
Personal Computer

mz-esQsii
Basic Compiler

BEFORE USING
THE BASIC COMPILER

: =•--!><=>

"he BASIC compiler operates under control of FDOS. All diskettes used with FDOS

lie BASIC compiler must be formatted (initialized) by the FDOS. Diskettes

i~ed by Disk BASIC SB-6510 or SB-6610 cannot be used with FDOS and vice

■ a n since the diskette contents may be destroyed.

zz replace a diskette which has been opened with another one unless CLOSE or

311 is executed: otherwise, contents of the new diskette may be destroyed.

BASIC-i

-Transferring the BASIC Compiler to FDOS

Since the BASIC compiler is supplied in the form of a :;

FDOS submaster diskette. Do this as follows:
1. Gently remove the silver write protect seal from the FDOS sub
2. Load the submaster diskette in the floppy disk drive and activate the dr
3. Load the cassette in which the BASIC compiler is stored in the cassette

D skette—

: : "insferred to an

4. Key in RUN SCMT CR
5. Take out the submaster diskette when the command wait state is enteied.

tect seal to the submaster diskette.
The above procedure only needs to be done once for a submaster disJT

Error messages which may be displayed during transfer are as foil:
o BASIC . SYS : already exist The BASIC .

submaster diskr
o sub-master diskette? Other than a submaster disken
o no memory space The amount of memory aenflaUe i

(6- s are required.)

rewind it.

' " : - . " ; 7 7 0 -

r __n: :r. the

»« Monitor SB-1511 •*

Floppy Disk Operating S<jst«a
Copyright <C» 1981 b-

37632 bytes area.
How many drives ? 2

D a t e (M . D . Y) ?
Time <H:M:S> ?

2>RUN *CMT
Found TRANSFER-BASIC.OBJ
L o a d i n g TRANSFER-BASK
* H i l l t r a n s f e r - * n «
Found BASIC.SVS __ Loading BASIC.SVS

Figure 1. Tai

>MFER SCMT.
Found BASIC.SVS Found 8-QUEEN.ASC

Linking 3-OUEEN.RB Top asm.bias *4A90 End asm.bias *4FC6 Linking RELO.LIB Top asm.bias $4FC6 End asm.bias $6635 Save 8-QUEEN.OBJ Loading address $4A69 Execute address *4A09 Bytesize *1C35

2>RUN 8-QUEEN

Figure!. 8-QUEEN

BASIC-ii

—Sample Program —

The sample program "8-QUEEN" is stored in ASCII code following the BASIC compiler in the BASIC

compiler cassette. This program can be transferred to a working diskette with the following command.

XFER SCMT ; 8-QUEEN, SFDn [CR^ (n: 1 - 4)

Compile, link and execute the program according to procedures shown on page 1 after it has been trans­
ferred. (See Figures 2 .)

0Q8F
6055
0099
08BB
88E4
88F9
010F
0157
8160
01A8
020D
921F
026C
0274
82C3
02EB
030B
0333
037B
03A5
03F8
0464
046F
048F
8499
04BF
84DA
04EF

BASIC compiler SB-7781 <8-QUEEN> page 1
TI*="000000": CONSOLE S8>24»C48: DIM BD(8)
CURSOR 12»7: PRINT " "
CURSOR 12»8: PRINT " 8-QUEEN "
CURSOR 12»9: PRINT " "
1 = 1

180 J=8
260 J=J+l: IF J=9 THEN 580

K=l
300 C=BD(K): D=I-K: 1^ D = 8 THEN 408

IF (C=J)+(C=J+D)+(C=J-D) THEN 280
K=K+J: GOTO 300

408 BD(I)=J: 1=1+1: IF I<9 THEN 108
REM Al: OFF KEY
Z = Z + l: PRINT "IDW*«s>o*(" ;STR$(Z) ; ") "
PRINT " i i i i i i i i t "
FOR L=l TO 8
PRINT " | I I I I I I I I"

87.89.81

IF L O S THEN PRINT I I I I I I I NEXT
PRINT " '—'—'—'—'—'—'—'—'"
FOR 1=1 TO 8: A=BD(I): B=I*2+2
CURSOR 8+A*2,1*2+2: PRINT "♦";: PRINT TAB(26);A

NEXT I
PRINT "0";TI$
ON KEY GOSUB 988

588 1=1-1s J=BD(I)
IF IO0 THEN GOTO 200
PRINT "^FINISH"
END

84F2 988 REM All IF KY$="E" THEN END
8518 IF KY$="PH THEN PRINT/P CHR$<*11): COPY/P ii PRINT/P CHR$($10)
8578 RETURN
** Compiler found no errors.

List 1. 8-QUEEN

BASIC-iii

—Guide for Reading this Manual —

f START ")

•

Read the Symbolic Debugger Manual. _ j

•

BASIC-iv

CONTENTS

OUTLINE 1

SEQUENTIAL FILE 3
WOPEN #n, "filename" 5
PRINT #n, data 5
OUT #n, data 5
CLOSE #n (Corresponding to WOPEN) 5
KILL #n 5
ROPEN #n , "filename" 6
INPUT #n, variable 6
INP #n, variable 6
CLOSE #n (Corresponding to ROPEN) 6
WAIT X 6
File Name Format 7
File Mode 7
Locating the File End 8

RANDOM FILE 9
XOPEN #n, "filename" 12
PRINT #n (expression), data 12
INPUT #n (expression), variable 13
CLOSE #n 13
Using EOF (#n) 13

EXCEPTION PROCESSING CONTROL 14
ON ERROR GOTO linenumber 14
ERN, ERL 14
RESUME 14
OFF ERROR 14
ON BRKEY GOTO linenumber 14
OFF BRKEY 14
ON KEY GOTO linenumber 14
ON KEY GOSUB linenumber 15
OFF KEY 15

FDOS COMMANDS 16
Built-in Commands 16
Transient Commands 17
Changing the Default Drive 17
Run Statement 18

BASIC-v

EXTERNAL STATEMENT 19
External Function Definition 19
Calling External Functions . 19
External Command Definition 19
Calling External Command 19
Coding External Functions 19
Coding External Commands 20
Linking External Functions and Commands

with BASIC Programs 21

BASIC COMPILER STATEMENT LIST 22
FDOS commands (For details, refer to the

System Command Manual) 22
BSD (BASIC Sequential access data file) control statements 22
BRD (BASIC Random access data file) control statements 23
Exception processing statements 24
Cassette tape data file control statements 24
Assignment statement 25
Input and Output statements 25
Loop statement 26
Branch statements 26
Definition statements 27
Comment statement and control statements 28
Music control statements 29
Graphic control statement 29
Machine language program control statements 31
Printer control statements 31
I/O statements 32
Arithmetic functions 32
String control functions 33
Tabulation functions 34
Arithmetic operators 34
Logical operator? 34
Other symbols 35

ERROR MESSAGES 36
Error Messages Issued During Compiling 36
Error Messages Issued During Program Execution (BASIC Level) 36
Error Messages Issued During Program Execution (FDOS Level) 36

COMPARISON WITH D-BASIC SB-6510 37

BASIC-vi

OUTLINE

The BASIC compiler translates a BASIC program into Z80 machine language. Use the following pro­
cedures to run a BASIC program with the BASIC compiler.

1. Generate a Source Program with Either of the Following Methods
a. Using the text editor (Refer to the Text Editor Manual.)
b. Using the BASIC interpreter and the CONVERT command (Refer to the explanation of CONVERT

in the System Command Manual.)

2. Compile the Source Program
Example l) 2 > BASIC PROGl J (J indicates a carriage return.)

^-Filename

Compiles source program PROGl . ASC to generate relocatable file PROGl . RB.
Example 2) 2 > BASIC PROGl. PROGl A / O J

Compiles source program PROGl . ASC to generate relocatable file PROGl A . RB.
Example 3) 2 > BASIC/C PROGl J

Compiles PROGl . ASC to generate PROGl . RB with the list displayed on $CRT.
Example 4) 2 > BASIC/ P PROG l J

Compiles PROGl . ASC to generate PROGl . RB with the list output to $LPT.
Example 5) 2 > BASIC/P/N PROGl +>

Outputs the list to SLPT but does not generate a relocatable file.
3. Link

Link the relocatable file generated in step 2 with RELO . LIB (the relocatable library which includes
subroutines for arithmetic operations, SIN and COS functions, etc.). RELO . LIB is linked automatically.
Example 6) 2 > LINK PROGl J

Links relocatable file PROGl . RB with RELO, LIB in $FDl to generate object file
PROGl .OBJ.

Example 7) 2 > LINK/P PROGl J
The same as example 6 except that the link information is printed on SLPT.

4. Execute the Object Program
Example 8) 2 > RUN PROGl J

Loads PROGl . OBJ and executes it.
As described above, many steps are required for the compiler to generate, correct and execute a pro­

gram, but the process has the following advantages.
1. Fast execution time
2. FDOS instructions can be executed.
3. Programs generated by the assembler can be easily linked.
4. Statements can be extended.

Note: Sometimes source files exceeding 15K bytes cannot be compiled.

