Personal Computer

m<-c08

BASIC LANGUAGE
MANUAL

SHARP

Personal Computer

MZ-80B

BASIC Language Manual

January 1981

080221-150281

Printed in Japan © SHARP CORPORATION

NOTICE

This manual is applicable to the SB-5510 BASIC interpreter used with the SHARP
MZ-80B Personal Computer. The MZ-80B general-purpose personal computer is supported

by system software which is filed in software packs (cassette tapes or diskettes).

All system software is subject to revision without prior notice, therefore, you are

requested to pay special attention to file version numbers.

This manual has been carefully prepared and checked for completeness, accuracy and
clarity. However, in the event that you should notice any errors or ambiguities, please feel

free to contact your local Sharp representative for clarification.

All system software packs provided for the MZ-80B are original products, and all rights
are reserved. No portion of any system software pack may be copied without approval of

the Sharp Corporation.

i

Introduction

This Book describes the language specifications and grammar of the standard system software
BASIC interpreter SB-5510. BASIC (an abbreviation for “Beginner’s All-purpose Symbolic Instruction
Code”) was developed as an all purpose language to provide beginners with a means of easily program-
ming computers to solve a diverse range of problems. Its simplicity and versatility make it well suited
to personal programming applications.

BASIC SB-5510 is an extended BASIC interpreter which enables the MZ-80B computer to be used
to its fullest capacity. Its sophisticated algorithms and output display processes, together with its high
speed processing capability, make it well suited not only for beginners, but also for a variety of high
level professional applications.

Language specifications for disk-based BASICs, that is, DISK BASIC, double-precision DISK

BASIC, and BASIC compiler, are contained in their respective software manuals.

/7]

NOEICE: ¢ s s ommums s s mmmn 3§ HOMEFd § SVNDEE YT HHNEH 5§ SRAFRE 5 Ly B@NT 033 ii
717070 L1 (i o 3 O e i
Chapter 1 Outline BASIC SB-5510t 1
1.1 Activating the BASIC interpreter SB-5510 2
1.2, OPEratingnaoules . . « - comisimie o mmmmmon e o mmmbid 55 s SBmdss SEEBE4s 5 G5E 3
1.2.1 Operationatcommandlevel 3
1.2.2 Operation at statementlevel. ... cvvovievisnosnsssoomsssssvas 4
1.3 Architecture of a BASIC program00iiiiiunnnnnnn. 5
L3 LIDE cwasss smnessseommes s o e mes 55 s o e wow € s s s sms @56 o 5
1.3:2 STAtEMeNls «ccvswviisassnsssanan s frBEina i af RERT 5 G5 5
1.4 Constituent element of asentencec...on... 6
1.4.1 Reserved wordiiiiiiiiiininnn et 6
1.4.2 Other constituentelements 7
143 Constanl . .soses ssnenis s issnecs i s auEws s 5 Faa@e § §aeame ¥ s 4
144 Natable «come s ssnnsss i sonmmd s 55 nnEd e s EHEES £ 54 HEEE § 3 8
LAS BITAN : cprmmmics smmmitic o o mmmmmmie oo s & 65 RHE £ 85 SS BTG ¢ 3 9
1.4.6 EXPIESSION . ..ottt ittt e e et 10
LT SEPATALOT cww ¢ 5 snmma i i3 SHRENS 55 SEEEE I § BHESS 5 5 HSHER § 11
LS SotBen@AIUOT . vowuwus s wmmomes smmmmn o v smmmoini o pommms s o bgdinme s 12
L Il . . e n ok S AR eREEE S R EKEES) LEEARE () BREE 14
Chapter 2 BASIC SB-5510 Commandsc.coiuriiininnnunn... 15
2.1 Input/outputcommandsiiiiitii 16
Aodl. LRI 4o mmcsm e w7 € . 16
21l BANE cccuspmansnssusnssns sunsess et susm sy s HREY L Ay 17
2l VWBERIFY .:osvmccanmnmncnn mmmmm e mnmm s s wmmsws oo 17
2.2 Texteditioncommandsc.uuiiiiiiitin 18
Bkl BIIED cicnsestrshbRass i SWRBEIELNNERESSBANEST LS AODT 18
Do, IS i o 50 605516 50 3 50001 b 5o rroms om0 0y 08 5 6 o B8 18
Zeill LIBT [P isunnsscsssnossssmmmueysss Raes ses ouans s 6y one s 19
Bt BEW oo vssnnaisussnomessnemmane s mmmnsescmnd & 58§ 5ol 19
2.3 Executioncontrolcommands................... ..., 20

