs (cassette tapes

or diskettes).

All system software is subject to revision without prior notice, therefore, you are

requested to pay special attention to file version numbers.

This manual has been carefully prepared and checked for completeness, accuracy and
clarity. However, in the event that you should notice any errors or ambiguities, please feel

free to contact your local Sharp representative or your nearest dealer for clarification.

All system software packs provided for the MZ-80B are original products, and all rights
are reserved. No portion of any system software pack may be copied without approval of

the Sharp Corporation.

ii

Introduction

The greatest care must be taken in handling disk drives diskettes. Carefully read the notes in
“Handling Diskettes” on page 69.

The master diskette and blank diskette will not be exchanged for new ones after purchase.

It is recommended that the master diskette be copied using the disk copy utility (refer to page 36) to
generate a submaster diskette, and that the submaster diskette be used generally. Be sure to keep the

master diskette in a safe place.

.Master Diskette Protection
A write protect seal is affixed to the write protect notch of the master diskette to prevent its

contents from being accidentally erased through erroneous operation or accidents such as power

failure.
Never remove the write protect seal; if it is damaged, replace it with a new one.

Contact your dealer for assistance if you should find any ambiguities in this manual.

Notes on converting BASIC text with BASIC Text Converter

When BASIC text for the double precision BASIC SP-6115 is converted with the Text Converter
MZ-80T10C, “USING” of the statement ‘“PRINT USING” is changed to ‘“ERL” in the converted
BASIC text program.
Therefore, you should change the “ERL” to “USING”.

iii

Contents

NOFBICRI .\ 51 5155 6 caBmam il +65e.66: 5 6EE 66 T6 5 EEES s> ¢ 6EIEEE « ¢ » 5606 6@ ii
Introduction e e iii
Chapter 1 Outline of double precision DISK BASIC SB-6610 1
1.1 Activating the DISK BASIC interpreter SB-6610 2
1.2 Introduction to file control LI PR N PR S R TS o 3
1.3 Controlof sequential access files 5
1.4 Controlofrandomaccess files 8
1.5 File access cancellation and how todetect fileend 11
1.6 Makinga chainofprograms 12
1.7 Swapping Programso ottt it ettt e e e 13
1.8 USR function in a logical open statement 15
Chapter 2 Instructions Uniqueto SB-6610 17
2.1 Directcommands e e 18
8 O - Y 18
202 BERYE. :aatnt -5 28 - R b oo Sm il B e e o Ele e 18
2.1.3 SAVE . 19
2.1.4 LOAD .. e e 19
22105 RN G .« coie o oo o e oh e ol il omumese o) = oael e o T ol fo 5 Gt ool el Fud eme o ul s 20
2.2 Filecontrolstatements.ttt 21
2.2.1 LOCK ..ot e 21
2,22 UNLEOCK. . i cre .- - one ome o]+ + suffuame o] o o <5 ome 6o o 5hie o janaree o «ital o/ o ame iol o o 21
223 RENAME camm s om0t ser tens it esas-nins.nsssp 21
2.24 DELETE e 22
2.2.5 CHAIN . .. e 22
P52:6 1 ISWAR e 5 c . 5 SRR - 5 - B 5 o SEEE SE e E - SEE e e R e oG kel - 23
2.2 7 WOPEN#H ... e e 23
2.2.8 PRINT # ... e e 24
229 CLOSEF ccui:iminma s cmib e ifbasieseilEnitses 6650 - 24
22010 KILL # .ot e e 24

iv

2.2.11 ROPEN # . o 25

202,12 INPUT # sacoo..c06Bm: - - @aloc- 6a@aescceBaeessbinemn o 25
2.2.03 XOPEN # . . o e 26
2214 PRINT # () ottt e e e 26
2215 INPUT #L Jow oo omBeoeosotmoneabomboee bt P 27
22.16 IF EOF (#) THEN i 27
2.3 Errorprocessingcontrol 28
23.1 ON ERROR GOTO i, 28
232 IF ERN .o 28
2330 TE ERL 5. i mm i e o S EEEE 25l o5 5 alolole LR oo al ol o el el o o) o) 29
234 RESUME 30
2.4 Updated commands 31
2.4.1 PRINT USING e e 31
242 DELETE 33
23 DIM o g o e mad B elel e GBS -5 e AR 5 - Pl 5 ot B 5o e o [- 34
2.4.4 Function 34
2.5 Useofutility programsttt ettt 35
2.5.1 Use of utility program “Filing CMT” 35
2.5.2 Use of utility program “Utility” 36
Chapter 3 Programming Instructions 39
3.1 List of DISK BASIC interpreter SB-6610 commands, statements and

functions e 40
3.1.1 Commandsot e 40
3.1.2 File control statements. 42
3.1.3 BSD (BASIC Sequential access Data file) control statements 43
3.1.4 BRD (BASIC Random access Data file) control statements 43
3.1.5 Error processing statements, 44
3.1.6 Cassette file input/output statements 45
3.1.7 Assignment statement 45
3.1.8 Input/outputstatements, 46
3.1.9 Loopstatement 49
3.1.10 Branch statements0, 49
3.1.11 Definitionstatements 50

3.1.12 Comment and control statementsco ... 51

3.1.13 Music control statementsc. ... 52
3.1.14 Graphic control statements 52
3.1.15 Machine language control statements 54
3.1.16 Printer control statements 55
3.1.17 I/O input/output statementsccvuuririinnn. 56
3.1.18 Arithmetic functions i 57
3.1.19 String control funetionsccnciiiiiioii i, 57
3.1.20 Tabulation function 58
3.1.21 Arithmeticoperators 59
3.1.22 Logical operatorsottt 59
3.1.23 Othersymbols i 60
3.2 Specifications of Double Precision BASIC SB-6610 Interpreter 61
APPENDIX se i o mam fl o % 2 el ool e o1 i f e =l = g kel sl o ol ool e o s gl o o e 63
A.l ASCIICodeTable i, 64
A.2 ErrorMessage Table i i 66
A3 Memory Map ... e 68
A.4 Handling diskettes i 69

Vi

Chapter 1
Outline of double precision DISK BASIC SB-6610

This chapter outlines programming procedures and use of the double precision DISK BASIC
interpreter SB-66170.

The chapter begins with a description of the procedure for activating the BASIC SB-6610, fol-
lowed by general file control concepts.

For details of file control statements and use of the utility programs, see Chapter 2.

For other commands, statements, functions, operators and symbols, see Chapter 3.

1.1 Activating the DISK BASIC interpreter SB-6610

DISK BASIC SB-6610 is stored (along with MONITOR SB-1510) on a diskette file and must
undergo initial program loading whenever it is to be used. Loading is easily performed. Ready the disk

drive unit, place the master diskette (or submaster diskettef, if available) in disk drive 1 and simply

turn on the power of the MZ-80B.

The MZ-80B’s built-in IPL (Initial Program Loader) automatically starts loading both the DISK

BASIC interpreter SB-6610 and the MONITOR SB-1510.

The SB-6610 automatically loads and executes the program assigned the file name “AUTO RUN”
which is stored on the master (submaster) diskette. This program defines the functions assigned to

the 10 special function keys. By assigning “AUTO RUN” to another program, the program can be

automatically loaded and executed after IPL.

In this stage, system variables and default values are initialized as follows:

® Keyboard
1) Operation mode : normal
2) Lower case letters are entered with key pressed.
3) The function of each special function key is defined by program “AUTO RUN”
FI1: RUN 3 F2:LISTR F3: CONSOLE7™V F4: CONT F5: AUTO
F6: CHRS (F7: DIRFDI% F8: DIRFD23 F9: DIR% F10: LOAD
1) Character display mode : normal
2) Character size : 40 characters/line
3) Character display scrolling area : maximum (line O through line 24)
4) Graphic display input mode : graphic area 1 (graphic area 1 cleared)
Graphic display output mode : both graphic areas off
Position pointer : POSH =0, POSV =0
® Array
1) No arrays are declared.
® Clock
1) The built-in clock is started with TI$ set to 000000,
® Music function
1) Tempo : 4 (medium tempo : moderato)
2) Duration : 5 (quarter note : J)

T Procedures for making a submaster diskette are explained on page 38.

1.2 Introduction to file control

The DISK BASIC interpreter SB-6610 is a system software which has a superb file control func-
tion. It fully utilizes the large capacity and high speed accessing feature of the floppy disk file system
50 that files can be used not only for data storage but also as a random access data area connected to
the system program. Further, with this interpreter disk files can be used as program segments which
may be called for execution in job units by the program in memory with the CHAIN or SWAP state-

ments.

Data files are classified into two groups according to the file access method: sequential access files

and random access files.

A sequential access file is a block of file data which can be accessed sequentially. Data are accessed

sequentially from the beginning.by specifying the file name.

“file name”
Write - Bt BASIC Sequential
Syst
ystem block access Data file (BSD)
Read //

A random access file is a set of file data which can be accessed at random. Each data item is
written in the file as an array element and is assigned with an expression with which the system

controls it.

EXP}IESSION
Wi ™
Sytem L BASIC Random
Read - access Data file (BRD)
“file name”

In general, when data can be treated in segments (e.g., decimal data used when coding a program
by POKE statement) or it is arranged according to a certain rule (e.g., elements of a table), it is
effective to write it as a sequential access file. When particular data items need to be accessed (e.g., in
the case of information retrieval), it is effective to write it as a random access file.

To access data, first specify the file (a set of data assigned a file name) with a logical file number of

1 to 127. A logical file number is assigned to a file with a logical open statement as an alternative to

the file name.

The file to which the specified logical file number has been assigned is accessed by the write or

read command issued by a PRINT # or INPUT # statement or by a file close statement.

CHAIN and SWAP are statements which overlay a program upon another program in the memory
and transfer control to the overlying program.
The CHAIN statement is used as a GOTO “file name” function.

Text ‘““‘ABC” Text “DEF™

CHAIN “DEF”

goto “DEF”

The SWAP statement is used as a GOSUB “‘file name” function. Control will be returned to the

first program after the overlaid program has been completed. (In this case, overlay is performed again.)

gosub*JKL”
Text “GHI” Text “JKL”

SWAP “JKL”

return

END

Now we will discuss handling and control of various data and program files that make use of the
large storage capacity and high-speed access function of our floppy disk unit.

We have already noted that DISK BASIC is capable of handling three kinds of files: two data files
— the sequential access file (BSD) and random access file (BRD) — plus one program file — the BASIC
text (BT X). One more file, the machine language program file (OBJ), has been constructed using a sys-
tem program or MONITOR SB-1510 and recorded on the master diskette. This file is intended to be
run alone or used linked with the program in the BASIC text area; hence, DISK BASIC can utilize it,

but cannot write it or change its contents.

~——Sequential access file BSD
Bospid e BRD Data file
andom access file
DISK BASIC =~

L_BASIC text file BTX
——Machine language program file OBJ

} Program file

In discussing individual file control instructions, we will first explain procedures for constructing
and using the two kinds of data files; second, we will explain use of the CHAIN and SWAP file state-

ments.

1.3 Control of sequential access files

A sequential access file is a data file whose data is recorded or read with sequential access proce-
dures, which accesses data sequentially starting with the first data item.

You already know how to handle data files on cassette tape using BASIC SB-5510. Sequential
access with DISK BASIC is the same, except that the medium is nct a cassette tape but a diskette. The
method is, of course, far more practical and provides high speed access, enabling more versatile file
control through seveal new file control statements.

First, let’s compare the DISK BASIC and cassette-based BASIC sequential access statements.

Recording files (writing data)

L : Cgssett&based BASIC
File open statement WOPEN #n, “File name” WOPEN “file name”
Data write statement PRINT #n, data PRINT/T data
File close statement CLOSE #n CLOSE
Cancel statement KILL #n
Recalling files (reading data)

L DISK BASIC il Cassette-based BASIC
File open statement ROPEN #n, “file name” ROPEN “‘file name”
Data read statement INPUT #n, variable INPUT/T variable
File close statement CLOSE #n CLOSE
File end detection IF EOF (#n) THEN

Note: The general form of a file open statement includes specification of the drive number and diskette
volume number. These are not shown in the tables above.

As you can see, the statements of these two BASICs closely correspond to each other in composi-
tion. Did you notice that each DISK BASIC statement always contains the symbol “#n”’? This is
called a logical number (any number from 1 through 127), and it must be specified whenever a DISK-
BASIC-based file is to be accessed.

Cassette-based BASIC permits either writing to or reading from only one file, whereas DISK
BASIC statement utilizes the parallel arrangement of multiple files in the disk system to enable arbi-
trary access and control of multiple files (maximum of 10 files) simultaneously. In addition, it is
deviced so that files opened can be defined with arbitrarily chosen logical numbers, making it unneces-
sary to write their file names every time you want to specify them thereafter.