BASIC-1

5. Compilation and Execution of Long Program
It may occur that compilation or linking cannot be performed because of insufficient memory capacity

when a long program is to be compiled and "executed.

a. Requirement for compilation

The maximum length, of a source program which the BASIC compiler can handle is about 15K—20K

bytes. If the source program is too long, its length must be reduced or it must be divided into several

short sections.

b. Requirement for linking

The standard linker can handle a BASIC source program the length of which is up to about 15K bytes

and the resultant object program of which is about 36K bytes long. If the length exceeds the above

values, special linker MLINK is used. This linker can handle a BASIC source program the length of

which is up to about 20K bytes and the resultant object program of which is about 46K bytes long.

6. Program Debug
A BASIC source file is converted into a relocatable file with the BASIC compiler then into an object

file with the linker. The source program does not exist in memory when the object program is executed.

With the BASIC interpreter, the value of variables can be changed or the program can be corrected

during execution by interrupting and restarting it. This is impossible with the BASIC compiler. The source

program must be corrected, then it must be compiled, linked and executed.

There are three methods for debugging the source program.

a. Generating and debugging a program with the BASIC interpreter, then compiling the debugged

program. (This method is the easiest but it does not allow use of statements which are unique to the

BASIC compiler.)

b. Inserting PRINT statements in appropriate positions in a program to display data required for

debugging.

c. Using the FDOS symbolic debugger.

(This method is effective when debugging programs which are linked with assembly subroutines.)

BASIC-2

SEQUENTIAL FILE

A file is a set of related records which are treated as a unit. The FDOS has a file directory which con­

trols access to files; a file cannot be accessed unless its name is stored in the file directory.

Cassette tape files are necessarily sequential files. To read the 100th record in a cassette tape file, the

preceding 99 records must be skipped.

On the other hand, floppy disk files are usually random files, although sequential files can also be stored

on a floppy disk. Assume an address list in which names are written at random. To find specified name,

a search must be made from the beginning of the address list. Such a file is a sequential file.

The advantages and disadvantages of sequential files are as follows.

Advantages: • A diskette can be used effectively because there exist no empty records in a file.

• They are effective when the entire contents of a file must be processed; that is,

when no search operation is necessary.

Disadvantages: • It takes a time to find a single specific record. When a record is inserted or deleted,

all records must be rewritten.

Sequential file processing statements for both the BASIC compiler and the cassette based BASIC inter­

preter are listed in the following tables for comparison.

Writing data

File open statement
Data write statement
File close statement
Cancel statement

BASIC compiler

WOPEN
PRINT
CLOSE
KILL

#n, "filename"
#n , data
#n
#n

Cassette based BASIC interpreter

WOPEN/T "filename"
PRINT/T data
CLOSF./T

Reading data

File open statement
Data read statement
File close statement
File end detection

BASIC compiler

ROPEN #n , "filename"
INPUT #n, variable
CLOSE #n
IF EOF (#n) THEN

Cassette based BASIC interpreter

ROPEN/ T "filename"
INPUT / T variable
CLOSE/T

Note: With the BASIC compiler, a device name (SKB, $PTR, etc.) can be written instead of a filename.

BASIC-3

#n appearing in all the BASIC compiler file processing statements is called a logical (file) number; this
must always be specified.

Only one file can be accessed at a time with the cassette based BASIC interpreter. With the BASIC
compiler, however, multiple files can be dealt with simultaneously. To achieve this, a logical number is
assigned to each file and all files are specified with logical numbers. (To prepare a file, assign a logical
number to it; this is referred to as "opening a file").

Let's consider an address list as a simple example.

Name
Address
Name
Address
Name
Address

As shown above, the length of records stored in a sequential file is not fixed. That is, a sequential file
is suitable for storing a set of records which have variable lengths.

The following program stores 50 names and 50 addresses in file 3H-CLASS. The following program
reads records from file 3H-CLASS and displays names and their addresses 10 at a time on the displays
names and their addresses 10 at a time on the display screen.

(Write)
100 WOPEN #3, "$FD2 ; 3H-CLASS"
110 FOR P= 1 TO 50
120 INPUT "NAME=" ; NA$
130 INPUT "ADDRESS=" ; AD$
140 PRINT #3,NA$,AD$
150 NEXT P
160 CLOSE #3

(Read)
200 ROPEN #4, "$FD2 ; 3H-CLASS"
210 FOR P = 1 TO 5 : FOR Q = 1 TO 10
220 INPUT #4, NA$, AD$
230 PRINT NA$: PRINT AD$
240 NEXT Q
250 PRINT "STRIKE ANYKEY"
260 GET X$: IF X$ = " " THEN 260
270 NEXT P
280 PRINT "END"
390 CLOSE #4

BASIC-4

In this example, a file is stored on the diskette in floppy disk drive 2. The statements used are explained

below.

WOPEN #n, " f i lename"

This statement defines the name of the sequential file to be generated as "filename" and assigns the

logical number # n (1 ~ 126) to it to write the file; that is, it declares that the file is hereafter specified

with the logical number #n .

In the example, the statement on line 100 defines the file name as 3H—CLASS, and assigns the logical

number # 3 to it and declares that the file is to be stored on the diskette in floppy disk drive 2.

PRINT #n, data

This statement appends a record whose value is given by data to the file opened with logical number # n

assigned. The file directory, however, is not cataloged when this statement is executed. It is cataloged

when a CLOSE # statement is executed.

Multiple records can be appended with a single PRINT # statement as follows.

PRINT #n, data, data, data,

OUT #n, data

Writes data byte-by-byte in the sequential file which is opened for writing with logical number #n

assigned. When the data is a numeric value, it must be from 0 - 255. Its binary value is written in the file.

When the data is a string, characters are written in the file. Data separators (e.g., CR) are not written.

In other respects, this is the same as the PRINT # statement.

CLOSE #n (Corresponding to WOPEN)

This statement stores the names of files generated with PRINT # statements in the file directory. The

logical number definition is cleared when this statement is executed.

KILL #n

This statement is not used in the example. It cancels a WOPEN # statement. If this statement is exe­

cuted instead of the CLOSE # statement, the file directory is not cataloged. The logical number defini­

tion is cleared by execution of this statement.

Notes:

• A CLOSE or KILL statement without a logical number # n closes or cancels all open files.

• Any volume number which can be specified with D-BASIC SB-6510 cannot be specified with the

BASIC compiler.

BASIC-5

ROPEN #n, " f i lename"

This statement assigns the logical number (1 ~ 126) specified by #n to the file specified by "filename"
for reading.

In the example, the statement on line 200 specifies sequential file 3H—CLASS and assigns logical
number # 4 to it. It also declares that the file is to be read from the diskette in floppy disk drive 2.

INPUT #n, variable

This statement assigns a record value read sequentially from the open sequential file assigned logical
number # n into the variable.

In the example, the statement on line 220 sequentially reads two records from file 3H—CLASS and
assigns them to variables NA$ and ADS. As is shown in the example, multiple records can be read with
a single INPUT # statement by separating the variables from each other with a comma.

INPUT #n, variable, variable, variable,

INP #n, variable

Reads data byte-by-byte from the sequential file which is opened for reading with logical number #n
assigned and assigns it to the specified variable. When the data read is numeric data, its decimal value is
assigned to the variable. When the data read is string data, it is assigned to the variable as a string whose
length is one byte.

CLOSE #n (Corresponding to ROPEN)

This statement closes the file assigned logical number # n and clears the logical number definition.
A KILL # statement issued subsequent to an ROPEN statement acts in the same manner as a CLOSE #
statement.

WAIT X

Suspends program execution for the time specified by X. X must be numeric data from 0 - 32767; it
indicates the time in milliseconds.

BASIC-6

File Name Format

A file name must consist of a maximum of 16 characters. Characters permitted are alphabetic cha­

racters, numerals, and the symbols ! # % & * () + — < = > @ [\] t and «-. Small letters, graphic charac­

ters and/or spaces cannot be used.

A file name may be preceded by the name of the device from which it is accessed.

Correct format: "$FD1;PR0G1" "PROG1" on the diskette in drive 1.
'' $CMT ; SAMPLE * * " SAMPLE " in the cassette file.
"TEST2" "TEST2" on the diskette in the default drive.
"SPTR" Paper tape reader
"$USR2" User I/O
"$PTP/PE" Paper tape punch with even parity

Incorrect format "SFD1" A file name is required.
"$LPT ; PROG2" $LPT cannot be assigned a file name.

The file mode is generally omitted and the .ASC mode is assumed.

File Mode

(1) WOPEN # , ROPEN #

For the WOPEN # and ROPEN # statements, the default file mode is .ASC.

(2) PRINT #, INPUT #

The PRINT # and INPUT # statements can be used only for files with file mode .ASC. For other file

modes, use the OUT # and INPUT # statements.

(3) XOPEN #, WOPEN/T, ROPEN/T

The file mode must be .ASC for the XOPEN #, WOPEN/T and ROPEN/T statements. The file mode

specification may be omitted.

BASIC-7

Locating the File End
N o error occurs w h e n the INPUT # s t a t emen t is execu ted after the last record of a file has been read.

T h e variable(s) is loaded wi th zero or null . However , this serves no purpose . A special funct ion is pro­

vided for locating the end of a file; this is E O F (# n) , which gives T R U E when t h e end of a file is reached.