Contents

2Bl BTIN sinmim s 5 5 sommmm v v 6 wmmms 65 s MumwEE b ¥ 8 BNEEE A HEEEE K 20

2.3.2 CONT ..ot et e e e e 20
233 MON wownssssnmmessss enmmnmsiss soussiss nuesnei s uaunms 21
2.3.4 BOOT ...t e e e 21
2.4 Special function keyslist command 22
0 N 4 5 1 U 22
Chapter 3 BASIC SB-5510 Statementsc¢ciiiiiiinnnnnn. 23
3.1 Assignment statement e e 24
31,1 LET .. ommmms 555 s mEmET s s maws 24
3.2 Input/output statementsc.uiiirrrrrreeeeaa.. 25
3.2.1 PRINT ..o e e 25
3.2.2 INPUT ..o e e 28
323 GET ivvsnvassomamnmes s smmessss sasmad s boamnnssis Luns 29
3.24 READ ~DATA ... e 29
3:2:5 RESTORE . ::cinsunnssinsmnmssismunms st suueessss naus 30
3 Loopstabememl commn e s e mmm ks s p 31
3.3.1 FOR ~ NEXT ..ttt ittt i e et eeeeeee e 31
3.4 Branchstatementsottt 33
341 GOTO .o e e 33
342 GOSUB~RETURN iaeeean 33
343 IF ~THEN ... e e 34
344 TF ~GOTO ... e e e 36
345 IP=GOSUB ::i:asuvnsscscnanmmessis aumadiss auuagsis caus 36
346 ON~GOTO ... e e e 37
3477 ON~GOSUB ... e e et 37
3.5 Definition statements e 38
3.5 DIM L e e 38
332 DEP FN cusossssvmumesssanmaness s sunmps bi haannsss: i gus 39
3.5.3 DEF KEY ..o e e 40
3.6 Remark statement and control statements 41
86:.0 REM . inunnnsssumanorvsumpnnissinpeeiisi SRuSER:: 3 203 41
3.6.2 STOP ..o e 42
3.6.3 END ... e 42
3.6.4 CLR ... e 42
3.6.5 CURSOR ... e 43
Bl EBH ;s smwns s sumnmes o6 emmm s 15 ISEEEIY (4 BEEEED § ¢ § FUE 43

3.7

3.8

3.9

3.10

3.12

3.6.77 CSRV L e e 43

3.6.8 CONSOLEt e e e e e e e e e 44
3.6.9 CHANGE e e 46
3.6.10 REW ..o e 46
3.6.11 FAST Lo e e e 46
Bi6: 12 SIZE & s snvwmnss Canmna s 45 mumsmss s s RERS 55 HRBRE T 5HREE 47
B0, 13 TIS ... ccnucsssnesids i a3 enaasissonesiiinbmssssismsan 47
Music control statementsc. i it 48
371 MUSIC ... e e .. 48
B8:7:2 TEMPO nwmsvssummunsss soumsis SHumssss auaues: ;i 5a0m0s 50
Graphic control statements 51
3.8.1 GRAPH e 51
38,2 SET it e 52
38.3 RESET :.::ivwnsissesmunssssnmmensissrnunsisisamassis 53
3.8.4 LINE e 54
3.8.5 BLINE ... e e 54
3.8.6 POSITIONt et e e 55
3.8.7 PATTERN ... e ettt et e 56
3.8.8 POINT ...ttt e et e e e 58
38,9 POSH wvvssssmmmcsssnmmnmsssos muamsss auumus s sunessss 58
3.8.10 POSV .o e 58
Data file input / output statements 0., 59
3.9.1 WOPEN /T . e et et e 59
3.9.2 PRINT /T ..ttt e et e e ... 59
8388 CIOBE T i ssusmaiscunmumsssrosumnsis sRuES 8616 RS L5 § 8 60
394 BROPEN FT . ocnciicsismsiiioshmbiatinbnbsasiisnasddsss 60
3.9.5 INPUT /T ot e e e e e e e e e 60
Machine language control statements, 62
3.10.1 LIMIT ... e e e e e e e e e e 62
3,102 POKE i i s swmsmssssmunssis anmamiss samumss s smmsssss 62
3.10.3 PEEK ..o e e 63
3104 USR ..ot e e e 63
Printer control statements 64
3.11.1 PRINT /P o e e e 64
3012 IMAGE [P Lo 65
3013 COPY [P o e 66
BLLA PAGE TP . uosausssnssis s aoamiis oands 855 nbsasdsis 66
I/O input / output statements iuiniiiirnnne.n. 67