(This difference is a result of differences in hardware cassette and diskette; that is, cassette files

are essentially sequential in nature, while disk files are random.)

As a simple example of sequential access file control, let’s discuss the recording of names and
addresses of persons’ homes in a sequential access file. Our file, an address list in this example, must be

made in the following form.

Name \

Address 41

Name |

Address | file name = “ADDRESS LIST”
Name l

Address j

The reason the above rectangles are not the same length is that data recorded with the sequential
access method is not fixed in length. In a random access file, as we will later mention, all data is given
a fixed length of 32 bytes. When all data is handled in the blocks as in this example, or when most of
the data (addresses in this example) is too long to be recorded in 32 bytes or is not fixed in length, the
sequential access file may be more suitable.

Shown below is a program which causes the system to behave as follows: substitute string variables
alternately with names and addresses with the INPUT statement, record a combination of names and
addresses one by one to make “ADDRESS LIST” with 50 combinations in all, then read stored data
out of the file (list) and display it on the CRT screen in groups of 10 items.

(Writing)
100 WOPEN #3, “ADDRESS LIST” Difines the name of a sequential access file and
110 FOR P=1TO 50 opens it with logical number assigned.

“ ., In the program, the WOPEN statement defines the
120 INPUT “NAME=""; NAS name of the sequential access file as “ADDRESS
130 INPUT “ADDRESS=""; AD$ LIST” and assigns logical number 3 to it.
140 PRINT #3, NAS, ADS This statement, when it follows the WOPEN state-
150 NEXT P ment, generates a series of sequential access records.

When the PRINT # statement is executed, the
160 CLOSE #3 . .vcoun i snmmns specified data record is added to a series of sequen-
¢ tial access records. The sequential access file is not
generated at this stage of program.

Writes a series of records generated by PRINT #
statements in a file. A sequential access file (BSD)
is generated when this statement is generated.

(Reading)
200 ROPEN #4, “ADDRESS LIST” Specifies the name of the sequential access file to
210 FOR P=1TOS5 be read and assigns a logical number to it.

In the program, “ADDRESS LIST” is specified and

215 FOR Q=1TO 10 the logical number #4 is assigned to it.

220 INPUT #4, NAS, ADS This statement, when it follows the ROPEN

230 PRINT NAS$: PRINT ADS statement, reads records in sequential access file
“ADDRESS LIST” from the beginning one by one
240 NEXT Q into the specified variable.

250 PRINT “STRIKE ANYKEY”

260 GET X$: IF X§=*“ " THEN 260

270 NEXT P

280 PRINT “END”

290 CLOSE#4 i The CLOSE statement, when it follows the

ROPEN statement, ends execution of ROPEN and
resets the logical file number assignment.

1.4 Control of random access files

A random access file is a data file which permits data to be recorded or recalled using the “random
access’’ method. The term “random access’’ refers to the process of recording or recalling each data
item by specifying it as an array element. Unlike sequential access files, random access files permit
addressing any data elements included in a collection of data.

The PRINT # and INPUT # statements used in random access statements contain an ‘“‘expression”
which specifies the array elements following the logical number, as shown below. This is because ran-
dom access files require designation of the arrays of data of which they are composed.

PRINT #n (expression), data
INPUT #n (expression), variable

Array element designation

The “‘expression’ must be given as a numerical value or variable. The statement
INPUT #7 (21), AS
for example, commands the system to read the 21st data element of a group in a random access file
opened with logical number #7 into variable AS.
Note that random data access requires that every data item be recorded in a fixed length. In other

words, random access files require recording numeric and string variables in 32 bytes or less.

expression 32 bytes

o

1
Random 2 +.12345678+E10 ~=—— Variable A =0.12 345678+E10
access 3
file 4 ABCDEFGHI <—— String “ABCDEFGHI”

5 ABC ~<——- String “ABC”

6

Numeric variables, including those expressed in exponential notation, do not usually exceed 32
bytes, whereas string variables may extend up to 255 bytes. String variables exceeding 32 bytes can-
not be recorded in one data element of a random access file.

Another difference between random and sequential access files is that a random file can be ex-
panded after it has been initially created. Given random access file “RND 1 recorded using an “‘ex-
pression” of 20, for instance, the file may be expanded to accommodate 30 “boxes’ when data is

newly entered with the “‘expression’ set to 30.

“RND 1 ’»

1
2

“RND 1”
1
When data is 2
added with 3
the “expression” :
set to 30. :
20

30

Now, let’s try to device a program for making a simple inventory list using a random access file. It

is assumed that individual articles are given fixed item numbers from 1 to 50 and that the inventory

list includes five fields of information: item name, unit price, number of units in stock, value (unit

price X number items in) and comments.

When recording inventory data for each article, its item number must be entered first.

Recording inventory data

100 XOPEN #5, “STORE LIST”

110 INPUT “ITEM NO.=”;
120 IF K=0 THEN 300

130 INPUT “ITEM NAME="; N§
140 INPUT “UNIT PRICE="; P
150 INPUT “NO. OF UNITS="; S
160 INPUT “COMMENTS=""; C$

170 T=P >* S
180 PRINT #5 (K * 5-4),

N, P, S, T, C§

190 GOTO 110

300 CLOSE#5
310 END

K

Specifies a file name and assigns a logical file
number to the specified random access file for
access. When a random access file is logically open-
ed, no distinction is made between write and read
by the open statement.

Logical number: 5 File name: “STORE LIST”

Writes data in the random access file assigned
logical file nurhber. The number of the first field in
the record in which data is stored is indicated by
the expression.

Closes the BRD opened by XOPEN and resets the
logical file number definition.

10

A random access file made with the above program js as follows. If the item number assigned is
K = 12, the five kinds of data entered are stored in elements indicated by the expressions correspond-

ing to 56 through 60.

expression 55
K>k5-4 }

K=12 BRD file

“STORE LIST”

I |

In this way, data can be arbitrarily arrayed in the file. Hence the file, unlike a sequential access file

which is filled with data in succession, may include empty locations, providing for simple data rewrit-
ing. Next, let’s devise a program to recall the random access file “STORE LIST” made as shown above
and display inventory data for a certain article.

Recalling inventory data

500 XOPEN #17, “STORE LIST” Specifies a file name to be read as “STORE LIST”
510 INPUT “ITEM NO.="; J and assigns logical file number 17 to it.

515 IF J=0 THEN 700

520 INPUT #17 (J %k 5-4),
NS, P, S, T, C$ Reads the record indicated by the expression from
530 PRINT “NO.”: J the random access file assigned logical file number

535 PRINT “ITEM NAME:”: N§ #17 into the specified variable.
540 PRINT “UNIT PRICE:”; P

550 PRINT “NO. OF UNITS:”; S

560 PRINT “VALUE:”; T

570 PRINT “COMMENTS:”; C$

580 GOTO 510

700 CLOSE#17 it
710 END

Closes the BRD opened by XOPEN and resets the
logical file number definition.

In this way, random access files enable the inventory data on specific articles to be called at once

by inputting their article numbers, no matter how many articles are inventoried.

11

1.5 File access cancellation and how to detect file end

1.5.1 KILL #n

This statement, when it follows the WOPEN statement, cancels the WOPEN command.

The execution of KILL statement cancels the WOPEN and prevents the data array, even if it is
under construction, from being recorded in the sequential access file. The statement is practical if the
need for cancellation occurs during the construction of a sequential data array.

The KILL statement for the other use has same functions as the CLOSE statement.

1.5.1 How to detect file end

What is the result when the number of data reads exceeds the number of recorded items? In such
cases, no error occurs and the variables are set with 0 or “null”, then a special function, EOF (#n),
detects file end. EOF (#n), becomes ‘‘true” if it comes to the end of a file while data is being read
with the INPUT # statement. Hence, if the statement

IF EOF (#n) THEN

is placed after an INPUT # statement, instructions following THEN are executed when EOF (#n)
becomes true (when the file end is detected).

The statement can be used in a random access file or a sequential access file to be read.

The following program reads string data from sequential access file “ABC” and displays it on the

CRT screen until the file end is reached.

300 ROPEN #33, “ABC”

310 INPUT #33, AS$

320 IF EOF (#33) THEN 350
330 PRINT AS$

340 GOTO 310

350 CLOSE #33

12

1.6 Making a chain of programs

The topic of this section is two program file control statements. These are the CHAIN are SWAP
statements. When some programs are recorded on a diskette, the use of these statements enables you
to call another program while running the recorded programs and moves the control to it. In detail,
the CHAIN statement enables you to connect any program to the ones recorded on a diskette, and the
SWAP statement enables you to call any program in the form of subroutine. First is described the
CHAIN statement to connect or join programs.

The form of the CHAIN statement is as follows.

CHAIN FD1@50, “TEXT 2”

This statement commands the system to clear a program then present in the text area (it, however,
keeps the values of variables), overlays that area with the text named “TEXT 2 that is recorded on

the diskette of volume number 50 present in drive 1 and moves control to the head of that text. The
execution of this text frees the system from the control of the then running BASIC text and comples
it to read the text “TEXT 2” anew, moving control to its head. When two programs are connected, the
values of variables and the function defined by the DEF FN in the original program are kept.

The function of the CHAIN statement can be grasped as one of “GOTO” statement.

TEXT “ABC” TEXT “DEF” TEXT “GHI”

L CHAIN . END
goto “DEF” goto “GHI”

- —-— — ——goto “file name”

The use of the CHAIN statement enables you to process such a huge program as to overflow the
BASIC text area by dividing it into pieces and then uniting them again as illustrated above. That is,
the CHAIN statement joins component programs every time they are processed. Therefore, the state-
ment and the SWAP statement we will next refer to can be said to be an indispensable aid in coping
with complicated, versatile data processing in small businesses.

Apart from such a sophisticated application, it is quite exciting and interesting to join various texts
on a diskette. The DISK BASIC, as seen from this, has an original world — which cannot be created by

the conventional BASIC — in that enables programs to extend themselves.

13

1.7 Swapping programs

The SWAP statement reads a program from a diskette file, overlays another program with it or links
them, and leaves control to that program text, resuming control by the original program the instant
the execution of the text has been completed. Such behaviour is just the same as referring to a sub-
routine in a text; a fetched program returns to the location next to the one that has been subjected to
the SWAP statement, Hence, the SWAP statement can be grasped as a subroutine call. To achieve the
above-mentioned action correctly a program text that has the SWAP statement must be temporarily
stored in a diskette before the execution of swapping. The program control process cannot then return
to the stored original program text before the text area is renewed and the subprogram is called and
completely executed. The SWAP statement is generally available in the following form.

SWAP FDd@v, “file name”

This form orders the system to swap a subprogram specified by “file name” that is stored on the
diskette with volume number v present in drive d (d =1 to 4). Storing of a program text prior to
execution of a subprogram occurs onto the diskette present in the drive that has last executed the DIR
FDd command. This means that the drive must be loaded with a diskette that allows temporary writ-

ing of a program text. The swapping level must be less than 1.

Let’s follow the program file behaviour by taking a simple example in order to understand the

SWAP statement. How does the file when the DIR FD1 command is executed?

[Program present in the text area] [Program file “PLAYER”]
10 REM COMPOSER 10 REM CELLO PLAYER
20 M1§ =“A7B6 + C3A7A3” 20 MUSIC M1S§, M2§, M33%
30 M2§=“B+C+ D+ E6A3” 30 PRINT “OK?”

40 M3$=“+ F6A3 +E7” 40 END

50 PRINT “PLAY THE CELLO”

60 SWAP FD2@7, “PLAYER” This file is present on slave diskette

No. 7 inserted in drive No. 2.

70 PRINT “VERY GOOD”
80 END

14

Initially, the text “COMPOSER”,
present in the text area, is exe-

cuted.

First the SWAP statement, line
No. 60, shelters the text on the
diskette present in the drive FDI1
that has executed the DIR com-

mand, and renews the text area.

Second the text area is overlayed
with BTX “PLAYER”. and the
program is executed to play mel-

odies.

On the completion of playing,
the sheltered COMPOSER re-
turns, saying “VERY GOOD.”

Text area Drive File

Sheltered

NEW

Overlaying

Return

Composer

{“PLAY THE CELLO”

Player plays melodies.

“OK?”

Composer says,

15

1.8 USR function in a logical open statement

The USR function generally calls a subroutine coded in machine language. When it is used in a
logical open statement (WOPEN or ROPEN), however, logical open is performed with the assumption
that the USR function is a logical file which is executed when a subsequent PRINT # or INPUT #
statement is executed. Data input and output can be controlled in the same manner as for file access.
After the USR function has been logically opened, the PRINT # and INPUT # statements are execut-

ed as shoyn in the examples below.