Execut ing

I F E O F (# n) T H E N

after the INPUT # s t a t emen t causes the s t a t emen t following T H E N to be executed when t h e file end is

reached.

(Exercise) Rewr i te the sample program on page 5 so tha t names and addresses are read

in groups of 10 unt i l the file end is reached, assuming t ha t the n u m b e r of

names stored in t h e file is u n k n o w n .

(Example of so lu t ion) 300 ROPEN #5, "$FD1 ; 3H-CLASS"
310 FOR 1 = 1 TO 10
320 INPUT #5,NA$, AD$
330 IF EOF (#5) THEN 400
340 PRINT NA$: PRINT AD$
350 NEXT I
360 PRINT "STRIKE ANYKEY"
370 GET X$: IF X$ = " " THEN 370
380 GOTO 310
400 CLOSE #5
410 PRINT "FILE END" : END

(Exercise)

(Example of solution)

Make a program which reads sequential file 3H—CLASS and generates t w o

sequential files, o n e for names and the o the r for addresses.

500 ROPEN #6 , "$FD2 ;3H-CLASS"
510 WOPEN # 7 , " $ F D 2 ;NAME"
520 WOPEN # 8 , " $ F D 2 ; ADDRESS"
530 INPUT #6, NA$, AD$
540 I F EOF (#6) THEN 600
550 PRINT #7 , NA$
560 PRINT #8 , AD$
570 GOTO 530
600 CLOSE
610 END

(Exercise)

(Example of solution)

Make a p rogram which wr i tes string da ta i npu t f rom t h e key board t o a

sequential file, and which closes or kills the opened file when CLOSE or KILL

is entered from t h e keyboard .

100 WOPEN #30, "SEQ-DATAS"
110 INPUT "DATA=";A$
120 I F A$= "CLOSE" THEN CLOSE #30 : END
130 I F A$="KILL" THEN KILL #30 : END
140 PRINT #30, A$: GOTO 110

BASIC-8

RANDOM FILE

A random file allows records to be written in or read from arbitrary file locations. It is useful when

many related records are to be stored and read, at random. The advantages and disadvantages of random

access files are as follows.

Advantages: • Any record can be easily located.

• It is easy to add or delete records.

Disadvantages: • Empty records are generated, reducing the efficiency of memory utilization.

An expression is specified following the logical file number in the PRINT # and INPUT # statements to

designate a record in the file as shown below.

PRINT #n (expression), data

INPUT #n (expression), variable (where expression is a numeric value, variable or expression.)

For example, INPUT #7(21) , AS reads record 21 of the random file assigned logical number 7 and

assigns it to string variable A$.

A limitation is placed on random files to enable random data access; that is, the record length is fixed
to 32 bytes.

Random file <

expression
\
1
2
3
4
5

32 bytes

+.12345678+E10

ABCDEFGHI
ABC **

Variable A = 0.12345678+E10

String "A B C D E F G H I"
String'ABC "

All numeric variables, including those represented exponentially, are 32 bytes or less long. However, a

string has a maximum length of 255 bytes and one whose length exceeds 32 bytes cannot be stored in a

single record of a random file.

A random file can be changed in size after its name has been stored in the file directory (that is, after

it has been closed) although a sequential file cannot. For example, assume that RND-1 is a random file

which has been generated with 20 specified in the expression and that it has been closed. Reopening it and

executing a PRINT # statement with 30 specified in the expression automatically increases the file size.

See the figure below.

"RND-1" "RND-1"

20

A PRINT # statement
is executed with
expression = 30
specified.

2

30

T5KS^-'9

Let's make an inventory list using a random file. The inventory includes 50 lines and each line includes

entries for item name, unit price, quantity in stock, total (unit price multiplied by quantity in stock) and

comments.

An item number is input first followed by the other entries when storing the record for an inventory

line in the file.

Storing inventory data in a file.
100 XOPEN #5, "STORE-LIST"
110 INPUT "Item number=";K
120 IF K = 0 THEN 300
130 INPUT "Item name=" ; N$
140 INPUT " Unit price= " ; P
150 INPUT "Quantity in stock=" ; S
160 INPUT "Comment=" ;C$
170 T = P * S
180 PRINT #5 (K * 5-4), N$, P, S, T, C$
190 GOTO 110
300 CLOSE #5
310 END

The random file generated has the structure shown below.

File
"STORE-LIST"

As shown in the above example, data can be stored in any specified records; therefore, empty records

can be generated in the random file.

The following program reads data from a random file generated by the program shown above.

Desire data in a file
500 XOPEN #17, "STORE-LIST"
510 INPUT, "Item number=" ; J : IF J = 0 THEN 700
520 INPUT #17 (J*5-4) , N$, P, S, T, C$
530 PRINT "NO." ; J : PRINT "Item name" ; N$
540 PRINT "Unit price" ; P
550 PRINT "Quantity in stock" ; S
560 PRINT "Total" ;T
570 PRINT "Comment" ; C$
580 GOTO 510
700 CLOSE #17
710 END

As shown above, any desired data can be read by specifying a item number.

expression
K * 5-4
K= 12

55
56
57
58
59
60
61

NS .
P .
S .
T .

C$.

... Item name

...Unit price
.. Quantity in stock
.. Total
...Comment

BASIC-10

The record length of random tiles is fixed to 32 bytes as explained previously. Therefore, useless

memory space increases if the data length stored in each record is too short. To prevent this, two or more

valuse can be stored in a record by the procedures as shown below. If the length of a string variable ex­

ceeds 32 bytes, only the first 32 bytes will be registered; whereas if it is less than 32 bytes, the remain­

ing portion will be filled with spaces.

(Write) 100 XOPEN #5, "STORE-LIST"
110 INPUT "ITEM NUMBERS" ; I : IF 1 = 0 THEN 300
120 INPUT "rTEMNAME=";N$
130 INPUT '' UNIT PRICE= " ; P
140 INPUT '' QUANTITY IN STOCK= " ; H
150 INPUT "COMMENT=";C$
160 PRINT # 5 (1 * 3-3), N$, P ; H, C$
170 GOTO 110
300 CLOSE #5
310 END

A part of the random file generated by the above program is as shown below when I is set to 12. The

values of P and H which are separated with a semicolon in the PRINT # statement are stored in the same

record. In such a case, if the total length of values of P and H (including the carriage return code which

is a data separator) exceeds 32 bytes, the "end of record" error results and —94 is set to ERN. The former

record contents remain.

32 bytes

32
expression
I * 3-3
(1=12)

- 3 3

34

35

36

Apple

120 C R L . 12345 CR

Jonathan apples

N$ ITEM NAME

P UNIT PRICE, H QUANTITY IN STOCK

CS COMMENT

A sample program which reads the random file generated in the above manner is shown below.

Variables to which the values stored in the same record are assigned are separated with a semicolon in the

INPUT # statement. If the value for P is stored but no value for H, 0 is assigned to H. That is, if no corres­

ponding data is sotred, numeric variables are set to 0.

(Read) 500 XOPEN #17, "STORE-LIST"
510 INPUT "ITEM NUMBER^" ; J : IF J = 0 THEN 700
520 INPUT #17(1*3-3) ; N$, P; H, C$
530 PRINT J, N$
540 PRINT '' UNIT PRICE='' ; P
550 PRINT "QUANTITY IN STOCK=" ; H
560 PRINT '' COMMENT= " ; C$
570 GOTO 510
700 CLOSE #17
710 END

BASIC-11

Random file control statements are explained below.

XOPEN #n,'"filename"

This statement writes the specified data in the record of (opened) logical file #n which is designated

number (1 ~ 127) to it. This operation is referred to as cross opening a file.

In the example programs on the previous page, the statements on line 100 and 500 cross-open the

random file "STORE-LIST".

XOPEN
(Cross open)

Opens a random file for writing data.
Opens a random file for reading data.

PRINT #n (expression), data

This statement writes the specified data in the record of (opened) logical file #n which is designated

by the expression. Data items must be separated with commas when many data items are specified.

In the sample program, the statement on line 180 writes the values of variables NS, P, S, T and CS in

the 5 records starting with record (K>|< 5—4). As shown in this example, multiple records can be written in

sequence.

PRINT #n (expression), data, data, data, data,

Note: The maximum length of data written in a record is 32 bytes.

BASIC-12

INPUT # n (expression), variable

This statement reads the specified record from the random file which is cross opened with logical
number #n assigned and assigns it to the specified variable. The record is specified by the expression.

In the sample program, the statement on line 520 reads the 5 records starting at record (J?k5—4) and
assigns their values to variables N$, P, S, T and C$. Multiple records can be read with a single statement as
shown in this example.

INPUT #n (expression), variable, variable, variable,

Note:

Zero is assigned to a numeric variable and 32 spaces are assigned to a string variable when an empty
record is read by an INPUT # statement.

CLOSE #n

Closes the random file assigned logical number #n and clears the logical number definition. The file
directory is cataloged when this statement is executed if it was not cataloged previously.

Note:

The KILL # statement issued for a random file has the same function as the CLOSE # statement.
However, for physical reasons it is not certain that all records will be stored on the diskette with the KILL
statement; therefore, the CLOSE statement should be used.