3020 INP . 67

3122 OUT . oo s b e sihimiv s s i s 8 5 mBadd 5§ BEEERS 855 67
Chapter 4 BASIC SB-5510 Functions iiiiieunnn... 69
4.1 Arithmetic fUACHONS «ov.issaussisismasnssissusmasss summunsiss 70

411 ABS e 70

412 INT e e 70

Bl d TN cocccsmumns s pmpmms s b) GREES I 15 UVARE 1T FRANESD § 8 B 70

414 SQR swccisnmmsisssompnissismmbeis i nemmssiis nunEs s 71

4. 1.5 SIN L e 71

416 COS AR EBEE E RS MEEAR I EEEHAE GG LNREE L 72

AuleT TAN posvcimaumsvsssupnis 6 naumads i3 nSBaEs § SEEREES 5 5 § 72

41,8 ATN e e 72

41,9 EXP e 73

A 110 LOG sme s 55 snmas s 65 amui e 25 s amasmiss nakiseisss semsiss 73

S O 15 73

ALl 2 BINDY m s s 05 simma o5 s 5mmund i 5 3 asmes 65 3 hamss 685 ¥REE § 015 74
4.2 String control functions e 75

4.2.1 LEFT 8 .. e e 75

43T MIDS . issmummnss snmunes is smumesss oraesisssEunaasssis 75

423 RIGHT § ... e e 76

424 SPACE § ..ot e 76

4.2.5 STRING § ... e e e et 77

426 CHRS e e e e 77

42T ASC e e e 78

4.2.8 STR S .. e 78

420 VAL e e 79

4. 210 LEN Givssonumusssnmmasis snassassisammasssis wapmnmssssns 79

42.11 CHARACTER § e e 80
4.3 Tabulation function 81

4.3.1 TAB .o e e 81
APPENDIX. & :sommmsssmmsumes snmas s s Baaas 556 aboessarmmmannscsmne 83
Al ASCIICeHs TaAbIE : : s s cmmns 12 sonmissi wpmunsss opuEns § KaBmEs: 8 84
A2 ErrorMessage Tablet e 86
A3 Memory Map . ..ottt e e e 88
A.4 Trigonometric and Hyperbolic Functionsc oo, 88

vii

Chapter 1
Outline BASIC SB-5510

This chapter outlines programming procedures and use of the BASIC interpreter SB-5510.

The chapter begins with a description of the procedure for activating BASIC SB-5510, then dis-
cusses operating modes, the program architecture and constituents and the display screen in turn.

Detailed explanations of all commands, statements and functions provided with BASIC SB-5570

are contained in chapters 2, 3 and 4.

1.1 Activating the BASIC interpreter SB-5510

BASIC SB-5510 is stored (along with MONITOR SB-1510) on a cassette tape file, and must under-
go initial program loading whenever it is to be used. Loading is easily achieved. Simply place the
BASIC cassette file in the cassette tzipe deck and turn on the power.

The MZ-80B’s built-in IPL (Initial Program Loader) automatically starts (photo at left of FIGURE
1.1) loading both the BASIC interpreter SB-5510 and the MONITOR SB-1510. Upon completion of
loading, the MZ-80B displays the message illustrated in the photo at right and the BASIC interpreter
begins to operate.

The message “Ready” indicates that system control is at the BASIC command level and that the
system is ready to accept any command.

(Please refer to the chapter on initial system program loading in the Owner’s Manual for further infor-

mation.)

*%¥ MONITOR SB—-1518 %%

D ———

IPL 1s loading

BASIC interpreter SB-5518
Copyright 1981 by SHARP Core.
B ————

480888 Bytes
%eadg

FIGURE 1.1

1.2 Operating modes

The system software, BASIC interpreter operates at either the command level or the statement
level. At the command level, the BASIC interpreter executes BASIC commands and edits program
texts. At the statement level, the BASIC interpreter interprets and executes BASIC statements of the

program.

1.2.1 Operation at Command Level

When system control is at the BASIC command level, the MZ-80B can operate in either the direct
or indirect mode. The direct mode allows you to manipulate the system just as you would operate an -
electronic calculator, using direct BASIC execution commands, such as RUN, LIST, and SAVE, or
statements which serve the purpose of direct execution commands.