(Write)

100 WOPEN #10, USR (n)
200 PRINT #10, AS

300 CLOSE #10

100 : Assigns logical file number 10 to USR (n)

110 : Outputs the contents of string variable A$ to the write data buffer and sets the start address of
the write data buffer in the DE register and the data length in the BC register.
For example, when A$ = “ABCD”, ASCII codes corresponding to “ABCD” are stored in the
buffer indicated by the DE register and the number of ASCII codes (excluding codes) is

stored in the BC register.

DE “A” (41H)
“B” (42H)
“C” (43H) BC « 0004 (hex.)
“D” (44H)
CR (ODH)

Then, USR (n) is executed.
Program operation after control is returned from the machine language routine determined by
the form of the PRINT # statement as follows.
(1) When a semicolon follows the data, the next statement is executed.
(2) When no semicolon follows the data, a @ code (ODH) is set in the location indicated by
the DE register and 0001H is set in the BC register, then USR (n) is executed again.
Therefore, when the machine language routine is, for instance, one for controlling the line

printer, a new line operation can be obtained by placing a semicolon in the PRINT # statement.
120 : Closes logical file # 10.

16

(Read)

200 ROPEN #11, USR (n)
210 INPUT #11, BS$

220 CLOSE #11

200 : Assigns logical file number #11 to USR (n) and logically opens it.

210 : Executes USR (n). The machine language routine called must load string data in the read buffer
starting at the address indicated by the DE register and load the length of the data string read in
the BC register. Then, control is returned to the INPUT statement and the data read is stored in
BS.

220 : Closes logical file #11.

[Note]

An error occurring during execution of the machine language routine can be linked with the
BASIC error routine in the following manner. When USR (n) executed, the [Yand IX registers contain
special values. Therefore, when it is necessary to process an error occurring during execution of the
machine language routine and when +ON ERROR is declared, system control can be transferred to the
error routine by coding the machine language program to set an appropriate error code in the IY area

indicated by the IY register and to jump to the address indicated by the IX register.

T Refer to “Error processing control’’ on page 28.

Chapter 2
Instructions Unique to SB-6610

This chapter describes SB-6610 direct commands, statements, updated commands and utilities

which are not supported by the ordinary cassette BASIC interpreter SB-5510.

Command and statement format
Commands and statements must be coded according to the following conventions.

m Small letters and reverse characters cannot be used for any commands and statements.

m Operands which must be specified by the programmer are indicated in italics.

B [tems in brackets ‘)’ may be omitted or repeated any number of times. However, the bracket
marks should not be typed when marking the relevant input.

Separators (commas, semicolons, etc.) must be correctly placed in the specified positions.

18

2.1 Direct commands

2.1.1 DIR

Format

Function

Description

2.1.2 DIR/P

Format

Function

DIR (FDd)

d..... drive number : 1 through 4

Displays the file directory of the diskette specified.
When FDd is omitted, the value defaults to the number of the drive against which
the last DIR FDd command was executed.
The contents of the directory are as follows:
® Volume number
For the master diskette, “MASTER” is displayed.
® The number of unused sectors remaining.
® Mode, lock condition and file name of each file on the diskette.
The four file modes are indicated with the following codes:
BTX :BASIC text file
BSD : BASIC sequential access file
BRD :BASIC random access file
OBIJ :Object file
To indicate the lock condition, an asterisk is attached to the file mode.
Locked files cannot be overwritten or deleted, norcan their names be changed.
The file name specified during file creation must be always used to call the
file.
When many files are contained on a diskette, the directory cannot be displayed in
a single frame. The display is fixed once a frame is filled, and the cursor appears.
The frame containing the remainder of the directory can then be brought to the
screen by pressing the key. When the display is fixed, another command

can be executed.

DIR (FDd) /P
d..... drive number : 1 through 4

Prints the directory of the diskette in drive d on the line printer.

19

2.1.3 SAVE

Format

Function

Description

Example

2.1.4 LOAD

Format

Function

Description :

Example

SAVE (FDd@y,) *“ file name”

d..... drive number : 1 through 4

V..., tdiskette volume number

Assigns the specified file name to the BASIC text contained in the text area and
stores it on the diskette in the specified drive.

The diskette on which the BASIC text is to be saved is specified with the FDd@yv
operand.

When this operand is omitted, the text will be stored on the diskette in the de-
fault drive.

“file name” consists of a string of up to 16 characters enclosed with quotation
marks.

SAVE “D” ... Assigns the file name “D” to the BASIC text in the text area and

stores it on the active diskette. The text is stored in the BT X file mode.

LOAD (FDd®@v,) ““file name”

d..... drive number : 1 through 4

V..., diskette volume number

Loads the specified BASIC text file into memory from the specified diskette.

The diskette is specified with the FDd @y operand.

When it is omitted, textis stored on the diskette in the default drive.

LOAD FD2, “A” ... Loads the BASIC text assigned the file name “A” from the
diskette in drive 2 into the text area.

LOAD “TEXT 17 ... Loads BASIC text “TEXT 1” from the diskette in the

active drive into the text area.

TThe diskette volume number is assigned to a slave diskette when the diskette is made by using the
utility program ““Utility”’. See page 37.

20

2.1.5 RUN
Format : RUN(FDd@v,) ‘“file name”
d..... drive number: 1 through4
Ve s diskette volume number
“file name™ BTX file or OBJ file
Function : Loads the BASIC text (BTX) assigned the file name *‘file name” from the dis-

kette, and then executes it from its beginning.
Therefore,

RUN “file name” = LOAD “‘file name” + RUN
Loads the machine language program (OBJ) assigned the file name ‘‘file name”
from the diskette, and then executes the program at the start address. In such
cases, system control is transferred from the BASIC interpreter to the machine

language program.

DIR, SAVE and RAN commands cannot be used as statement in programs.

.

21

2.2 File control statements

2.2.1 LOCK

Format

Function

Description :

2.2.2 UNLOCK

Format

Function

2.2.3 RENAME

Format

Function

Description :

LOCK (FDd@y,) “file name”

d..... drive number : 1 through 4

V..., diskette volume number

This statement locks a specified file.

When a file is locked, requests to modify it will be denied. For example, the
command prohibits DELETE or RENAME operations or writing of data in the
case of random access files. It is good practice to lock files of a permanent or
semi-permanent nature. The file mode symbols in the file directory display are

followed by an asterisk to indicate protected -files.
(The write protect seal serves as a hardware lock for an entire diskette.)

UNLOCK (FDd@y,) “file name”
d..... drive number : 1 through 4
V..., diskette volume number

This statement unlocks a specified file.

RENAME (FDd@v,) “file name 17, *“file name 2

d..... drive number : 1 through 4

V..., diskette volume number

This statement renames a specified file.

To rename a file, its current name and its new name must be specified in this
order. If a renamed file is identical in name and mode to any file currently stored
on the same diskette, an error occurs.

The RENAME statement is prohibited for any locked file.

22

2.2.4 DELETE

Format

Function

Discription

2.2.5 CHAIN

Format

Function

Description :

DELETE (FDd®@v,) “file name™

d..... drive number : 1 through 4

v diskette volume number

This statement deletes a specified file from the diskette.

This statement is prohibited for any locked file. If you want to delete locked
files, it is necessary to execute the UNLOCK statement first, then the DELETE

statement.

CHAIN (FDd@v,) “file name”™

d..... drive number : 1 through 4

Voo, diskette volume number

This statement chains the program execution to BASIC text on the diskette.
CHAIN FD2@7, “TEXT B> . .. Chains the program in the BASIC text area to
BASIC program “TEXT B” on the diskette volume 7 in drive 2. That is, program
“TEXT B” is loaded in the BASIC text area and program execution is started at
its beginning. Before the text is loaded, the BASIC text area is cleared but all
variable values and contents of user functions are given to the program. The
CHAIN statement has the same function as GOTO “file name™.

CHAIN “PROGRAM 3” . . . Chains the program in the BASIC text area to
program “PROGRAM 3 on the diskette in the active drive.

Statements LOCK, UNLOCK, RENAME and DELETE can be also used as direct commands.

23

22.6 SWAP

Format

Function

Description

SWAP (FDd@v,) “file name”

d..... drive number : 1 through 4

V..., diskette volume number

This statement swaps the program execution to BASIC text on the diskette.
SWAP FD2@7, “TEXT S-R” . . . Swaps the current program for BASIC program
“TEXT S-R” on diskette volume 7 in drive 2. The current program text is saved
on the diskette in the drive specified in the last DIR FDd command, then pro-
gram “TEXT S-R” is loaded into the text area and is executed from its beginning.
When the swapped program is finished, the saved program is loaded again and
program execution is started at the statement following the SWAP statement. The
values of variables and the contents of user functions are transferred between the
two program. No SWAP statement can be used in a swapped program. The SWAP

statement has the same function as GOSUB *‘file name ™.

® BSD (BASIC Sequantial access Data file) control

2.2.7 WOPEN#

Format

Function

Description :

WOPEN # [, (FDd@v,) “file name”

l..... logical number
d..... drive number : 1 through 4
V..... diskette volume number

This statement opens a diskette file to allow a sequential access file to be written
on the diskette.

WOPEN #3, FD2@7, “SEQ DATA 1> .. . Defines the file name of a BSD (BASIC
sequential access data file) to be created as “SEQ DATA 1” and opens it with

logical number 3 assigned on diskette volume 7 in drive 2.

24

2.2.8 PRINT #

Format

Fonction

Description :

229 CLOSE #

Format

Function

Description :

2.2.10 KILL #

Format

Function

Description

PRINT #/,d,,(d;,...,dp)

R logical number

d;j write data

This statement writes the datad, ,d, ... dy (numeric data or string data) in order

in the BSD assigned logical number / which was opened by a WOPEN# statement.
PRINT #3, A, A$. . . Writes the contents of variable A and string variable A$ in
order in the BSD assigned logical number 3 which was opened by a WOPEN#

statement.

CLOSE<(# D)

b..s.. logical number

This statement closes a BSD assigned logical number /.

CLOSE #3 . .. Closes the BSD assigned logical number 3 which was opened by
the WOPEN #3 statement.

By closing the BSD, the BSD which has the file name defined in the WOPEN #
statement is created on the specified diskette, and the logical number assigned is

made undefined.

KILL«(# D)

l..... logical number

This statement kills a BSD assigned logical number /.

KILL #3 . .. Kkills the BSD assigned logical number 3 by the WOPEN# statement.

Logical number 3 is made undefined.

25

2.2.11 ROPEN #

Format

Function

Description :

2.2.12 INPUT #

Format

Function

Description :

ROPEN #1, (FDd@v,) ‘“file name”

[ns.r logical number
d..... drive number : / through 4
V..., diskette volume number

This statement opens a diskette file to allow a sequential access file to be read
from the diskette.
ROPEN #4, FD2@7, “SEQ DATA 1” ... Opens BSD “SEQ DATA 1” on dis-

kette volume 7 in drive 2 with logical number 3 assigned to read data in BSD.

INPUT #1,v, (,va,...,vp)
/ST logical number
v; read data

This statement reads data stored in the specified BSD in order and assignes to vari-
ables v,, v, ... v, (or array elements).

INPUT #4, A(1), B$. . . Reads data sequentially from the beginning of the BSD
assigned logical number 4 which was opened by the ROPEN # statement and sub-
stitutes numerical data into array element A(1) and string data into string variable
BS.

CLOSE #4 statement closes the BSD assigned logical number 4 and the logical

number undefined.

26

@& BRD (BASIC Random access Data file) control

2.2.13 XOPEN #

Format

Function

Description

2.2.14 PRINT #(

Format

Function

Description :

XOPEN #1, (FDd@v,) “ file name”

l..... logical number
daan s drive number : 1 through 4
Vo.o.... diskette volume number

Generally, XOPEN # opens a BRD for writing and reading data (CROSS open).
XOPEN #5, FD3@18, “DATA R1” ... This statement cross-opens BRD “DATA
R1” on diskette volume 18 in drive 3 with logical number 5 assigned or, if the file
does not exist on the diskette, cross-opens a BRD by defining its file name as

“DATA R1” to create it on the diskette with logical number 5 assigned.

)
PRINT #1(n),d; (,d,,...,dy)
! T logical number
P 3 6 wie item expression
d; write data
This statement writes numeric or string data on elements n, n + 1,...,n+nof

the BRD assigned logical number ! which was opened by the XOPEN# statement.
PRINT #5 (11), R(11) . .. Writes the contents of 1-dimensional array element
R(11) on element 11 of the BRD assigned logical number 5 which was opened by
the XOPEN# statement.

PRINT #5(20),AR$, AS$. . . Writes the contents of string variables AR$ and
ASS on element 20 and element 21 of the BRD assigned logical number 5, respec-
tively. All BRD elements have a fixed length of 32 bytes and, if the length of

string variable exceeds 32 bytes, the excess part is discarded.