Using EOF (#n)

EOF (#n) can be used to detect file end (or out-of-file) for random files.
The following sample program displays all data stored in random file "STORE-LIST" from the begin­

ning of the file to its end.

XOPEN #20, "STORE-LIST"
K = l
INPUT #20 (K * 5-4) , N$, P, S, T, C$
IF EOF (#20) THEN 900
PRINT "Item number" ; K
PRINT "Item name" ;N$
PRINT "Unit price" ;P
PRINT "Quantity in stock" ; S
PRINT "Total" ;T
PRINT "Comment " ; C $
K = K + 1 : GOTO 720
CLOSE #20
PRINT "FILE END HERE" : END

700
710
720
730
740
750
760
770
780
790
800
900
910

BASIC-13

EXCEPTION PROCESSING CONTROL

The BASIC compiler stops execution of a program and outputs an error message when an error occurs

during program execution. However, it is not necessary for a program to stop when an error occurs if the

cause of the error is known and an appropriate exception processing routine is included in the program to

provide a countermeasure.

The exception processing statements are used for this purpose.

ON ERROR GOTO linenumber

This statement declares that control is transferred to the routine indicated by linenumber when an

error occurs.

ERN, ERL

ERN and ERL are the special variables to which the error number and the error line number are

assigned when an error occurs. See page 36 for the error numbers. When an error occurs during

execution of a statement which has no line number, ERL is loaded with the first line number

preceding the statement.

RESUME

This statement returns control to the main program after error processing has been completed.

RESUME linenumber Returns control to the location specified by linenumber.

RESUME 0 Returns control to the beginning of the main program.

OFF ERROR

This statement cancels a preceding ON ERROR statement. That is, when an error occurs after this

statement, a standard error message is displayed and program execution is stopped. Control is

returned to FDOS.

ON BRKEY GOTO linenumber

This statement declares that control is transferred to the location indicated by linenumber when

the [BREAK] key is pressed.

OFF BRKEY

This statement cancels a preceding ON BRKEY statement. That is, control is returned to FDOS

when the | BREAK | key is pressed.

ON KEY GOTO linenumber

Declares that control is transferred to the routine starting at the specified line number when a key

is pressed. The line number which is executed when the key is pressed is stored in variable ERL

and the code for the key pressed is stored in variable KY$.

BASIC-14

ON KEY GOSUB linenumber

Declares that control is transferred to the subroutine starting at the specified line number when a

key is pressed. The line number which is executed when the key is pressed is stored in variable

ERL and the code for the key pressed is stored in variable KY$. After the subroutine is finished,

control is returned to the line number following the one stored in ERL.

OFF KEY

This statement cancels a preceding ON KEY statement.

Note:

An error occurring during execution of a CLI or RUN command included in a BASIC program is some­

times not processed by an ON ERROR statement.

The following sampel program shows use of exception processing statements.

Calculation of tangent

100 ON ERROR GOTO 1000
110 FOR TH = 0 TO 180 STEP 30
120 PRINT TH, TAN (TT * TH/180)
130 NEXT : END
1000 PRINT "OVERFLOW"
1010 RESUME 130
(Result)

RUN

0

30

60

90

120

150

180

0

0.57735027

1.7320508

OVERFLOW

-1.7320508
-0.57735027

0

-135° I-

tan

- 4 5 '

0_!45

In this sample program, "OVERFLOW" is displayed when overflow occurs upon calculation of the

tangent on line number 120. Actually, when TH=90, TAN (7r/2) -» °° and overflow results. Control is then

transferred to the statement on line number 1000, "OVERFLOW" is displayed and the statement on line

number 1010 returns control to the main program.

BASIC-15

FDOS COMMANDS

FDOS commands can be included in a BASIC program.

—Built-in Commands—

FDOS built-in commands are commands whose processing routines are resident in the memory. Each

FDOS built-in command used in a BASIC program is written with a mandatory space between the com­

mand and arguments and with the argumetns enclosed in double quotation marks. (Arguments may be

string variables.)

Examples: DELETE ̂ "SAMPLE"
^- A space is mandatory.

A$ = "SAMPLE" : DELETEL^A$

DELETE u_,' 'ABC " , " XYZ "

DELETE ^ J "ABC ,XYZ"

DIR/P^"$FD1"

HCOPY

RENAME "ABC'V'DEF"

MON

FREE : DIR

i i represents a space.

Deletes the file "SAMPLE"

Same as the above.

Deletes files "ABC" and "DEF".

Same as the above.

Outputs the directory of drive 1 to the printer.

Outputs the ontents of the CRT screen to the printer.

Renames the file.

Returns control to the monitor.

Executes both FREE and DIR command.

As shown above, arguments are enclosed in double quotation marks or specified with string variables

when FDOS built-in commands are used in a BASIC program. Refer to the System Command Manual for

details on each FDOS command.

BASIC-16

—Transient Commands—

FDOS transient commands are commands whose processing routines are not resident in memory but are

loaded from the master or submaster diskette when they are required for execution. Therefore, the master

or a submaster diskette must be loaded in the floppy disk drive when FDOS transient commands are used

in a BASIC command.

The CLI (Command Line Interpreter) statement is used to load and execute FDOS transient commands

in a BASIC program. An operand of the CLI statement consists either of FDOS transient commands and

arguments enclosed in double quotation marks or a string variable to which the FDOS transient commands

and arguments are assigned in advance. The first operand must be preceded by a space. The operands

of the CLI statement may be written in the multistatement form.

Examples: CLI^"EDIT" Calls the FDOS text editor.

CLIi i"ASMi iABC " Assembles source file ABC.ASC to generate relocatable

file ABC.RB.

CLII_J"ASM", "ABC" Same as the above.

AS = "ASML^ABC" : CLIL^ A$ Same as the above.

CLW2>LINK^XYZ " Specifies SFD2 as the default drive and links XYZ to
generate object file XYZ.OBJ.

C L I ^ ' - X F E R ^ J S P T R , XYZ : TYPE^XYZ " Any built-in commands and multistatement form can
be included in double quotation marks.

An FDOS commands cannot be executed when the usable memory area is too small for it.

Note:

FDOS commands LIMIT, DEBUG and EXEC cannot be executed in a BASIC program.

(CLI L V L I M I T ^ $ C 0 0 0 " not allowed)

—Changing the Default Drive—

The default drive is automatically selected when no drive number is specified in a file control state­

ment. The default drive number is displayed to the left of " > " while in the FDOS command wait state.

The default drive can be changed in the following manner.

C L W 1 > " Changes the default drive to $FD1.

CLI ̂ " 3 > " Changes the default drive to $FD3.

CLIu^STRS(N) + " > " Changes the default drive number to N.

BASIC-17

— Run Statement—

The RUN statement is similar to the SWAP statement in D-BASIC SB-6510. A RUN statement used in

program (A) generated with the BASIC compiler loads and runs another specified program (B) which was

also generated with the BASIC compiler. In this situation, program control is returned to program (A)

when a STOP or END statement is executed in program (B).

The RUN statement is different from the SWAP statement in the following.

1. Variables used in program (A) and program (B) are treated as different variables even if they have

identical names.

2. Program A is stored in the memory while program (B) is being executed and program (B) is cleared

after it has been completed.

It is convenient to use a pseudo device (SMEM) for transfer of data between program (A) and program

(B). SMEM allows a memory area to be treated as an I/O device so that data can be read and written in the

memory area.

(Sample program)

Program (A)

100 WOPEN #9, "SMEM" Opens SMEM for writing data.
110 PRINT #9, A, B, A$ Writes A, B, A$ in SMEM.
120 CLOSE #9 Closes SMEM.
130 RUN "PROGRAM(B)" Loads and executes program (B).

Program (B)
10 ROPEN #9, "SMEM" Opens SMEM for reading data.
20 INPUT #9, X, Y, N$ Reads data.
30 C LOSE #9 Closes SMEM.
40 DELETE/N "SMEM" Clears SMEM to conserve memory space.

900 STOP Returns control to program (A).

The END statement in program (B) kills all files opened before returning control to program (A). The

STOP statement in program (B) returns control program (A) with all files open.

BASIC-18

EXTERNAL STATEMENT

The EXTERNAL statement allows a BASIC program to execute external commands and functions

whose processing routines are coded with the assembler. (A sample program is shown in the Programming

Utility Manual).

In the description below, the subroutines in bold face type are stored in RELO.LIB on the master

diskette. For details, refer to the Library/Package.

—External Function Definition—
Ex 1) EXTERNAL FNA, FNSUB2

Defines external functions FNA and FNSUB2. A function name must be started with FN and

must be no longer than 6 characters.

—Calling External Functions-
Ex 2) A = FNA (X)

The number of parameters of each external function is 1. Character strings cannot be used as

parameters.

— External Command Definition —
EX 3) EXTERNAL PLOT, SEND, RCV

Defines external commands PLOT, SEND and RCV. No command may be longer than 6

characters.

—Calling External Command—
EX 4) PLOT X, Y: POINT 5, 8

Any numeric constant, numeric variable, string variable, array, string array or expression

starting with + or — sign. (+A+B is acceptable, but A+B is not.)