For example, the system may be used as illustrated at FIGURE 1.2 to obtain an immediate answer

to an arithmetic expression using computation/display commands together with the PRINT statement.

T 240%11%06
pog

FIGURE 1.2

This mode also enables you to interrupt program execution with the STOP statement or break
operation to check the value of variables used and substitute other values, thus providing a means of

tracing programming errors.

The indirect mode is used when creating and editing BASIC programs. A BASIC program, as dis-
cussed in the following paragraphs, is a group of numbered lines of BASIC statements and functions
which describe the algorithm used in processing to obtain a specific result. The cursor which appears

on the display screen in the indirect mode allows you to edit BASIC programs right on the screen. (See

Section 1.5.)

1.2.2 Operation at Statement Level

The operating level of the BASIC interpreter is set to the statement level with a RUN command.
The BASIC interpreter interprets each statement in the program text and performs data processing
according to the statement. Communication between the operator and the system is performed as
follows.

For example, when an INPUT statement is executed, the BASIC interpreter waits for the operator
to input required data from the keyboard. When a PRINT statement is executed, the BASIC inter-
preter outputs the internal data to the console (or display screen).

After a program is completed, the operating level automatically returns to the command level. To
forcibly return the operating level from the statement level to the command level, press the

key to stop program execution.

Machine language programs can be executed with the MZ-80B. In this case, the BASIC interpreter
does not control the system and the system operates at the CPU level. To stop CPU level execution,
press the RESET switch (on the rear panel of the main unit) to return the system operating level to
the MONITOR command level.

1.3 Architecture of a BASIC program

A BASIC program is composed of a number of sequential lines of statements which control various
operations, such as program execution and procedures.

With the exception of the various loop, transfer and branch operations, BASIC programs are
executed in the order in which the lines of statements and commands are arranged in the program.
Further, BASIC programs do not require any initial format specification or declarative statements, and

program execution may be begun on any program line.

1.3.1 Line

Each program line consists of a line number and a sentence, separated from the following line by
a carriage return code. |

The entry of one line can be accomplished in the indirect mode by pressing the (or

) key.

Line number

A line number is placed at the head of each program line to identify it. This number is also refer-
red to as a definition line number—the number defining a line—to distinguish it from a reference line
number, which is used for referencing from other lines.

The definition line number for each line must be an integer from 1 through 65535. Line numbers
do not need to be assigned consecutively; in fact, it is advisable to assign line numbers in increments
of ten to allow for insertion of additional lines during program editing.

The AUTO command serves to produce definition line numbers at fixed intervals.

If the same definition line number is input more than once, only the last entry will be valid.

Sentence

A sentence is a sequence of one or more statements, preceded by a definition line number and con-
cluded with a carriage return code. Each sentence (including the definition line number and the
carriage return code) is composed of up to 80 characters.

When a sentence is to include two or more statements, each must be separated by a semicolon (;).

1.3.2 Statements

BASIC statements are divided into two general classes: executable statements and nonexecutable
statements.

An executable statement describes a program operation, such as computation, substitution, com-
parison or branching. A nonexecutable statement establishes information necessary for programming
or controls the program pointer: examples include array declarator statements, data statements, defini-
tive statements and comment statements.

An executable statement, when used in the direct mode, is sometimes referred to as a direct mode

execution statement.

1.4 Constituent element of a sentence

A BASIC sentence is composed of reserved words—also called key words—which include state-

ments, built-in functions and special signs (and also commands), and other elements, such as constants,

variables, arrays and expressions.

1.4.1 Reserved Word

All reserved words have special meanings which are defined by the rules of BASIC, and cannot be

altered. No reserved word specified in BASIC may be defined as variable names by programmer.

Table 1.1 shows all reserved words of the BASIC interpreter SB-5510.

ABS

ASC
ATN
AUTO
BLINE
BOOT
CHANGE
CHARACTERS
CHRS
CLOSE/T
CLR
CONSOLE
CONT
COPY/P
COS
CSRH
CSRV
CURSOR
DATA
DEF FN
DEF KEY
DIM
END
EXP
FAST
FOR
GET
GOSUB
GOTO
GRAPH
IF
IMAGE/P

TABLE 1.1

A

=]

E

=] ©

INP
INPUT
INPUT/T
INT
KLIST
LEFT$
LEN
LET
LIMIT
LINE
LIST
LIST/P
LN
LOAD
LOG
MIDS
MON
MUSIC
NEW
NEXT
ON

OouT
PAGE/P
PATTERN
PEEK
POINT
POKE
POSH
POSITION
POSV
PRINT
PRINT/P

All reserved words of the BASIC interpreter SB-5510

PRINT/T
READ
REM
RESET
RESTORE
RETURN
REW
RIGHTS
RND
ROPEN/T
RUN
SAVE
SET

SGN

SIN

SIZE
SPACE$
SQR
STEP
STOP
STR§
STRINGS
TAB
TAN
TEMPO
THEN
TI$

TO

USR
VAL
VERIFY
WOPEN/T

1.4.2 Other constituent elements

Other constituent elements of a sentence are subdivided as follows.