27

2.2.15 INPUT# (

Format

Function

Description

)
INPUT #1(n), v, {,va,...,vyn)
l..... logical number
W::-:cc item expression
Vi read data

This statement reads data stored in the specified elements of the specified BRD.
INPUT #5(21), R$. . . Reads the content of element 21 of the BRD assigned
logical number 5 which was opened by the XOPEN# statement into string varia-
ble RS.

INPUT #5(11), A(11), A$(12) . . . Reads the contents of element 11 and ele-
ment 12 of the BRD assigned logical number 5 into linear numeric array element
A(11) and linear string array element A$(12), respectively.

CLOSE #5 statement closes the BRD assigned logical number 5 which was
opened by the corresponding XOPEN # statement.

KILL #5 statement Kills the BRD assigned logical number 5 and the logical num-
ber undefined.

CLOSE Closes all open files.

KILL Kills all open files.

2.2.16 IF EOF(#) THEN

Format

Function

Example

IF EOF(#!) THEN Ir (or statement)

l..... logical number

Ir..... reference line number

Transfers program control to the routine starting to specified line number /r if an
EOF (End of file) is detected when as INPUT# statement is executed against a
BSD or a BRD.

IF EOF(#5) THEN 1200

28

2.3 Error processing control

2.3.1 ON ERROR GOTO

Format

Function

Description

2.3.2 IF ERN

Format

Function

Description

ON ERROR GOTO Ir

Ir reference line number : error processing routine

This statement declares the number of the line to which program execution is to
be moved in order to correct errors.

Declaring an error processing routine with the ON ERROR GOTO statement
allows errors to be corrected during program execution without the system re-
turning to the BASIC command level. When the ON ERROR GOTO statement is
executed, program execution will be moved to {error processing routine) if any
error has occurred. This enables the Terror number (ERN) and the number of the
line on which the error occurred (ERL) to be ascertained, and allows subsequent
processing to be performed in accordance with the IF ERN or ERL statements.
The RESUME statement serves to move program execution back to the point at
which the error occurred.

Execution of a new ON ERROR GOTO statement invalidates any preceding one.

IF ERN expression THEN Ir

IF ERN expression THEN statement

IF ERN expression GOTO Ir

Ir reference line number

This statement ascertains the identification numbers of errors, and causes branch-
ing when those numbers are ones specified.

When an error occurs, the corresponding error number is placed in system variable
ERN. This enables an IF ERN statement in an error correcting routine declared
by the ON ERROR GOTO statement to determine what type of error has
occurred. The IF ERN statement may be used in either of the following forms;
either of the following forms:

(1) IF (relational expression of ERN) GOTO, or

(2) IF (relational expression of ERN) THEN statement or Ir.

(See the descriptions of the IF ~ THEN and IF ~ GOTO statements.)

TFor the error number, refer to the Error Message Table on page 66.

29

Example

233 IF ERL

Format

Function

Description -

Example

The statement shown below causes program execution to jump to line 1200 when
Error 5 (String Overflow) occurs, indicating that the string length exceeded 255

characters.
800 IF ERN =5 THEN 1200

IF ERL expression THEN Ir

IF ERL expression THEN statement

IF ERL expression GOTO Ir

Ir reference line number

This statement determines the numbqr of the line on which an error has occurred
and causes branching to a specified line.

Since system variable ERL is loaded with the number of the line on which an
error occurred, the IF ERL statement in the routine declared by the ON ERROR
GOTO statement is able to ascertain this line number from system variable ERL.
The IF ERL statement, like the IF ERN statement, may be used in two forms:
IF ~ THEN or IF ~ GOTO.

The statement shown below causes program execution to jump to line 1300 when

an error occurs on line 250.
810 IF ERL =250 THEN 1300

30

2.3.4 RESUME

Format

Function

Description :

RESUME (NEXT)

RESUME Ir

Ir reference line number or 0

This statement returns program execution to the main program after correction of
an error.

The system holds the number of the line on which the error occurred in memory
and returns program execution to that line or to another specified line after the

error is corrected.

The RESUME statement may be used in any of the following four forms:
RESUME: This returns program execution to the statement in which the error
occurred.
RESUME NEXT: This returns program execution to the statement just after the
one in which the error occurred.
RESUME (line number) : This returns program execution to the line specified by
(line number) .
RESUME 0 : This returns program execution to the beginning of the program, or
to the line with the smallest line number.

If the system ecounters any RESUME statement when there is no error condi-
tion, Error 21 (RESUME - no ERROR) will occur.

31

2.4 Updated commands

24.1 PRINT USING

Format : PRINT USING format ; variable name list
format string variable consisting of special characters
variable name list ... numeric variables and/or numeric expression
Function : This statement displays the contents of the numeric variable indicated by Tthe

variable name list operand in the specified format.

Description : Special characters used in the format operand are explained below.

= # (used for specifying the number of digits)
The number of #’s is the number of digits to be displayed. Signs (+ and —) are not
counted as digits.
When the number of digits to be displayed is less than that specified, displayed
data is right-justified and vacant spaces are filled with blanks.
PRINT USING “## ###” ;12345

12,345

PRINT USING “#####” ; 1234,567

wl,234 Loooouu 567 L. Tabs are set every 10 digits.
PRINT USING “####” ;12.345 “ s represents a space.

T34 0 e e Excess decimal places are omitted.

= +and — signs
+##4# . When data is positive, it is perfixed with a + sign and when it is negative,
it is prefixed with a — sign.
—##4# . When data is positive, a space precedes it and when it is negative, a — sign
precedes it.
One character space is reserved for the sign.
PRINT USING “+### ###” ;123456
+123,456
AS = “—H #H#H”
PRINT USING AS§ ; —1234
—1,234

TFor a variable name list, numeric variables (expressions) are separated with cammas.

a Decimal point (.)

The decimal point separates the decimal part from the integral part. Only one
decimal point can be used in the format operand. When the number of specified
decimal places is more than the number of decimal places in the given data, Os are

displayed for the excess places. One character space is reserved for the decimal

point.
PRINT USING “+#.##” ;1.23
“+1.23
PRINT USING “#.###” ;1.23
1.230

= Comma (,)
Inserts a comma in the specified position. One character space is reserved for each
comma.
PRINT USING “#####.#” ;12345
12,345.0
PRINT USING “#####” ;12

® Whenx s are used instead of #s,% s are displayed instead of spaces.
PRINT USING “ >, >*k>*k>x 7 ;12
kokkk]2
PRING USING “+ >k>k>k>k ;12
Xk +12

m £ @and$
£, @ or $ can be attached to the beginning of numeric data.
PRING USING “£## ### ## ;1234.56
w£1,234.56
PRINT USING “@##.##” ;12.3
@12.30
= X
When Xs are specified, spaces are displayed where the Xs are specified.
PRING USING “##XXX##” ;1234
12 L 34
PRINT USING “#### XXX##” ;123.4
w1230 0040

33

2.4.2 DELETE

Format

Function

Description

® Format Over Display (%)
When the data length is longer than that specified, % preceeds the data displayed.
PRINT USING “##### ; 123456
%123,456

® Other Characters except Format
When any other characters are specified at the beginning or end of the format
operand, they are displayed as they are.
PRINT USING “UNIT PRICE @## ## YEN” ; 12.34
UNIT PRICE @12.34 YEN
AS = “COMPUTER ### SYSTEMS”
PRINT USING AS ;12
COMPUTER . 12 SYSTEMS
PRINT USING “£#,###” ; 123,45678
wuo £123 oo %£45,678
® Exchange of 0 (Zero) and O
Either letter “O” or the numeric character “0” may be used for displaying or
printing zeros with the following POKE statements.
POKE $002D,1 The letter O is used to display zeros.
POKE $002D,0 The numeric character O is used to zeros.

DELETE Ir

DELETE —ir

DELETE Ir—

DELETE Ir-ir

Ir reference line number

Deletes all statements on lines specified.

Refer to the samples shown below.

DELETE 10 : Deletes the statement on line 10.

DELETE 10—: Deletes all statements after line 10.

DELETE —10: Deletes all statements from the beginning of the program to line
10.

DELETE 10-50: Deletes all statements between line 10 and line 50.

34

243 DM

Format

Function

Description :

Example

2.4.4 Function

Description

DIMa; (i) ¢,az (i2),...... » an (In))
DIM b, (iy,j1) ¢, by (i2542), - - -, bn (inyjn))
ai one-dimensional array

bi two-dimensional array

in, jn dimensions

This statement declares the dimensions of one-dimensional or two-dimensional
arrays and secures necessary memory area.

Use of either one-dimensional or two-dimensional arrays (numeric or string arrays)
requires that the size of each array be declared by the DIM statement.

The subscripts which indicate the elements of an array can be expressed with any
numbers from 0 to 255, but the range of usable numbers may be limited accord-
ing to how the memory is used.

However, the number of array elements of an one-dimensional array is only
limited by the amount of unused memory area.

In the case, the subscripts can be expressed with any number over 255.

DIM A (1000), ABS (300)

DIM B (80, 80), BC$ (100, 100)

SB-6610 does not support the following functions.
SIN, COS, TAN, EXP, LOG, LN and (power)
Subroutines for these functions are filed on the master diskette under the file
name “FUNCTION”
These subroutines are referenced for calculating function. Use of the Disk BASIC

SB-6510 is recommended when you need to calculate function.

35

2.5 Use of utility programs

Utility programs “Filing CMT” (OBJ) and ‘“Utility’> (OBJ) are stored on the master diskette toge-
ther with DISK BASIC interpreter SB-6610, MONITOR SB-1510 and some application programs.

In the following paragraphs, use of utility programs are explained.

2.5.1 Use of utility program “Filing CMT”

This utility program transfers machine language program from cassette file to the diskette as it is.
To call this utility program, enter
RUN “Filing CMT”

The display screen is as shown in Figure 2.1.

* TRANSFER FROM CMT (OBJECT TAPE) TO FD x*
SET TAPE! OK?
(B KEY : BOOT START)
DRIVE NO. B

FIGURE 2.1

Set ready the cassette tape file which hasto be transferred into the diskette, and specify the drive

number.

The following example transfers BASIC interpreter SB-5510 from the cassette file to the diskette

in drive 2.

* TRANSFER FROM CMT (OBJECT TAPE) TO FD *
SET TAPE! OK?
(B KEY : BOOT START)
DRIVE NO. 2
LOADING BASIC SB-5510
(R) KEY : RESTART
OTHER KEY : BOOT START

FIGURE 2.2

36

You obtain the object file (OBJ) “BASIC SB-5510" on the diskette in drive 2. Therefore, to call
BASIC interpreter SB-5510 from the diskette file, simply enter
RUN “BASIC SB-5510”

2.5.2 Use of utility program “Utility”

This utility program has two functions, that is, initializing diskettes and copying diskettes. To call
this utility program, enter
RUN “Utility”

The display screen is as shown below.

¥k UTILITY * *
[COMMAND TABLE]

DISKETTE INIT I
SLAVE-DISK INIT S
DISKETTE COPY g C
BOOT START B
?7 &

FIGURE 2.3

When a I command is entered, the display is as shown in Figure 2.4.
[COMMAND TABLE]

DISKETTE INIT I
SLAVE-DISK INIT S
DISKETTE COPY : C
BOOT START B
71
DRIVE NO. #

FIGURE 2 4

The utility program requests the operator to specify drive number.
When a new diskette is used, it must first be initialized (that is, formats the diskette so that data

are able to be written or read). During initialization, the diskette is formatted.

i
15
|

37

S command assigns a volume number to a initialized diskette for making a slave diskette. Figure

2.5 shows an example where the slave diskette in drive 1 is made with volume number 2.5 assigned.

[COMMAND TABLE]

DISKETTE INIT [
SLAVE-DISK INIT S
DISKETTE COPY : C
BOOT START B
?8S

VOLUME NO. 25
FIGURE 2.5

Any number from 1 through 127 can be specified for the volume number. Different numbers must
be assigned to each diskette so that a diskette can be specified with its volume number in a logical

open statement.
C command copies a diskette. The following example copies the diskette in drive 1 on diskette in

drive 2.

[COMMAND TABLE]
DISKETTE INIT
SLAVE-DISK INIT
DISKETTE COPY
BOOT START

?7C

FROM

DRIVE NO. 1

TO

DRIVE NO. 2

o O »nn =

COoPY

Same contents as
the SLAVEI.

FIGURE 2.6 Slave diskette copying

38

Any number of submaster diskettes can be made by copying the master diskette using this diskette
copy command explained above. However, submaster diskettes cannot be made by copying another

submaster diskette.

Slave
diskette

Sub-
master
diskette

Master
diskette

Slave
diskette

Sub-
master

FIGURE 2.7

NOTE: It is recommended that a write protect seal be placed on the original diskette to prevent it

from being accidentally erased.