—Coding External Functions—
An external function is coded with the assembler. The function name must be declared with

the ENT instruction. The parameter is converted into signed 16-bit binary format and loaded

into the HL register pair. (If it cannot be converted into 16-bit binary, 32767 or —32768 is

loaded into the HL register pair and the carry flag is set.) The RET instruction is used to

return control to the BASIC program. The HL content upon return is used as the value of the

function. Routine BEERR is called when an error occurs.

Ex 5) FNSUB2 : ENT
LD (PARAM),HL

JR C,ERR

LD HL,(ANS)
RET

ERR: CALL BEERR
DEFB 101
DEFM 'IL PARA
DEFB ODH
END

; The HL register pair contains a parameter value.

; Loads the return value into HL.
; Returns control to the BASIC program.
; Calls the error routine.
; Error number
; Error message

BASIC-19

—Coding External Commands-

Ex 6) PLOT:

X

ENT
DEFB
DEFB
DEFS
DEFB
DEFS

LD
CALL
JP

2
0
2
0
2

HL, (X)
. . INTO
C,ER3

RET
END

; Command name
The number of parameters is 2.
The first parameter is a real number.
The area in which the first parameter address is stored.
The second parameter is a real number.
The area in which the second parameter address is stored.
The beginning of the program
HL *- First parameter address
HL*- 16-bit binary

; Indicates error 3 when the parameter value cannot be converted
into 16-bit binary.

; Returns control to the BASIC program.

Ex 7) The above program is modified as follows when data is to be transferred from the assembly

program to the BASIC program.

LD HL,
LD DE, (X)
CALL ..FLTO

; Loads data to be transferred to the BASIC program into HL.
; Loads the first parameter address into DE.
; Calls the routine which converts data into real numbers.

Ex 8) String transfer (from the BASIC program to the assembly program)

SENT

DATA:

ENT
DEFB
DEFB
DEFS

LD
CALL

1
80H
2

HL, (DATA)
. MOVE'

Command name
The number of parameter is 1.
The parameter is a string.
The area in which the string address is stored.
The beginning of the program
HL <- string address (type 1)
Calls the routine which converts strings from type 1 to type 2.
After execution of the routine, DE contains the first address of
the type 2 string.

RET

Type 1 string

DEFB length

DEFM '

CALL MOVE'
Type 2 string

DEFM '
DEFB ODH

BASIC-20

Ex 9) String transfer (from the assembly program to the BASIC program)

; Command name
; The number of parameters is 1.
; The parameter is a string.
; The area in which the string address is stored.
; The beginning of the program

RCV:

DATA:

ENT
DEFB
DEFB
DEFS

1
80H
2

LD HL, ADRS
LD DE,(DATA)
CALL .LOADS
RET

; HL *- the starting address of the string (type 1) to be transferred.
; DE <- the starting address of the area in which the result is stored.
; Calls routine .LOADS. This subroutine transfers string data from
an assembly subroutine to a BASIC program. The contents of
registers BC, DE', HL', IX and IY are saved.

— Linking External Functions and Commands with BASIC Programs—

A BASIC program generated by the BASIC compiler and external routines generated by the assembler

are relocatable files. These are linked with RELO.LIB to generate an object file.

EX 10) 2 > LINK JJROGl, PLOT
^- Generated by the assembler

Generated by the BASIC compiler

2 > RUN PROG1

BASIC-21

BASIC COMPILER STATEMENT LIST

The format and function of every s tatement is subject to change when new versions of the BASIC

compiler are issued. The following lists are based on BASIC Compiler SB-7701.

— FDOS commands (For details, refer to the System Command Manual.) —

CLI

BUILT-IN
COMMAND

100
110
120
130
140
150
160
170

DIR
DIR/P
DIR "$FD3"
DELETE "SEQ-DATA-1"
RENAME "NAMET\A$
RENAME "NAME2", "NAME3"
FREE
RUN A$+B$+"HEAD-ON"

210 CLI " 2 > X F E R $PTR/PE, ABC
220 CLI "EDIT"
230 CLI "ASM ABC"
240 CLI "ASM",A$

Any FDOS built-in command can be included in
a BASIC program as shown at left. In this case,
arguments must be enclosed in double quotation
marks or must be represented as string variables or
expressions.

Either FDOS built-in and transient commands can
be executed during execution of a BASIC program
by using the command line interpreter (CLI).
However, the LIMIT, DEBUG and EXEC com­
mands cannot be executed.

— BSD (BASIC Sequential access data file) control statements—

WOPEN #

PRINT #

OUT#

CLOSE #

KILL#

WOPEN #3, "SFD2 ;
SEQ DATA 1"

PRINT #3,A,A$

OUT #3, A

CLOSE #3
(corresponding to WOPEN #)

KILL #3

Defines the name of a sequential file to be generated as "SEQ
DATA 1" and opens it with logical number 3 assigned on the
diskette in drive 2.

Writes the contents of variable A and string variable AS in
succession in the sequential file assigned logical number #3.
The file directory is not cataloged until a CLOSE # statement
is executed. (Data write is performed physically in 8 records
unit).

Writes the data in variable A byte-by-byte to the file opened
with a WOPEN # statement with logical number #3 assigned.

Closes the sequential file assigned logical number #3 which
was previously opened with the WOPEN #3 statement. The
directory of the file generated by the WOPEN # statement is
cataloged and the logical file number assignment is cleared
when the file is closed.

Kills the sequential file assigned logical number #3 with the
WOPEN # statement. The file directory is not cataloged. The
logical file number assignement is cleared.

BASIC-22

ROPEN #

INPUT #

INP#

CLOSE #

ROPEN #4, "$FD2 ;
SEQ DATA 1"

INPUT #4, A(l), B$

INP #4, A

CLOSE m
(corresponding to ROPEN #)

Read-opens sequential file "SEQ DATA 1" on the diskette
in drive 2 with logical number #4 assigned.

Reads data from the beginning of the sequential file assigned
logical number #4 and assigns data to array A(l) and string
variable BS in that order.

Reads data byte-by-byte from the sequential file assigned
logical number #4 and assigns data to variable A.

Closes the sequential file assigned logical number #4 and clears
the logical file number assignment.

— BRD (BASIC Random access data file) control statements

XOPEN #

PRINT # ()

INPUT # ()

CLOSE #

KILL

IF EOF (#)

XOPEN #5,"SFD3
DATA R l "

PRINT #5(11), R (l l)

PRINT #5(20), ARS, ASS

INPUT #5(21), RS

INPUT #5(11),A(11),
AS(12)

CLOSE #5

CLOSE

KILL

IF EOF (#5) THEN 700

This XOPEN statement opens random file "DATA R l " on the
diskette in drive 3 with logical number #5 assigned for reading
or writing data; if the file does not exist, the file name "DATA
R l " is defined with the logical number #5 assigned, then the
file is opened.

Writes the contents of element R (l l) of one-dimensional
array R() in record 11 of the random file assigned logical
number # 5 .

Writes the contents of string variables ARS and ASS in records
20 and 21, respectively, of the random file assigned logical
number # 5 . If the length of the contents of variable exceeds
32 bytes, the excess is ignored.

Reads the contents of record 21 of the random file assigned
logical number #5 into string variable R$.

Reads the contents of records 11 and 12 of the random file
assigned logical number # 5 into array element A (l l) and
string array element A$(12).

Closes the random file assigned logical number #5 which was
opened by the corresponding XOPEN # statement and clears
the logical file number assignment.

Closes all open files.

Kills all open files. This statement does not access any floppy
disk drive.
The KILL statement operates in the same manner as the
CLOSE statement when the file was opened by the ROPEN or
XOPEN statement.

Transfers program control to the routine starting to line
number 700 if the file end is detected during execution of an
INPUT #statement against a sequential or random file.

BASIC-23

Exception processing statements-

ON ERROR GOTO 1000 ON ERROR
GOTO
IF ERN

IF ERL

RESUME

OFF ERROR

ON BRKEY
GOTO
OFF BRKEY

ON KEY GOTO

ON KEY
GOSUB

OFF KEY

KYS

IF ERN = 44 THEN 1050

IF ERL = 350 THEN 1090

IF (ERN = 53) * (ERL =
700) THEN END

RESUME 0

ON BRKEY GOTO 2000

OFF BRKEY
ON KEY GOTO 3000

ON KEY GOSUB 4000

OFF KEY

IF KYS = 5 THEN 4000

Declares that control is transferred to line number 1000 when
an error occurs.

Transfers control to line number 1050 when the error number
is 44.

Transfers control to line number 1090 when an error occurs
on line number 350.
Terminates program execution when an error of error number
53 occurs on line number 700. The error number and the line
number are stored in variables ERN and ERL, respectively.

Returns control to the main program when error processing
is completed.

Transfers control to the beginning of the main program.

Cancels a preceding ON ERROR statement.

Declares that control is transferred to line number 2000 when
the 1 BREAK 1 key is pressed.

Cancels a preceding ON BRKEY statement.

Declares that control is transferred to line number 3000 when
key is pressed. The line number which is executed when the
key is pressed is stored in variable ERL and the code for the
key pressed is stored in variable KYS.