ERROR INDICATIONS : DISK ERROR=50...... The disk drive is not ready.
DISK ERROR=41...... Disk drive hardware error.

Chapter 3
Programming Instructions

This chapter summarizes all commands, statements, operators, symbols and specifications of the
double precision DISK BASIC interpreter SB-6610.

39

40

3.1 List of DISK BASIC interpreter SB-6610 commands, statements and

functions
3.1.1 Command

DIR

LOAD

SAVE

RUN

S

DIR FDd

DIR FD3

DIR

LOAD “A”

LOAD FD2@10 “A”

LIMIT $D000: LOAD “B”

SAVE “D”

RUN

RUN 1000

RUN 13 F’?
(BTX)

Displays the file directory of the diskette in drive d (d=1~4).
The contents of the directory are as follows:
1) Volume number
2) Number of unused sectors
3) Mode, lock condition and file name of each file on the dis-
kette
Note: When a directory is listed on the CRT, the display is fixed
and the cursor appears when the frame is filled.
To display the next frame of the directory, press the
[CR]
display is fixed.

key. Other command may be executed once the

Displays the files directory of the diskette in drive 3. When a DIR
FDd command is executed, the system stores the drive number so
that it may be omitted (if the same drive is specified) for the direct
execution instructions and file access instructions explained below.

Displays the file directory of the diskette in the active drive which
is last specified in a DIR FDd command.

Loads BASIC text (BTX) assigned the file name “A’ from the
diskette in the active drive into the text area.

Loads the BASIC text assigned the file name “A” from volume 10
in drive 2 into the text area.

To load a machine language program file (OBJ) to be linked with a
BASIC text, the BASIC area of memory must be partitioned from
the machine language area by the LIMIT statement.

Assigns the file name “D” to the BASIC text in the text area and
stores it on the diskette in the active drive. The text is stored in the
BTX file mode.

Executes the BASIC text in the text area from the top.
Note: The RUN command clears all variables (fills them with O or
null string) before running text.

Executes the BASIC text starting at line number 1000.

Loads the BASIC text assigned the file name “F” from the diskette
in the active drive and executes it from its beginning.

4]

AUTO

LIST

NEW

CONT

MON

BOOT

KLIST

DELETE

RUN FD3@7 “(T;”
(OBJ)
AUTO

AUTO 200, 20

LIST
LIST —500
NEW

CONT

MON

BOOT

KLIST

DELETE 10
DELETE 10—
DELETE -100

DELETE 10-100

Loads machine language program assigned the file name “F” from
the diskette of volume 7 in drive 3, and then executes the program
starting at the start address. In such cases, system control is trans-
ferred from the BASIC interpreter to the machine language pro-
gram.

Automatically generates and assigns line numbers 10,20, 30
during creation.

Automatically generates line numbers at intervals 20 starting at line
200. 200, 220,240
An AUTO command is terminated by pressing the(BREAK]key.

Displays all lines of BASIC text currently contained in the text
area.

Displays all lines of BASIC text up through line 500.

Clears the text area and variable area.

Further, disestablishes the machine language program area set by a
LIMIT statement by removing the partition.

Continues program execution which was halted by a STOP state-
ment or the (BREAK] key, starting at the statement following the
STOP statement or the statement halted by the (BREAK] key.
Transfers system control from the BASIC interpreter to the MONI-
TOR.

(To transfer system control from the MONITOR to the BASIC
interpreter, execute monitor command J.)

Activates the MZ-80B system initial program loader.

Displays a complete list of string definitions for special function
keys, thereby enabling you to determine how individual special
function keys are defined.

Deletes the statement on line 10.

Deletes all statements after line 10.

Deletes all statements up to line 100.

Deletes all statements from line 10 to line 100.

42

3.1.2 File control statements

LOCK

UNLOCK

RENAME

DELETE

CHAIN

SWAP

LOCK “ABC”

LOCK FD4@7 “ABC”

UNLOCK “ABC”

100 UNLOCK FDI “A”

RENAME “A”, “Bu

DELETE “A”

CHAIN FD2@7 “TEXT B”

CHAIN “TEXT B”

SWAP FD2@7 “TEXT S-R”

Locks file “ABC” on the diskette in the active drive.

Locks file “ABC” on the diskette (whose volume number is 7), in
drive 4.

The locked file cannot be updated or deleted.

When the file directory is listed, the locked file name is indicated
with an asterisk.

Unlocks file ““ABC” on the diskette in the active drive.

Unlocks file “A” on the diskette in drive 1.
(This is an example of a statement used in a program.)

Changes the name of file ““A” on the diskette in the active drive to
“B,"

Deletes file ‘““A” from the diskette in the active drive.

Chains the program in the BASIC text area to BASIC program
“TEXT B” on the diskette volume 7 in drive 2. That is, program
“TEXT B” is loaded in the BASIC text area and program execution
is started at its beginning. Before the text is loaded, the BASIC text
area is cleared but all variable values and contents of user functions
are given to program “TEXT B”.

The CHAIN statement has the same function as GOTO “file name”.

Chains the program in the BASIC text area to program “TEXT B”
on the diskette in the active drive.

Swaps the current program for BASIC program “TEXT S-R” on
diskette volume 7 in drive 2.

The current program text is saved on the diskette in the drive speci-
fied in the last DIR FDd command, then program “TEXT S-R” is
loaded into the BASIC text area and is executed from its beginning.
When the swapped program is finished, the saved program is loaded
again and program execution is started at the statement following
the SWAP statement. The values of variables and the contents of
user functions are transferred between the two programs. No
SWAP statement can be used in a swapped program. The SWAP
statement has the same function as GOSUB “file name”.

43

3.1.3 BSD (BASIC Sequential access Data file) control statements

WOPEN #

PRINT #

CLOSE #

KILL #

ROPEN #

INPUT #

CLOSE #

WOPEN #3, FD2@7,
“SEQDATA 1”7

PRINT #3, A, AS

CLOSE #3

(corresponding to WOPEN #)

KILL # 3

ROPEN #4, FD2@7
“SEQ DATA 1”

INPUT #4, A (1), B$

CLOSE #4
(corresponding to ROPEN #)

Defines the file name of a BSD (BASIC sequential access data file)
to be created as “SEQ DATA 1” and opens it with logical number
3 assigned on diskette volume 7 in drive 2.

For WOPEN # statements including a USR function operand, see
page 55.

Writes the contents of variable A and string variable A$ in order in
the BSD assigned logical number 3 which was opened by a WOPEN
statement.

(In writing data, 256 bytes are treated as a unit.)

Closes the BSD assigned logical number 3 which was opened by the
WOPEN #3 statement.

By closing the BSD, the BSD which has the file name defined in
the WOPEN # statement is created on the specified diskette, and
the logical number assigned is made undefined.

Kills the BSD assigned logical number 3 by the WOPEN # state-
ment. Logical number 3 is made undefined.

Opens BSD “SEQ DATA 1” on diskette volume 7 in drive 2 with
logical number 3 assigned to read data in BSD.
For ROPEN # statements including'a USR function, see page S5.

Reads data sequentially from the beginning of the BSD assigned
logical number 4 which was opened by the ROPEN # statement
and substitutes numerical data into array element A(1) and string
data into string variable BS.

Close the BSD assigned logical number 4 and makes the file
number undefined.

3.1.4 BRD (BASIC Random access Data file) control statements

XOPEN #

PRINT #()

XOPEN #5, FD3@18,
“DATA R1”

PRINT #5(11), R (3)

Generally, XOPEN # statement opens a BRD for writing and read-
ing data (Cross open).

This statement cross-opens BRD “DATA R1” on diskette volume
18 in drive 3 with logical number 5 assigned or, if the file does not
exist on the diskette, cross-opens a BRD by defining its file name
as “DATA R1” to create it on the diskette with logical number 5
assigned.

Writes the content of linear array element R(3) on field 11 of
the BRD assigned logical number 5 which was opened by the
XOPEN # statement.

44

PRINT #()

INPUT #()

CLOSE #

KILL #

IF EOF (#)

PRINT #5(20), ARS, AS$

INPUT #5(21), R$

INPUT #5(11), A(11),
A$(12)

CLOSE #5

CLOSE

KILL

10 IF EOF (#5) THEN 700

3.1.5 Error processing statements

ON ERROR
GOTO

IF ERN

IF ERL

RESUME

ON ERROR GOTO 1000

IF ERN=44 THEN 1050

IF ERN=350 THEN 1090

IF (ERN=53)> (ERL=700)
THEN END

650 RESUME

Writes the contents of string variables AR$ and AS$ on field 20
and field 21 of the BRD assigned logical number 5, respectively.
All BRD fields have a fixed length of 32 bytes and, if the length
of string variable exceeds 32 bytes, the excess part is discarded.

Reads the content of field 21 of the BRD assigned logical number
5 which was opened by the XOPEN # statement into string vari-
able RS.

Reads the contents of field 11 and field 12 of the BRD assigned
logical number 5 into linear numeric array element A(11) and
linear string array element AR(12), respectively.

Close the BRD assigned logical number 5 which was opened by the
corresponding XOPEN # statement.

Closes all open files.
Kills all open files.

Transfers program control to the routine starting to line number
700 if an EOF (End of File) is detected when an INPUT # state-
ment is executed against a BSD or a BRD.

Declares that the number of the line to which program execution is
to be moved, if an error occurs is 1000.

Jumps to the statement on line number 1050 if the error number is
44,

Jumps to the statement on line number 1090 if the error line num-
ber is 350.

Terminates the program if the error number 53 and the error line
number is 700.

With DISK-BASIC, the error number and error line number are set
in special variables ERN and ERL, respectively, if an error occurs
during program execution.

Returns program execution to the main program after correction
of an error.

Returns program execution to the statement in which the error

occurred.

45

3.1.6 Cassette file input/output statements

LOAD/T

SAVE/T

VERIFY

WOPEN/T

PRINT/T

CLOSE/T

ROPEN/T

INPUT/T

CLOSE/T

700 RESUME NEXT

750 RESUME 400

800 RESUME 0

LOAD/T “C”

SAVE/T “E”

VERIFY “H”

10 WOPEN/T “DATA-1”

20 PRINT/T, A$

30 CLOSE/T

110 ROPEN/T “DATA-2”

120 INPUT/T, B, B$

130 CLOSE/T

3.1.7 Assignment statement

LET

(LET) A=X+3

Returns program execution to the statement just after the one in
which the error occurred.

Retums program execution to line number 400.

Retums program execution to the beginning of the program.

Loads the BASIC text assigned the file name “C” from the cassette

tape into the text area.

Note: When a LOAD command or a LOAD/T command is execut-
ed for a BASIC text file, the text area is cleared of any pro-
grams previously stored.

Assigns the file name “E” to the BASIC text in the text area and
automatically stores it on the cassette tape.

This command automatically compares the program contained in
the BASIC text area with its equivalent text assigned the file name
“H” in the cassette tape file.

Defines the file name of a cassette data file to be created as
“DATA-1” and opens.

Writes the contents of variable A and string variable A$ in order in
the cassette data file which was opened by a WOPEN/T statement.

Closes the cassette data file which was opened by a WOPEN/T
statement.

Opens the cassette data file specified with file name “DATA-2".

Reads data sequentially from the beginning of the cassette data file
which was opened by the ROPEN/T statement and substitutes
numerical data into variable B and string data into string variable
BS respectively.

Closes the cassette data file which was opened by a ROPEN/T
statement.

Substitutes X + 3 into numeric variable A. LET may be omitted.

46

3.1.8 Input/output statements

PRINT

PRINT USING

Specifies format
in which numeric
data is to be
output on the
CRT screen.

10 PRINT A

?7AS

100 PRINT A; AS, B; B$

110 PRINT “COST=";CS
120 PRINT

PRINT USING “####”

10 PRINT USING
“HEHE ;123

20 PRINT USING
“HIHH" 98

PRINT USING
“H#FHFHHE

10 PRINT USING
“HH HER#HT 5321.65

PRINT USING
B . S 3 I P O 3

10 PRINT USING
koK, KKK ;1234

PRINT USING

£ ok K, kKK
“@k >k kKK
g >k >k K K K

10 PRINT USING
CERK K KKK

Displays the numeric value of A on the CRT screen.

Displays the character string of variable A$ on the CRT screen.
Combinations of numeric variables and string variables can be spe-
cified in a PRINT statement. When a semicolon is used as the sepa-
rator, no space is displayed between the data strings. When a colon
is used, variable data to the right of the colon is displayed from the
next tab set position.

(A tab is set every 10 character positions.)

Displays the string between double quotation marks as is, and CS.
Performs a new line operation (i.e., advances the cursor one line).
Displays data in the format specified with #’s. When the length of
the data to be displayed is shorter than that specified, the data is

right-justified and empty spaces are filled with blanks.