Control is transferred to the subroutine starting at line number
4000 when a key is pressed. The line number which is exe­
cuted when the key is pressed is stored in ERL and the key
code is stored in KYS.

Cancels a preceding ON KEY statement.

Transfers control to line number 4000 when the [5j key is
pressed after an ON KEY declaration.

Cassette tape data file control

WOPEN/T 10 WOPEN/T "DATA-1"

PRINT/T 20 PRINT/T A, AS

CLOSE/T 30 CLOSE/T

KILL/T 40 KILL/T

ROPEN/T 110 ROPEN/T "DATA-2"

INPUT/T 120 INPUT/T B, B$

CLOSE/T 130 CLOSE/T

statements—

Opens cassette tape data file "DATA-1" for write.

Writes the contents of variable A and string variable AS in
the cassette tape data file which was opened by the WOPEN/T
statement.

Closes the file which was opened by the WOPEN/T statement.

Cancels a preceding WOPEN/T statement. The directory of the
sequential file is not cataloged.

Opens cassette tape data file "DATA-2" for read.

Reads data sequentially from the beginning of the cassette
tape file opened by the ROPEN/T statement and assigns
read values to numeric variable B and string variable B$ in
that order.

Closes all open files.

BASIC-24

—Assignment statement—

LET < LET > A = X + 3 Assigns the sum of the value of variable X and 3 to variable A.
LET may be omitted.

— Input and Output statements

PRINT

INPUT

GET

READ-DATA

RESTORE

10 PRINT A

20 ? AS

100 PRINT A ; A $, B ; B $

110 PRINT "COST=" ;CS

120 PRINT

10 INPUT A

20 INPUT A$

30 INPUT"VALUE?" ;D

40 INPUT X, X$,Y,Y$

10 GET N

20 GET KS

10 READ A, B, C
1010 DATA 2 5 , - 0 . 5 , 5 0 0

10 READ HS,H,SS,S
30 DATA HEART, 3
35 DATA SPADE, 11

Displays the value of variable A on the CRT screen.

Displays the contents of variable A$ on the CRT screen.

Numeric variables and string variables may be used mixedly in
a PRINT statement. The value of a variable following a semi­
colon is displayed closed to the previous value displayed. The
value of a variable following a comma is displayed at the next
tab set position. (Tabs are set every 10 characters).

Displays the string enclosed in double quotation marks.

Makes a line feed.

Obtains numeric data for variable A from the keyboard.

Obtains string data for variable AS from the keyboard.

Displays string "VALUE?" before obtaining data for D from
the keyboard. A semicolon separates the string from the
variable.

Numeric variables and string variables can be used in combi­
nation by separating them from each other with a comma.
The types of data entered from the keyboard must be the
same as those of the corresponding variables.

Obtains a numeral for variable A from the keyboard. When
no key is pressed, zero is assigned to A.

Obtains a character for variable K$ from the keyboard. When
no key is pressed, a null is assigned to K$.

Assigns constants specified in the DATA statement into the
corresponding variables specified in the READ statement. The
corresponding constant and variable must be of the same data
type.

Assigns 25, —0.5 and 500 to variables A, B and C, respectively.

Assigns string "HEART" to string varialbe H$ and assigns 3
to numeric variable H and so on.

With a RESTORE statement, data in the following DATA
statement which has already been read by preceding READ
statements can be re-read from the beginning by the following
READ statements.

BASIC-25

RESTORE 10 READ A, B,C
20 RESTORE
30 READ D, E
100 DATA 3 ,6 ,9 , 12, 15

700 RESTORE 200

The READ statement on line number 10 assigns 3, 6 and 9
into variable A, B and C, respectively. Because of the RE­
STORE statement, the READ statement on line number 30
assigns 3 and 6 again into D and E, respectively.

Transfers the data read pointer to the beginning of data in the
DATA statement on line number 200.

Loop statement—

FOR ~ TO
NEXT

60 NEXT B,A
70 NEXT A, B

— Branch statements—

10 FOR A = l TO 10
20 PRINT A
30 NEXT A

10 FOR B = 2 TO 8 STEP 3
30 PRINT B2
30 NEXT

10 FOR A = l TO 3 —
20 FOR B= 10 TO 30-
30 PRINT A, B
40 NEXT B
50 NEXT A -

GOTO

GOSUB
-RETURN

IF ~ THEN

IF ~ GOTO

IF ~ GOSUB

100 GOTO 200

100 GOSUB 700

800 RETURN

10 IF A > 20 THEN 200

50 IF B < 3 THEN B = B+3

100 IF A > = B THEN 10

30 IF A=B * 2 GOSUB 90

The statement on line number 10 specifies that the value of
variable A is varied from 1 to 10 in increments of one. The
initial value of A is 1. The statement on line number 20
displays the value of A. The statement on line number 30
increments the value of A by one and returns program execu­
tion tc the statement on line number 10. Thus, the loop is re­
peated until the value of A becomes 10. (After the specified
number of loops has been completed, the value of A is 11.)

The statement on line number 10 specifies that the value of
variable B is varied from 2 to 8 in increments of 3. The value
of STEP may be made negative to decrement the value of B.

The FOR-NEXT loop for variable A includes the FOR-NEXT
loop for variable B. As is shown in this example, FOR-NEXT
loops can be enclosed in other FOR-NEXT loops at different
levels. Lower level loops must be completed within higher
level loops. The maximum number of levels of FOR-NEXT
loops is 16.

The statements on lines 40 and 50 in the above example can
be combined into one shown on line 60. Line 70 results in an
error.

Jumps to the statement on line number 200.

Calls the subroutine starting on line number 700.
At the end of a subroutine, program execution returns to the
statement following the corresponding GOSUB statement.

Jumps to the statement on line number 200 when the value of
variable A is more than 20; otherwise the next statement is
executed.

Assigns B+3 to variable B when the value of B is less than 3;
otherwise the next statement is executed.

Jumps to the statement on line number 10 when the value
of variable A is equal to or greater than the value of B; other­
wise the next statement is executed.

Jumps to the subroutine starting on line number 90 when the
value of variable A is twice the value of B; otherwise the next
statement is executed.

BASIC-26

IF ~ GOSUB

ON ~GOTO

ON - GOSUB

50 ON A GOTO 70,80,90

90 ON A GOSUB 700,800

(When other statements follow a conditional statement on the
same line and the conditions are not satisfied, those following
an ON statement are executed sequentially, but those follow­
ing an IF statement are ignored and the statement on the next
line is executed. Handling of the multistatement after IF
statement is the same as in MZ-80K/B BASIC interpreter, but
different from that in MZ-80K compiler.)

Jumps to the statement on line number 70 when the value
of variable A is 1, to the statement on line number 80 when it
is 2 and to the statement on line number 90 when it is 3. When
the value of A is 0 or more than 3, the next statement is
executed. This statement has the same function as the INT
function, so that when the value of A is 2.7, program execu­
tion jumps to the statement on line number 80.

Calls the subroutine starting on line number 700 when the
value of variable A is 1 and calls the subroutine starting on line
number 800 when it is 2. When the value of A is 0 or more
than 3, the next statement is executed.

— Definition statements—

DIM

DEFFN

DEFKEY

10 DIMA(20)

20 DIM B(79,79)

30 DIM Cl$(10)

40 DIM KS(7,5)

100 DEF FNA(X)=X~2-X
110 DEF FNB(X)=LOG (X)

+1
120 DEF FNZ(Y)=LN(Y)
130 DEF FNC(X,Y)=SQR

(X"2+Y"2)
140 DEF FNA$(X$)=M1D$

(X$,3,3)

15 DEF K E Y O K L I S T - r
25 DEF KEY(2)="LOAD:

RUN -*"

When an array is used, the maximum number of array ele­
ments must be declared with a DIM statement. The number of
elements is limited by the available memory space.

Declares that 21 array elements, A(0) through A(20), are used
for one-dimensional numeric array A().

Declares that 6400 array elements B(0,0) through B (79, 79),
are used for two-dimensional numeric array B().

Declares that 11 array elements, C1$(0) through C1S(10), are
used for one-dimensional string array Cl$().

Declares that 48 elements, K$(0,0) through K$(7, 5), are used
for two-dimensional string array K$().

A DEF FN statement defines a function. The statement on
line number 100 defines FNA(X) as X2—X. The statement on
line number 110 defines FNB(X) as log10X+l and the state­
ment on line number 120 defines FNZ(Y) as LN(Y). The state-
ment on line number 130 defines FNC(Y, Y) as V X2+Y2 and
the statement on line number 140 defines FNA$(X$) as MID$
(XS, 3, 3). The number of parameters is arbitrary.

The DEF KEY statement defines the function of a definable
function key. The statement on line number 15 defines the
function of function key 1 as LIST fCR | and the statement
on line number 25 defines the function of function key 2 as
LOAD:RUN [CR]. There are 20 definable function keys.

BASIC-27

—Comment statement and control statements—

REM

STOP

END

CURSOR

200 REM JOB-1

300 REM t3

400 REM t

850 STOP

1999 END

50 CURSOR 25, 15
60 PRINT "ABC"

CSRH

CSRV

CONSOLE 10 CONSOLE SI0 ,20

20 CONSOLE C80

30 CONSOLE C40

CHANGE

REW

FAST

TIS

WAIT

40 CONSOLE R

50 CONSOLE N

10 CHANGE

710 REW

720 FAST

100 TIS = "102030

10 WAIT 20

Comment statement (not executed)

Performs three line feeds on the list during compiling.

Performs a form feed on the list during compiling.

The same as END.

Stops program execution and kills all open files. (See page 18
for exceptions).

The CURSOR statement positions the cursor to any position
on the screen. The X coordinate ranges from 0 to 39 (from
left to right) and the Y coordinate from 0 to 24 (from top to
bottom). The statements shown at left display the string
"ABC" at the location starting at the position 26th characters
from the left and 16th characters from the top.

System variable which contains the X coordinate of the cur­
rent cursor position.

System variable which contains the Y coordinate of the cur­
rent cursor position.

Fixes the scrolling area of the display from line 10 through
line 20.

Sets the character display mode to 80 characters per line
mode.

Sets the character display mode to 40 characters per line
mode.

Sets the character and graphic display mode to reverse mode.

Sets the character and graphic display mode to normal mode.

Reverses the function of the] SHIFT! key concerned with 26
alphabetic keys on the main keyboard.

Rewinds the cassette tape.

Fast-forwards the cassette tape.

Sets the built-in clock to 10 : 20 : 30. The time data is a 6-
digit string enclosed with double quotation marks.

Suspends program execution for 20 ms.

BASIC-28

— Music control statements

MUSIC
TEMPO

300 TEMPO 7
310 MUSIC"DE#FGA'

300 M1$="C3EG+C"
310 M2$="BGD-G"
320 M3$="C8R5"
330 MUSIC M1S,M2$,M3$

—Graphic control statements—

GRAPH

SET

RESET

LINE

BLINE

10 GRAPH II

20 GRAPH 01

30 GRAPH 02

40 GRAPH 012

50 GRAPH 00

60 GRAPH C

70 GRAPH F

80 GRAPH II, C, 01

300 SET 160, 100

310 RESET 160, 100

400 LINE 110,50,210,
50,210, 150,110, 150,
110,50

The MUSIC statement generates a melody from the speaker
according to the melody string enclosed in quotation marks at
the tempo specified by the TEMPO statement.

The TEMPO statement on line number 300 specified tempo 7
(fastest speed). The MUSIC statement on line number 310
generates a melody consisting of D, E, F sharp, G and A. Each
note is a quarter note. When the TEMPO statement is omitted,
tempo 4 is set.

In this example, the melody is divided into 3 parts and
assigned to 3 string variables. The melody shown below is
played through the speaker at tempo 4.

Assigns the graphic input mode to page 1 (graphic area 1).

Assigns the graphic output mode to graphic area 1.

Assigns the graphic output mode to graphic area 2.

Assigns the graphic output mode to graphic area 1 and 2.

Resets the graphic output mode.

Clears the graphic area that is in the graphic input mode.

Fills the graphic area that is in the graphic input mode.'

Sets the graphic input mode to graphic area 1, then clears the
graphic area 1 and sets the graphic output mode to graphic
area 1.

This statement sets a dot in any position in the graphic area
operating in the input mode. The dot position is specified with
X coordinates (0 ~ 319 from left to right) and Y coordinates
(0 ~ 199 from top to bottom).

Set a dot in the center of the screen.

Resets any dot in the graphic area operating in the input
mode.

Resets the dot in the center of the screen.

Draws a line in the graphic area operating in the input mode
by connecting the specified dots.

Draws a square whose side length is 100 in the center of the
screen.

Draws a black line in the graphic area.

BASIC-29

POSITION

20 GRAPH I2,C,02
30 POSITION 0,50
40 PATTERN 8, AS

PATTERN

10 C$= "ABCDEF"
20 PATTERN 4,C$.

30 PATTERN - 4 , CS

POINT 100 ON POINT (X,Y)
GOTO 10,20,30

POSH

POSV

Sets the location of the position pointer in the graphic area.
The PATTERN statement is executed starting at position coor­
dinates indicated by the position pointer.

The statement on line 20 sets the input mode to graphic area
2, clears it and sets the output mode to it. The statement on
line 30 sets the position pointer to (0,50) and the statement
on line 40 displays a graphic pattern the number of layers of
which is 8 starting at (0,50).

The PATTERN statement draws a desired dot pattern in the
graphic area in the input mode starting at position coordinates
indicated by the position pointer set by the POSITION state­
ment. A string of characters or string variable specifies the
arrangement of dots in a 8 dot single line of the pattern. The
first operand determines the direction in which 8 dot lines are
stacked and the number of layers of lines to be stacked.

Draws the following dot pattern.

4 layers

Draws the following dot pattern.

4 layers
m.
%.

Ascertains the dot (X, Y) whether it is set or" reset, and bran­
ches according to the result.

Value of POINT function
0

1
2
3

Condition
Points in both graphic areas 1 and
2 are reset.
Only point in graphic area 1 is set.
Only point in graphic area 2 is set.
Points in both graphic areas 1 and
2 are set.

System variable which indicates the X coordinates of the cur­
rent position pointer location in the graphic area.

System variable which indicates the Y coordinates of the cur­
rent position pointer location in the graphic area.

BASIC-30

Machine language program control statements—

POKE

PEEK

USR

EXTERNAL

120 POKE 49450, 175

130 POKE AD, DA

140 POKE $D000, 83,68,
70,65

150 POKE $C000, AS

150 A=PEEK(49450)

160 B=PEEK(C)

500 USR(49152)

550 USR(AD)

570 USR($C000)

10 EXTERNAL PLOT,
FNPX

20 PLOT X, Y

30 A=FNPX(10)

Printer control statements—

PRINT/P

10 PRINT/P A, AS

20 PRINT/P CHRS(5)

IMAGE/P

COPY/P

PAGE/P

30 IMAGE/P CHRS(255),
"UU"

10 COPY/P 1

20 COPY/P 2

30 COPY/P 3

40 COPY/P 4

100 PAGE/P 20

Stores 175 (decimal) in decimal address 49450.

Stores the value of variable DA (0 ~ 255) in the memory loca­
tion specified by variable AD.

Stores data in succession into the memory, starting at address
D000H (hexadecimal).

Stores the contents of AS in the memory, starting at address
C000H (hexadecimal).

Converts the content of decimal address 49450 into decimal
representation and assigns it to variable A.

Converts the content of the decimal address specified in vari­
able C into decimal and assigns it to variable B.

Transfers control to decimal address 49152. This statement
has the same function as the CALL command. Accordingly,
when the RET command is encountered during execution of
the machine language program, control is returned to the
BASIC program.

Transfers control to the memory location specified by variable
AD.

Transfers control to memory location C000H.

Defines external command PLOT and external function
FNPX. (The routines for PLOT and FNPX must be created
with the assembler.)

Example of use of the external statement and function defined
with the EXTERNAL statement.

Performs the same operation as the PRINT statement on the
optional printer. If no printer is connected, execution of this
statement results in an error.

Outputs the contents of numeric variable A, then the contents
of string variable AS to the printer.

Performs a form feed on the printer. (CHR$(5) is a printer
control code).

Prints an optional image dot pattern on the printer.

Makes a copy of the contents of the character display screen
on the printer.

Makes a copy of the contents of graphic area 1 on the printer.

Makes a copy of the contents of graphic area 2 on the printer.

Makes a copy of the contents of graphic areas 1 and 2 on the
printer.

Sets the number of lines per page on the printer form to 20.

BASIC-31

I/O statements—
INP@

10 INP @12,A
20 PRINT A

39 B=A_ 2+0.3
40 OUT @13,B

Arithmetic functions—

100 A=ABS(X)

100 A = INT(X)

100 A = SGN(X)

100 A = SQR(X)

100 A=SIN(X)

110 A = S I N (3 0 * T T / 1 8 0)

200 A = COS(X)

210 A = C O S (2 0 0 ^ T T / 1 8 0)

300 A = TAN(X)

310 A = T A N (Y * T T / 1 8 0)

400 A = ATN (X)

410 A = 1 8 0 / T T * A T N (X)

Reads data from the specified I/O port.

The statement on line 10 reads data from I/O port 12 (deci­
mal) into variable A.

Outputs data to the specified I/O port.

The statement on line 40 outputs the contents of variable B
to I/O port 13.

Assigns the absolute value of variable X to variable A. X may
be either a constant or an expression.

Ex) ABS(-3) = 3
ABS(12)= 12

Assigns the greatest integer which is less than X to variable A.
X may be either a numeric constant or an expression.

Ex) INT (3.87) = 3
INT (0.6) = 0
INT (-3.87) = - 4

Assigns one of the following values to variable A: —1 when
X < 0, 0 when X = 0 and 1 when X > 0. X may be either a
constant or an expression.

Ex) SGN (0.4) = 1
SGN (0) = 0
SGN (-400) = -1

Assigns the square root of variable X to variable A. X may
be either a numeric constant or an expression: however, it
must be greater than or equal to 0.

Assigns the sine of variable X in radians to variable A, X may
be either a numeric constant or an expression. The relationship
between degrees and radians is as follows.