Displays 11123.

Displays .11 98.

Displays the decimal point and commas in the specified positions.

Displays Ls 5,321.65.

When >k ’s are used instead of #s, > ’s are displayed for spaces.

Displays > 1,234.

Prefixes numeric data with £, @ or §.

Displays > £82,546.

47

20 PRINT USING
“LHHH FHAAR
7658.35

30 PRINT USING
“@#HH ##HH 2935

40 PRINT USING
“SHHA##AHH" ;81965

PRINTUSING
“HXXH. H#H

10 PRINT USING
“HXX#H##” ;98.76

PRINT USING
“HHHH#H’

PRINT USING
“_HHR Y

10 PRINT USING
“HEHH#AT 5123

20 PRINT USING
“tH##H ;5.6

30 PRINT USING
“_#HR#H 583

40 PRINT USING
“—###H 583

10 PRINT USING
“H#EHH ;135.68

10 PRINT USING
“HH#1.23

Displays i £7,658.35.

Displays s @2,935.

Displays « $81,965.

Displays spaces for X’s.

Displays 9L 8.76.

When data is positive, a + sign precedes it and when it is negative, a

— sign precedes it. (One character space is reserved for the sign.)

When data is positive, a space precedes it and when it is negative, a

- sign precedes it. (One character space is reserved for the sign.)

Displays v +12.3.

Displays ww —5.6.

Displays . 58.3.

Displays «, —58.3.

When the length of the data to be displayed is longer than that
specified, % precedes the data displayed.

Displays %135.68.

When the number of decimal places specified is less than that of
the given data, the excess digits are omitted.

Displays 1.2.

48

INPUT

GET

READ~DATA

RESTORE

10 AS= “###.##”

20 PRINT USING AS ; 1.58

30 PRINT USING AS ;28.3

10 INPUT A

20 INPUT AS$

30 INPUT “VALUE?” ;D

40 INPUT X, X$,Y,Y$

I0GETN

20 GET K$

10 READ A, B, C
1010 DATA 25, 0.5, 500

10 READ HS, H, S§, S
30 DATA HEART, 3
35 DATA SPACE, 11

10 READ A, B, C

20 RESTORE

30 READ D, E

100 DATA 3, 6,9, 12, 15

The format operand can be specified with a string variable as
shown at the left.

Displays Ly 1.58.

Displays _ 28.30.

Obtains numeric data for variable A from the keyboard.

Obtains string data for string variable A$ from the keyboard.

Displays “VALUE?” on the screen before obtaining data from the
keyboard. A semicolon separates the string from the variable.

Numeric variables and string variables can be used in combination
by separating them from each other with a comma. The types of
data entered from the keyboard must be the same as those of the
corresponding variables.

Obtains a numeral for variable N from the keyboard. When no key
is pressed, zero is substituted into N.

Obtains a character for variable K$ from the keyboard. When no
key is pressed, a null is substituted into K§$.

Substitutes constants specified inthe DATA statement into the
corresponding variables specified in the READ statement. The
corresponding constant and variable must be of the same data type.

In READ and DATA statements at left, values of 25, —0.5 and 500
are substitutes for variables A, B and C, respectively.

In the example at left, the first string constant of the DATA state-
ment on line number 10 is substituted into the first variable of the
READ statement; that is; “HEART” is substituted into HS. Then,
numeric constant 3 is substituted into numeric variable H, and so
on.

With a RESTORE statement, data in the following DATA state-
ment which has already been read by preceding READ statements
can be re-read from the beginning by the following READ state-
ments.

The READ statement on line number 10 substitutes 3, 6 and 9 into
variables A, B and C, respectively. Because of the RESTORE state-
ment, the READ statement on line number 30 substitutes not 12
and 15, but 3 and 6 again into D and E, respectively.

49

3.1.9 Loop statement

FOR~ TO
NEXT

I0FOR A=1TO 10
20 PRINT A
30 NEXT A

10 FOR B=2 TO 8 STEP 3
20 PRINT B"2
30 NEXT

I0FORA=1TO 3

20 FOR B=10 TO 30
30PRINT A, B ’
40 NEXT B

50 NEXT A

60 NEXT B, A
70 NEXT A, B

3.1.10 Branch statements

GOTO

GOSUB

~RETURN

IF ~ THEN

IF ~ GOTO

100 GOTO 200
100 GOSUB 700

800 RETURN

10 IF A>20 THEN 200

50 IF B<3 THEN B=B+3

100 IF A>=BGOTO 10

The statement on line number 10 specifies that the value of vari-
able A isvaried from 1 to 10 in increments of one. The initial value
of A is 1. The statement on line number 20 displays the value of A.
The statement on line number 30 increments the value of A by one
and retums program execution to the statement on line number
10. Thus, the loop is repeated until the value of A becomes 10.
(After the specified number of loops has been completed, the value
of Ais 11.)

The statement on line number 10 specifies that the value of vari-
able B is varied from 2 to 8 in increments of 3. The value of STEP
may be made negative to decrement the value of B.

The FOR-NEXT loop for variable A includes the FOR-NEXT loop
for variable B. As is shown in this example, FOR-NEXT loops can
be enclosed in other FOR-NEXT loops at different levels. Lower
level loops must be completed within higher level loops. The maxi-
mum number of levels of FOR-NEXT loops is 16.

In substitution for NEXT statement at line numbers 40 and 50, a
statement at line number 60 shown at left can be used. However,
statement at line number 70 cannot be used, causing an error to

occur.

Jumps to the statement on line number 200.

Calls the subroutine starting on line number 700. At the end of
subroutine, program execution retumns to the statement following
the corresponding GOSUB statement.

Jumps to the statement on line number 200 when the value of
variable A is more than 20; otherwise the next line is executed.

Substitues B+3 into variable B when the value of B is less than 3;
otherwise the next line is executed.

Jumps to the statement op line number 10 when the value of vari-
able A is equal to or greater than the value of B; otherwise the next
line is executed.

50

IF ~ GOSUB

ON~ GOTO

ON ~ GOSUB

30 IF A=B>2 GOSUB 90

50 ON A GOTO 70, 80, 90

90 ON A GOSUB 700, 800

3.1.11 Definition statements

DIM

DEF FN

10 DIM A (300)

20 DIM B (79, 79)

30 DIM C15$ (10)

40 DIM K$ (7, 5)

100 DEF FNA(X)=X"2—X

110 DEF FNB(X)=LOG (X)
+1

120 DEF FNZ(Y)=LN(Y)

Jumps to the subroutine starting on line number 700 when the
value of variable A is twice the value of B; otherwise the next state-
ment is executed.

(When other statements follow a conditional statement on the
same line and the conditions are not satisfied, those following an
ON statement are executed sequentially, but those following an IF
statement are ignored and the statement on the next line is exe-
cuted.)

Jumps to the statement on line number 70 when the value of vari-
able A is 1, to the statement on line number 80 when it is 2 and to
the statement on line number 90 when it is 3. When the value of A
is 0 or more than 3, the next statement is executed. This statement
has the same function as the INT function, so that when the value
of A is 2.7, program execution jumps to the statement on line
number 80.

Jumps to the subroutine on line number 700 when the value of
variable A is 1 and jumps to the subroutine on line number 800
when it is 2.

When an array is used, the number of array elements must be
declared with a DIM statement. For an one-dimensional array, the
number of array elements is only limited by the amount of the
unused memory area. For a two-dimensional array, however, it is
limited by the maximum value of each subscript which is 255.

Declares that 301 array elements, A (0) through A (300), are used
for one-dimensional numeric array A (n).

Declares that 6400 array elements, B (0, 0) through B (79, 79), are
used for two-dimensional numeric array B (m, n).

Declares that 11 array elements, C1$ (0) through C1$ (10), are
used for one-dimensional string array C1$ (n).

Declares that 48 array elements, K$ (0, 0) through K$ (7, 5), are
used for two-dimensional string array K$ (m, n).

A DEF FN statement defines a function. The statement on line
number 100 defines FNA(X) as X?—X. The statement on line
number 110 defines FNB(X) as logioX+1 and the statement on
line number 120 defines FNZ(Y) as log.Y. The number of vari-
ables included in the function must be 1.

51

DEF KEY

3.1.12 Comment and control statements

REM

STOP

END

CLR

CURSOR

CSRH

CSRV

CONSOLE

CHANGE

15 DEF KEY (1)=LIST
25 DEF KEY (2)=LOAD!
RUN

200 REM JOB-1

850 STOP

1999 END

300 CLR

50 CURSOR 25, 15
60 PRINT “ABC”

10 CONSOLE S10, 20

20 CONSOLE C80

30 CONSOLE C40

40 CONSOLE R

50 CONSOLE N

10 CHANGE

A DEF KEY statement defines a function for any of the ten special
function keys. The statement on line number 15 defines special
function key 1 as LIST. The statement on line number 25 defines
special function key 2 as the multi-command LOAD: RUN,

Comment statement (not executed).

Stops program execution and awaits a command entry. When a
CONT command is entered, program execution is continued.

Declares the end of a program. Although the program is stopped,
the following program is executed if a CONT command is entered.

Clears all variables and arrays, that is, fills all numeric variables and
arrays with zeros and all string variables and arrays with nulls.

The CURSOR command moves the cursor to any position on the
screen. The first operand represents the horizontal location of the
destination, and must be between 0 and 39 in 40-character mode,
and must be between O and 79 in 80-character mode. The second
operand represents the vertical location of the destination and
must be between O and 24. The left example displays “ABC” start-
ing at location (25, 15) (the 26th position from the left side and
the 16th position from the top).

System variable indicating the X-coordinate (horizontal location)
of the cursor.

System variable indicating the Y-coordinate (vertical location) of

the cursor.

Sets the scrolling area to lines 10 through 20.
Sets the display in the 80 characters/line mode.
Sets the display in the 40 characters/line mode.
Sets the display in the reverse mode.

Sets the display in the normal mode.

Reverses the function of the (SHIFT) key concerned with alpha-
betic keys.

REW

FAST

SIZE

TI$

710 REW

720 FAST

? SIZE

100 TI$ = “102030”

3.1.13 Music control statements

MUSIC
TEMPO

300 TEMPO 7
310 MUSIC “DE#FGA”

300M1$ = “C3DG +C”
310M2$ = “BGD — G”

320 M3§ = “C8RS”
330MUSICM1S, M2§, M3§

3.1.14 Graphic control statements

GRAPH

10 GRAPH 1

20 GRAPH O1

30 GRAPH 02

40 GRAPH 012

50 GRAPH OO0

60 GRAPH C

70 GRAPH F

80 GRAPH 11, C, O1

Rewinds the cassette tape.
Fast-forwards the cassette tape.
Displays the amount of unused memory area in bytes.

Sets the built-in clock to 10:20:30 AM. Data between the double
quotation marks must be numerals.

The MUSIC statement generates a melody from the speaker accord-
ing to the melody string data enclosed in quotation marks or string
variables at the tempo specified by the TEMPO statement.

The TEMPO statement on line number 300 specifies tempo 7. The
MUSIC statement on line number 310 generates a melody consist-
ing of D, E, F sharp, G and A. Each note is a quarter note. When
the TEMPO statement is omitted, default tempo is set.

In this example, the melody is divided into 3 parts and substituted
in 3 string variables. The following melody is generated from the

speaker at tempo 4. g E E

Places graphic area 1 in the input mode. (That is, data are to be
transferred to graphic area 1,)

Places graphic area 1 in the output mode.

Places graphic area 2 in the output mode.

Places graphic areas 1 and 2 in the output mode.
Resets the graphic output.

Clears graphic area that is in the input mode.
Fills graphic area that is in the input mode.

Places graphic area 1 in the input mode, then clears it and places it
in the output mode.

53

SET

RESET

LINE

BLINE

POSITION

PATTERN

POINT

300 SET 160, 100

310 RESET 160, 100

400 LINE 110, 50, 210, S0,
210,150,110, 150, 110,
50

20GRAPHI2,C, 02
30 POSITION 0, 50
40 PATTERN 8, AS

10 C$ = “ABCDEF”
20 PATTERN 4, C$

30 PATTERN —4,C$

100 ONPOINT (X, Y)
GOTO 10, 20, 30

Sets a dot in the specified position in a graphic area operating in
the input mode.

The first operand specifies the X-coordinates (0-319) and the
second operand specifies the Y-coordinates (0-199).

Displays a dot in the center of the screen.

Resets a dot in the specified position in a graphic area operating in
the input mode.
Resets a dot from the center of the screen.

Draws lines connecting positions specified by operands.
Draws a square the length of whose side is 100 in the center of the
display screen.

Draws black lines connecting positions specified by operands.

Sets the location of the position pointer in a graphic area. The
PATTERN statement (see below) is executed starting at the loca-
tion indicated by the position pointer.