1 jree = y ^ radians

Therefore, when assigning the sine of 30° to A, the statement
is written as shown on line number 110 at left.

Assigns the cosine of variable X in radians to variable A. X
may be either a numeric constant or an expression. The same
relationship as shown in the explanation of the SIN function
is used to convert degrees into radians. The statement shown
on line number 210 assigns the cosine of 200° to variable A.

Assigns the tangent of variable X in radians to variable A. X
may be either a numeric constant or an expression. The state­
ment on line number 310 is used to assign the tangent of
numeric variable Y in degrees to variable A.

Assigns the arctangent of variable X to variable A in radians.
X may be either a numeric constant or an expression, only
the result between —7r/2 and TT/2 is obtained. The statement on
line number 410 is used to assign the arctangent in degrees.

BASIC-32

EXP

LOG

LN

RND

100 A = EXP(X)

100 A = LOG(X)

100 A = LN (X)

100 A = LOG(X)/LOG(Y)
120 A=LN(X) /LN(Y)

100 A = RND(1)
110 B=RND(10)

200 A = R N D (0)
210 B = R N D (- 3)

—String control functions—

LEFTS

MIDS

RIGHT $

SPACE $

STRING S

CHRS

ASC

STR$

10 AS = LEFTS (X$, N)

20 B$ = MIDS (X$, M, N)

30 C$ = RIGHT S(X$,N)

40 D$ = SPACE S(N)

50 ES = STRING S (" * " ,
10)

60 FS = CHR$(A)

70 A = ASC(X$)

80 N$ = STR$ (I)

Assigns the value of exponential function e x to variable A.
X may be either a numeric constant or an expression.

Assigns the value of the common logarithm of variable X to
variable A. X may be either a numeric constant or an expres­
sion; however, it must be positive.

Assigns the natural logarithm of variable X to variable A. X
may be either a numeric constant or an expression; however,
it must be positive.

To obtain the logarithm of X with the base Y, the statement
on line number 110 or line number 120 is used.

This function generates random numbers which take any value
between 0.00000001 and 0.99999999, and works in two
manners depending upon the value of the integer in paren­
theses.

When the value of the integer in parentheses is positive, the
function gives the random number following the one previous­
ly given in the random number group generated. The value
obtained is independent of the value in parentheses.

When the value of the integer in parentheses is less than or
equal to 0, the function gives the initial value of the random
number group generated. Therefore, statements on line
numbers 200 and 210 both give the same value to variables A
andB.

Assigns the first N characters of string variable X$ to string
variable A$. N may be either a constant, a variable or an ex­
pression.

Assigns the N characters following the Mth character from the
beginning of string variable X$ to string variable B$.

Assigns the last N characters of string variable X$ to string
variable C$.

Assigns N spaces to string variable D$.

Assigns 10 continuous asterisks to string variable E$.

Assigns the character corresponding to the ASCII code in
numeric variable A to string variable F$. A may be either a
constant, a variable or an expression.

Assigns the ASCII code (in decimal) corresponding to the first
character of string variable XS to numeric variable A.

Converts the numeric value of numeric variable I into a string
of numerals and assigns it to string variable N$.

BASIC-33

VAL 90 I = VAL(N$)

CHARACTERS 85 CRS = CHARACTERS
(X,Y)

LEN 100 LX = LEN(X$)

110 LS = LEN (XS+YS)

—Tabulation functions

TAB 10 PRINT TAB(X);A

20 PRINT TAB(5) ; AS

Converts string of numerals contained in string variable N$ in
to the numeric data as is and assigns it to numeric variable I.

Assigns the character which is displayed at location (X, Y) to
string variable CRS.

Assigns the length (number of characters) of string variable X$
to numeric variable LX.

Assigns the sum of lengths of string variables X$ and Y$ to
numeric variable LS.

Displays the value of variable A at the (X+l)th character
position from the left.

Displays a character string in string variable AS starting at the
6th character position from the left.

—Arithmetic operators—
(The number to the left of each operator indicates its operational priority. Any group of operations enclosed in paren­
theses has first priority.)

© -

© *

® I

© +

©

10 A = X+3

20 B = TT

10 A = X'Y(power)

10 A = —B (negative sign)

10 A = X * Y (multiplication)

10 A = X/Y (division)

10 A = X+Y (addition)

10 A = X-Y (subtraction)

—Logical operators—

< > o r > <

> = or = >

10 IF A=X THEN

20 IF A$=,,XYZ"
THEN

10 IF A O X THEN

10 IF A > = X THEN

Assigns X+3 to variable A.

Assigns IT (3.1415927) to variable B.

Assigns X^ to variable A. (If X is negative and Y is not an
integer, an error results.)

Note that "—" in —B is the negative sign and "—" in 0—B
represents subtraction.

Multiplies X by Y and assigns the result to variable A.

Divides X by Y and assigns the result to variable A.

Adds X and Y and assigns the result to variable A.

Subtracts Y from X and assigns the result to variable A.

If the value of variable A is equal to X, the statement follow­
ing THEN is executed.

If the content of variable AS is "XYZ", the statement follow­
ing THEN is executed.

If the value of variable A is not equal to X, the statement
following THEN is executed.

If the value of variable A is greater than or equal to X, the
statement following THEN is executed.

BASIC-34

< = or = <

*

10 IF A < = X THEN

40 I F (A > X) * (B > Y)
THEN

50 IF (A>X) + (B>Y)
THEN

—Other symbols—

200 ? "A + B=" ; A + B
210 PRINT "A + B=" ;A + B

220 A = X: B = X~2: ? A, B

230 PRINT "AB" ; "CD"
"EF"

240 INPUT "X=";X$

250 PRINT "AB", "CD"
"E"

300 DIM A(20), BS (3, 6)

320 A$= "SHARP BASIC"
330 BS="MZ-80B"

340 C$= "ABC" + CHR$ (3)

500 LIMIT SBFFF

550 S = S I N (X * T T / 1 8 0)

If the value of variable A is less than or equal to X, the state­
ment following THEN is executed.

If the value of variable A is greater than X and the value of
variable B is greater than Y, the statement following THEN is
executed.

If the value of variable A is greater than X or the value of
variable B is greater than the value of Y, the statement follow­
ing THEN is executed.

Can be used instead of PRINT. Therefore, the statement on
line number 200 is identical in function to that on line
number 210.

Separates two statements from each other. The separator is
used when multiple statements are written on the same line.
Three statements are written on line number 220.

Displays characters to the right of separators following charac­
ters on the left. The statement on line 230 displays "ABCDEF"
on the screen with no spaces between characters.

Displays "X=" on the screen and awaits entry of data for X$
from the keyboard.

Displays character strings in a tabulated format; i.e. AB first
appears, then CD appears in the position correponding to
the starting position of A plus 10 spaces and E appears in the
position corresponding to the starting position of C plus 10
spaces.

A comma is used to separate two variables.

Indicates that characters between double quotation marks
form a string constant.

Indicates that the variable followed by a dollar sign is a string
variable.

Indicates that numeric data following a dollar sign is repre­
sented in hexadecimal notation.

n represents 3.1415927 (ratio of the circumference of a circle
to its diameter).

BASIC-35

ERROR MESSAGES

— Error Messages Issued During Compiling

Error number

1
2
3
4
6
8

15
16
22
30
31
32
33
34
35
36
99

Message

syntax
too big number
il constant
different type
too many variables
too long statement
undefined function
undefined line-number
double defined function
il expression
mismatch " ("and ") "
reserved word
il line-number
too many " ("
il function
il array
table overflow

Meaning

Syntax error
There is a numeric value which is too large
Illegal constant value
Data type mismatch
There are too many variables.
A BASIC text line is too long.
An undefined function is used.
An undefine line number is specified.
A function is defined two or more times.
Illegal expression format
Opening and closing parentheses do not correspond.
A reserved word is used for another purpose.
Illegal line number
Too many levels of parentheses are used.
Illegal function name
Illegal array
A program is too long and it cannot be compiled.

Note: il is an abbreviation for illegal.

Error Messages Issued During Program Execution (BASIC Level)—

Error number

1
2
3
4
5
6

13
14
21

24
37
38

39
64

Message

syntax
overflow
il data
data mismatch
string too long
memory over
next, no for
return, no gosub
resume, no error

read, no data
Break
out of index

undefined array
i l lu#

Meaning

Syntax error
Operational result overflow
Illegal data
Data type mismatch
String length exceeds 255 characters.
Insufficient memory
NEXT is used without a corresponding FOR.
RETURN is used without a corresponding GOSUB.
RESUME is used without a corresponding error
processing statement.
READ is used without a corresponding DATA.
|BREAK| was pressed.
Illegal value was assigned to an element of an
array defined with a DIM statement.
An undefined array was used.
Illegal logical number

— Error Messages Issued During Program Execution (FDOS Level)—
Errors occurring during execution of an FDOS subroutine can be detected by using the ON ERROR

statement. (Sometimes errors are not detected in the case of RUN and CLI.) When errors are detected, an

FDOS error number is stored in ERN following a minus (-) sign. For example, - 5 0 is stored in ERN

when no file is found. For FDOS error numbers, refer to the System Error Messages in the System Com­

mand Manual.

BASIC-36