Places graphic area 2 in theinput mode, sets the position pointer to
the position corresponding to the position on the display screen
which is at (0, 50), then transfers data from variable A$ to graphic
area 2 so that the pattern corresponding to the contents of A$ is
drawn on the screen starting at (0, 50).

Draws the dot pattern specified by operands in a graphic area
which is in the input mode. Each dot pattern unit consists of 8
dots arranged horizontally and corresponds to 8§ bits representing a
character. Elements are stacked in the number of layers specified
by the value of the first operand and the direction in which layers
are stacked is specified by the sign of the first operand.

Draws the dot pattern shown as follows.

4 layers

Draws the following dot pattern.

(W//N/RER/RY;
4 layers) W %M

l

Ascertains the dot (X, Y) whether it is set or reset, and branches
according to the result.

Result of tl!e Point information
POINT function
0 Points in both graphic areas 1 and 2 are reset.
1 Only point in graphic area 1 is set.
2 Only point in graphic area 2 is set. ‘}
3 Points in both graphic areas 1 and 2 are set.

54

POSH

POSV

System variable indicating the X-coordinate (horizontal location)
of the position pointer.

System variable indicating the Y-coordinate (vertical location) of
the position pointer.

3.1.15 Machine language control statements

LIMIT

POKE

PEEK

USR

100 LIMIT 49151

100 LIMIT A

100 LIMIT $BFFF

300 LIMIT MAX

200 LIMIT $BFFF
210 LOAD FD2 “S-R1”

120 POKE 49450, 175

130 POKE AD, DA

150 A=PEEK (49450)

160 B=PEEK (C)

500 USR (49152)

550 USR (AD)

! 570 USR ($C000)

Limits the area in which BASIC programs can be loaded to the area
up to address 49151 ($BFFF in hexadecimal).

Limits the area in which BASIC programs can be loaded to the area
up to the address indicated by variable A.

Limits the area in which BASIC programs can be loaded to the area
up to $BFFF (hexadecimal). Hexadecimal numbers are indicated
by a dollar sign as shown at left.

Set the maximum address of the area in which BASIC programs
can be loaded to the maximum address of the memory installed.

Loads machine language program (object program) “S-R1” in the
machine language link area from the diskette in drive 2 when the
loading address of the program is $C000 or higher.

Stores 175 in address 49450.

Stores data (between 0 and 255) specified by variable DA into the
address indicated by variable AD.

Substitutes data stored in address 49450 into v{riable A.

Substitutes the contents of the address indicated by variable C into
variable B.

Transfers program control to address 49152. This function is the
same as that performed by the CALL instruction, which calls a
machine language program. When a RET command is encountered
in the machine language program, program control is returned to
the BASIC program.

Calls the program starting at the address specified by variable AD.

Calls the program starting at address $C000.

55

600 WOPEN #8, USR
($C000)

610 PRINT #8, A$

620 CLOSE #8

700 ROPEN #9, USR
($C100)

710 INPUT #9, B$

720 CLOSE #9

3.1.16 Printer control statements

PRINT/P

PRINT/P A$

PRINT/P CHRS$ (N)

PRINT/P CHRS (5)

PRINT/P CHRS (6)

PRINT/P CHRS (16)

PRINT/P CHRS (17)

PRINT/P CHRS (18)

The statement on line 600 opens a file which is to be written by
the machine language program called by USR ($C000) with logical
number 8 assigned. At this stage of program execution the USR
function is not executed. The statement on line 610 loads the
beginning address of the memory area set with variable A$ into the
DE register of the CPU and its length (max. 255 bytes) into the BC
register. This enables the program called by USR (SC000) to obtain
datain AS. It then executes USR ($C000).

The statement on line number 700 opens a file which is to be read
by the machine language program called by USR ($C100) with
logical number 9 assigned. The statement on line number 710 exe-
cutes USR ($C100). The machine language program called loads
string data in the memory area starting at the address indicated by
the DE register and loads the length of the data string read in the
BC register. It then retums program control to the BASIC program.

The BASIC program refers to this memory area as BS.

Performs the nearly same operation as the PRINT statement on the
optional printer.

Outputs to the printer just as it is the contents of string variable
AS.

For an N of 32SN<£255, it considers this as an ASCII code, and
outputs a matching character to the printer.

Feeds paper to top of the form position on the next page. It is
called form feed. The function of the control button “TOP OF
FORM?” of the printer is controlled by software.

Returns the printing mode to its initial condition. Furthermore,
the form feed is carried out. It is called initial mode set. Initial
mode means 80 digit mode, line space mode.

Sets the printing mode for line spacing. It is called line space mode.

Sets the printing mode, completely closing up printing line space.

Sets the mode to double the present printing size of the characters.
It is called double size mode. There is a 40 digit mode and a 68

digit mode.

56

IMAGE/P

COPY/P

PAGE/P

PRINT/P

USING

LIST/P

DIR/P

PRINT/P CHRS (19)

PRINT/P CHRS (20)

PRINT/P CHRS (21)

30 IMAGE/P CHRS (255),
‘6UU7’

10 COPY/P 1
20 COPY/P 2
30 COPY/P 3

40 COPY/P 4

100 PAGE/P 20

The same as the

PRINT USING statement.

LIST/P

DIR FDd/P

3.1.17 1/0O input/output statements

INP

OouT

10 INP @12, A
20 PRINT A

30B=A"2+40.3
400UT @13, B

Cancels the double size mode. Returns to the 80 digit mode or 136
digit mode.

Sets the printing mode as reduced characters of the normal size
printing (80 digit mode). It is called reduced mode or 136 digit
mode.

With the bit image mode, it sets the 816 bit data in oneline in the
printing mode.

Cancels the reduced mode.

Draws a desired dot pattern (image) specified in the operand on the
line printer according to the operating mode (image mode 1 or 2).

Causes the printer to copy the character display.
Causes the printer to copy the dot pattern set in graphic area 1.
Causes the printer to copy the dot pattern set in graphic area 2.

Causes the printer to copy the dot pattern set in both graphic area
1 and graphic area 2.

Specifies 20 lines to be contained in one page of the MZ-80PS line
printer.

Specifies the format in which numeric data is to be output on the
printer. (Refer to PRINT USING on page 46.)

Prints out all lines contained in the BASIC txext area on the line
printer.

Prints the file directory of the diskette in drive d on the line
printer.

Reads data on the specified I/O port.
The statement on line number 10 reads data on I/O port 12.

Outputs data to the specified I/O port.
The statement on line 40 outputs the value of B to I/O port 13.

57

3.1.18 Arithmetic functions

ABS

INT

SGN

SQR

RND

100 A = ABS (X)

100 A = INT (X)

100 A = SGN (X)

100 A = SQR (X)

100 A = RND (0)

110 C = RND (-3)

200 A = RND (1)
210 B = RND (10)

3.1.19 String control functions

| LEFT S

10 A$ = LEFTS (X$, N)

Substitutes the absolute value of variable X into variable A. X may
be either a constant or an expression.
Ex) ABS(-3)= 3
ABS (12)=12

Substitutes the greatest integer which is less than X into variable A.
X may be either a numeric constant or an expression.
Ex) INT (3.87)=3
INT (0.6)=0
INT (-3.87)= -4

Substitutes one of the following values into variable A: —1 when
X<0, 0 when X=0 and 1 when X>0. X may be either a constant
or an expression.
Ex) SGN (04)=1
SGN (0)=0
SGN (—400) = —1

Substitutes the square root of variable X into variable A. X may
either a numeric constant or an expression; however, it must be
greater than or equal to 0.

This function generates random numbers which take any value
between 0.000000000000001 and 0.999999999999999, and
works in three manners depending upon the value in parentheses.
When the value in parentheses is 0, the random number generating
routine is initialized and the function always gives the first number
of the random number group generated. Therefore, statement on
line 100 gives the same value to variables A and B.

When the value in parentheses is negative, the random number
generating routine is given time information from the built-in clock
and generates a random number between 0.000000000000001 and
0.999999999999999. The statement on line 110 generates a ran-
dom number in this manner.

When the value in parentheses is positive, as shown in the state-
ments on lines 200 and 210, the function gives the random number
following the one previously given in the random number group
generated.

The value obtained is independent of the value in parentheses.

Substitutes the first N characters of string variable X$ into string
variable AS. N may be either a constant, a variable or an expression.

58

MID §

RIGHT $

SPACE $

STRING $

CHR §

ASC

STRS

VAL

LEN

20 B$ = MIDS$ (X$, M, N)

30 C$ = RIGHTS$ (X$, N)

40 D$ = SPACES (N)

50 E$ = STRING $
(“*”’ 10)

60 F$ = CHR $ (A)

70 A = ASC (X$)

80 N$ = STRS (I)

901= VAL (N$)

100 LX = LEN (X$)

110 LS =LEN (X$ + Y$)

3.1.20 Tabulation function

‘ TAB

10 PRINT TAB (X) ; A

Substitutes the N characters following the Mth character from the
beginning of string variable X$ into string variable B$.

Substitutes the last N characters of string variable X$ into string
variable C$.

Substitutes the N spaces into string variable D$.

Substitutes the ten repetitions of “><” into string variable ES.
Substitutes the character corresponding to the ASCII code in
numeric variable A into string variable F$. A may be either a con-

stant, a variable or an expression.

Substitutes the ASCII code (in decimal) corresponding to the first
character of string variable X$ into numeric variable A.

Converts the numeric value of numeric variable I into string of
numerals and substitutes it into string variable N$.

Converts string of numerals contained in string variable N§ into the
numeric data as is and substitutes it into numeric variable I.

Substitutes the length (number of bytes) of string variable X$ into
numeric variable LX.

Substitutes the sum of the lengths (number of bytes) of string
variable X$ and Y$ into numeric variable LS.

Displays the value of variable A at the Xth position from the left
side.

59

3.1.21 Arithmetic operators

The number to the left of each operator indicates its operational priority. Any group of operations enclosed in

parentheses has first priority.

10 A=X"Y (power)

10 A = —B (negative sign)

10 A=X>kY

(multiplication)

10 A = X/Y (division)

10 A= X +Y (addition)

10 A =X — Y (subtraction)

3.1.22 Logical operators

<>or><
>=or=>
<=or=<
>
+

10 IF A= X THEN ...

201IF A% =“XYZ”
THEN ...

10 IF A <> X THEN ...

10 IF A>= X THEN ...

10IF A <=XTHEN ..

40 IF (A>X)*k(B>Y)

THEN ...

50 IF (A>X) + (B>Y)
THEN ...

Substitutes XY into variable A. (If X is negative and Y is not an

integer, an error results.)

Note that “—”" in —B is the negative sign and “—’" in 0-B represents

subtraction.

Multiplies X by Y and substritutes the result into variable A.

Divides X by Y and substitutes the result into variable A.
Adds X and Y and substitutes the result into variable A.

Subtracts X from Y and substitutes the result into variable A.

If the value of variable A is equal to X, the statement following
THEN is executed.

If the content of variable A$ is “XYZ”, the statement following
THEN is executed.

If the value of variable A is not equal to X, the statement following

THEN is executed.

If the value of variable A is greater than or equal to X, the state-
ment following THEN is executed.

If the value of variable A is less than or equal to X, the statement
following THEN is executed.

If the value of variable A is greater than X and the value of variable
B is greater than Y, the statement following THEN is executed.

If the value of variable A is greater than X or the value of variable
B is greater than the value of Y, the statement following to THEN
is executed.

60

!

3.1.23 Other symbols

“

2007 “A+B=";A+B
210 PRINT “A+B="; A+B

220A=X:B=X"2:7A,B

230 PRINT “AB” ; “CD” ;
G‘EF,’

240 INPUT “X=" ;X%

250 PRINT “AB”, “CD” ,
G‘E”

300 DIM A(20), BS(3, 6)

320 AS = “SHARP BASIC”

330 BS = ““MZ-80B”

340 C$=“ABC”+“CHR$ (3)

500 LIMIT $BFFF

550 S = SIN (X>k7/180)

' Can be used instead of PRINT. Therefore, the statement on line
number 200 is identical in function to that on line number 210.

Separates two statements from each other. This separator is used
when multiple statements are written on the same line. Three state-
ments are written on line number 220.

Displays characters to the right of separators following characters
on the left. The statement on line 230 displays “ABCDEF” on the
screen with no spaces between characters.

Displays “X="" on the screen and awaits entry of data for X$ from
the keyboard.

Displays character strings in a tabulated format; i.e. AB first ap-
pears, then CD appears in the position corresponding to the start-
ing position of A plus 10 spaces and E appears in the position cor-
responding to the starting position of C plus 10 spaces.

A comma is used to separate two variables.

Indicates that characters between double quotation marks form a
string constant.

Indicates that the variable followed by a dollar sign is a string vari-
able.

Indicates that numeric data following a dollar sign is represented in
hexadecimal notation.

m represents 3.141592653589793 (ratio of the circumference of a
circle to its diameter).

61

3.2 Specifications of double precision BASIC SB-6610 interpreter

® Type

Interpreter system
Program size:

Start address:

Numeric data
BCD floating point system
Real number:

Hexadecimal:

Numeric variables

Numeric variable:

One-dimensional array variable:

Two-dimensional array variable:

String data
Maximum length:

Internal data string:

about 16.5K bytes
$1220 (hexadecimal)

+1E-48 ~ +9.999999999999999E + 78

Can be used only when a hexadecimal address is directly specified
in LIMIT, POKE, PEEK or USR. Expressed in 4-digit hexadecimal
notation following $.

Example: LIMIT $8FFF, USR ($A000)

Only the first two character variable name are significant. The first
character must be alphabetic. Special character, BASIC key words
or names including key words cannot be used.

A, X F1 and AA are correct.

ABC and ABD are processed as the same name.

DATA, XDATA, A#, etc. cannot be used.

The size of a one-dimensional array is limited only by the amount

Example:

of unused memory space. A one-dimensional array must be defin-
ed by a DIM statement. Conditions on characters which can be
used are the same as these shown above.

DIM Q (500) Q (0) through Q (500)

A variable with two subscripts. The maximum value of each sub-

Example:

script is 255, but it is limited by the amount of unused memory

space.

Example: DIM A3 (7, 7) A3 (0, 0) through A3 (7, 7)

255 characters
A train of ASCII character codes forming a data string followed by

a carriage retum code (ODH).

62

® String variable
Kinds of string variables: String variable
One-dimensional string variable
Two-dimensional string variable
Format: A string variable is expressedby a name following $.Requirements
for string variable name are the same as those for numeric variable.
Example: AS$, ST$ and NI§$ are normal string variables.
NAMEIS$ and NAME2S$ are processed as the same
string variable.
TI$, CHRS$ (), etc. are special string variables.
DIM S$ (3, 3) defines a two-dimensional string array
including 16 elements S$ (0, 0) through S$ (3, 3).

8 Qthers
Line numbers: 1 — 65535
File name: Significant digits in a file name specified in LOAD, VERIFY or

SAVE commands are a maximum of 16 digits.

Cursor position in a CURSOR statement:

X=0-179
} 80 characters/line mode
Y=0-24
X=0-39
40 characters/line mode
Y=0-24
Point position in a SET or RESET statement:
X=0-319
Y=0-199
Clock string TIS$: 6-digit decimal string

The 1st 2 characters = 00 — 23 (hour digits)
The 2nd 2 characters = 00 — 59 (minute digits)
The 3rd 2 characters = 00 — 59 (second digits)
Levels of FOR ... NEXT loops: Maximum of 15
Levels of GOSUB loops: Maximum of 15
Levels of function definition routines with DEF FN:
Maximum of 6
Port address and data in INP or OUT statement:
Port address = 0 — 255
Data = 8 bit data or decimal numbers (0 — 255)
Value of w: m=3.141592653589793

APPENDIX

The Appendix includes the following;

ASC/I Code Table Table A.1

DISK BASIC interpreter SB-6610 Error Message Table Table A.2

This table list all the possible errors which may occur during program execution. The interpreter
notifies the operator of occurrence of an error during program execution or operation in the direct
mode with the corresponding error number.,

Memory Map

Handling diskettes

63

64

Al

ASCII Code Table

Code in parentheses represents a hexadecimal code.

cop

20
21
22
23
24

25

(00)
(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(0A)
(0B)
(0C)
(0D)
(O)
(OF)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)

-
=
-
—

& [L] [+]

[x)
—
E -

=
~
—

== =
p=y (7]
= i)

NPT

2 e
85

33

34

35

36

3¥7

38

39

40

41

42

43

44

45

46

47

48

49

50

Sl

(1A)
(1B)
(10)
(1D)
(1E)
(1F)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
7)
(28)
(29)
(24)
(2B)
(20)
(2D)
(2E)
(2F)
(30)
(31)
(32)

(33)

]
1
o
#
%
&
]
*
]

1]

BSEIINE

54

5§

56

57

S8

S

60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

(34)
(35)
(36)
(37)
(38)
(39)
(3A)
(3B)
(30)
(3D)
(3E)
(3F)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(4A)
(4B)
(40)

(4D)

2 Clx]lc][= z][elm]im/o]o]@]] @[~/ [v][IH~]l:][-][][o][N]o]u] &)

78

79

80

81

&3

84

85

86

87

88

89

90

()l

93

94

95

96

97

98

99

100

101

102

103

(4E)
(4F)
(50)
51)
(52)
(53)
(54)
(55)
(56)
(57)
(58)
(59)
(5A)

(5B)

2 (50)

(5D)
(5E)
(5F)
(60)
(61)
(62)
(63)
(64)
(65)
(66)

(67)

| [0]a]o]le]w [DIML/IAINI<x|ig/</c/H/v]n]o]v/o]2]

104

105

106

107

108

109

110

111

116

117

118

119

123

124

125

126

127

(68)
(69)
(6A)
(6B)
(60)
(6D)
(6E)
(6F)
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(7A)
(7B)
(70)
(7D)
(7E)

(7F)

S EHN <=l <[] w][=][e)@]e]=]BE] ==/ =]

65

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

e (][
s (4]
(82)
(83) =]
84 ||
o (&
36) (@
¢7) (@]
(88) (oo
¢ | B
) o |
(88) M
sc) L
(8D) E {
(8E)

(8F) E@
00 =
O ¥
) L]
CONM
0 O]
) R

~ o~~~
O \O O \O
O (o] ~ ()
~ =~ = =

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

(9A)

=

(9B)

(9C)

(9D)
(9E)
(9F)
(A0)
(A1)
(A2)
(A3)
(A%)
SN %
(A6)
(A7)
(A8)
(A9)

(AA)

~
>
=]
~

LR RRNEOBEEN-HI

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

(B4)
(BS)
(B6)
(B7)
(BS)
(B9)
(BA)
(BB)
(BC)
(BD)
(BE)
(BF)
(C0)
1)
(€2)
(©3)
(C4)
(C5)
(C6)
(€7)
(C8)
(C9)
(CA)
(CB)
(c0)

(CD)

Zlrixjcl-[x]olnimlojolol> o)Vl]~]-| Jololjojol s

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

226

227

228

229

230

231

(CE)
(CF)
(D0)
(D1)
(D2)
(D3)
(D4)
(DS)
(D6)
(D7)
(D8)
(D9)
(DA)
(DB)
(DC)
(DD)
(DE)
(DF)
(EO)

E1)

(E2)

(E3)

(E4)

(ES)

(E6)

(E7)

nfJolajofole] | IOl JHN]<x<]z]<]c]-]w]n]o]v]o] 2

232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251

252
253
254

255

,-
t
co

~

~
m
\O
~

(EA)
(EB)
(EC)
(ED)
(EE)
(EF)
(F0)
(F1)
(F2)
(F3)
(F4)
(FS)
(F6)
(F7)
(F8)
(F9)
(FA)
(FB)
(FC)
(FD)
(FE)

(FF)

h

Bl -1~ I<]xdz)<]c]+]e]-]olojo o3 ||~]|

66

A2. Error Message Table

QO O 00 0 O U b W N =

Syntax error

Operation result overflow

Illegal data

Data type mismatch

String length exceeded 255 characters

Insufficient memory capacity

The size of an array defined was larger than that defined previously.

The length of a BASIC text line was too long.

The number of levels of GOSUB nests exceeded 15.

The number of levels of FOR-NEXT nests exceeded 15.
The number of levels of functions exceeded 6.

Next was used without a corresponding FOR.

RETURN was used without a corresponding GOSUB.
Undefined function was used.

Unused reference line number was specified in a statement.
CONT command cannot be executed.

A writing statement was issued to the BASIC control area.
Direct mode commands and statements are mixed together.

RESUME statement cannot be executed.

A RESUME statement was used without a corresponding error process.

A READ statement was used without a corresponding DATA statement.

The number of SWAP levels exceeded 1.

67

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

File was not found.

Disk drive hardware error.

A file name already used was defined again.

OPEN, DELETE, RENAME statements were issued to an open file.

An unopened file was reference or a CLOSE or KILL statement was issued to it.

A file was accessed in different mode from ROPEN, WOPEN or XOPEN.

A protected file was accessed for writing.

The disk drive is not ready.

The totalnumber of files on a volume exceeded 63.
Volume number error

File space on the diskette is insufficient.

A diskette which has not been initialized wasloaded.
The number of data of a BSD file exceeded 64K bytes.
Data error occurred on an FDC routine call.

The diskette cannot be used.

Illegal file name was specified.

Illegal file mode was specified.

Out of file

Illegal logical number was specified.
The printer is not ready.

Printer hardware error

Out of paper

Check sum error

68

A.3 Memory Map

$0000

$1220 : Cold start address
$1280 : Hot start address

User’s area

SFFFF

69

A.4 Handling diskettes

The master diskette must be handled especially carefully. Make a submaster diskette by means of

the diskette-copy program in the OBJ file “Utility’’ on the master diskette. Be sure to keep the master

diskette in a safe place.

All optional blank diskettes supplied by the Sharp Co. are not initialized. Be sure to initialize them

before use.

Notes on handling of diskettes

Fingerprints on a diskette may permanently render it unusable. Never touch the diskette surface
through the head window.

Insert the diskette straight into the drive until it stops, then close the front door gently. Rough
handling may damage the diskette.

Do not fold or bend the diskette, or it may be rendered unusable.

Write the index label before it is affixed to the jacket. If it is written after it is affixed to the
jacket, use a felt marker or other soft tip pen.

Ashes and drinks are the most common contaminants to guard against.

Ambient temperature: 4~ 53°C.

Storage temperatures for the diskette are 4°C to 53°C. Do not leave the diskette exposed to direct
sunlight, or locate it in a place subject to the temperatures exceeding 53°C. This may cause the
jacket to be deformed and unusable.

When using the diskette, ensure that the temperature range described on the protective envelope is
observed. Environmental conditions may differ between the storage and operation places. This

requires the diskette to be placed under the proper operating environment for a while before use.

Notes on storing diskettes

Keep the diskettes away from magnets. Even a magnet ring or magnet necklace may damage data
on the diskette. Electrical equipment such as the display unit of the computer, a cassette tape
recorder, or a TV set generates magnetic flux, so keep diskettes away from such equipment.

Keep the diskette in the envelope supplied. Make it a habit to put the diskette in the envelope im-
mediately after it has been take out of the drive. This will prevents almost all problems which
result from careless handling of diskettes. The master diskette must be handled especially carefully.
The envelopes supplied are made of special materials and guard against static electricity and mois-
ture.

When storing diskettes for a long time, keep the envelopes in the storage case. Be sure the envel-
opes are stored vertically in the storage case. Do not incline or bend the envelope. The master
diskette is not supplied with a storage case.

Do not clip diskettes with paper clips or the like.

Do not place any heavy objects on diskettes.

TINSEQ018PAZZ MZ-80DPB

SHARP CORPORATION 810429-500K Ed

Printed in Japan

PRECAUTION FOR USE OF
DISK BASIC SB-6510, AND
DOUBLE-PRECISION DISK BASIC SB-6610

Do not replace the disket with another until a KILL instruction has been executed, when
the disket is inserted into the floppy disk drive and the read/write operation is in action.
Replacing the disket with the file open will destroy the contents of the newly inserted
disket.

To save the program into different diskets with SAVE instructions, each SAVE instruction
should be followed by execution of a KILL or DIR instruction. If the disket is replaced
with another one immediately after the SAVE instruction and the SAVE instruction is
executed again, the contents of the replaced new disket will be destroyed.

SHARP CORPORATION

Printed in Japan

	a0001upr
	a0002
	b0000
	b0001
	b0002
	b0003
	b0004
	b0005
	d0001
	d0002
	d0003
	d0004
	d0005
	d0006
	d0007
	d0008
	d0009
	d0010
	d0011
	d0012
	d0013
	d0014
	d0015
	d0016
	d0017
	d0018
	d0019
	d0020
	d0021
	d0022
	d0023
	d0024
	d0025
	d0026
	d0027
	d0028
	d0029
	d0030
	d0031
	d0032
	d0033
	d0034
	d0035
	d0036
	d0037
	d0038
	d0039
	d0040
	d0041
	d0042
	d0043
	d0044
	d0045
	d0046
	d0047
	d0048
	d0049
	d0050
	d0051
	d0052
	d0053
	d0054
	d0055
	d0056
	d0057
	d0058
	d0059
	d0060
	d0061
	d0062
	d0063
	d0064
	d0065
	d0066
	d0067
	d0068
	d0069
	d0070
	d0071
	d0072