Constant : numeric constant, string constant, system constant
Variable : numeric variable, string variable, system variable
Array . one-dimensional numeric array, two-dimensional numeric array, one-dimensional

string array, two-dimensional string array
Expression : arithmetic expression, string connective expression, relational expression, logical
expression

[13]

Separator ;

Constants, variables, array elements, arithmetic expressions and string connective expressions are

program data elements, and are divided (depending upon type) into numeric data and string data.

1.4.3 Constant

The term “constant” refers to a data value that remains unchanged during program execution.

Numeric constant

A numeric constant is a decimal number represented by a combination of a sign (+ or —), numerals
(0 through 9), and/or a decimal point (.); or, in scientific notation, by a combination of a sign (+ or
—), mantissa, and exponent (indicated by “E”’). Within the MZ-80B, such numbers are expressed with
the floating decimal point system.

BASIC SB-5510 can represent numeric data of up to eight significant digits and numbers in scien-
tific notation in the range from 107!° through 10'°.

For positive numbers, the “+” sign may be omitted.

With the LIMIT, POKE, PEEK and USR statements, memory addresses may be specified directly
with hexadecimal numbers. Such addresses are indicated by a four-digit hexadecimal number preceded
by a dollar mark ($). Example: LIMIT $B000

Correct representation: 5215E—8 = 0.00005215

Incorrect representation: 15,300 — commas may not be used.
1234567890 — the input number limit of eight digits is exceeded.
300E+91 — the exponent limit is exceeded.

String constant

K

A string constant is a set of characters enclosed in quotation mark (““ *’) which is input from the
keyboard. Quotation marks are not required with DATA statements.

The maximum number of characters in a string constant depends on the effective line length, but
the total maximum number of characters of string data which are permitted per BASIC statement is
255,

A string constant may represent characters in the PRINT statement, data for musical notes in the
MUSIC statement or bit data for graphic patterns in the PATTERN or IMAGE/P statements. Thus, the

type of data represented by the constant depends on the statement with which is used.

System constant
A system constant is a value which is built into the BASIC interpreter; for example, the ratio
of a circle’s circumference to its diameter (indicated by the character “m”’) has a value equal to
3.1415927.
Example of use: The circumference of a circle with a radius of 10 can be computed by the ex-
pression:
2%k *x10

1.4.4 Variable
The term “variable” refers to an element whose value may be arbitrarily changed during program
execution without any change in data type. Each variable is identified by a name, and its initial value

is O (zero) or null.

Numeric variable

Only numeric data can be assigned to numeric variables.

The name of each variable may be composed of any number of characters, but only the first two
characters serve to identify the variable. The first character must be a capital letter (A thru Z), but the
second may be any letter, numeral or symbol. No reserved word employed in BASIC may be used,
however. The term “reserved word” covers all BASIC commands, statements, functions and operators,
as well as special signs such as @ or #.

The numeric variable remains zero until it is loaded with numeric data.

Correct name : ABC and ABD are handled as the same variable. (First two characters are the
same.)

Incorrect names : DATA 3 — Reserved word DATA may not be used.
C@ — Special sign “@’ may not be used.

String variable

A string variable may be loaded only with string data, and its name is formed in the same manner
as the name of a numeric variable, except that it is followed by a dollar sign ($).

Each string variable may contain a maximum of 255 characters of string data; it includes only null

characters until loaded with string data.

Correct names : NAMES$1 and NAME$?2 are regarded as the same string variable (first two char-
acters are the same).

Incorrect names : music$ — The name does not begin with capital letter.

System variable
System variables serve to indicate values that change during BASIC operation, and are classified in
two types: numeric variable (e.g. SIZE to indicate the remained free memory size) and string variable

(e.g. TIS to indicate the reading of the built-in 24-hour based clock).

1.4.5 Array
An array is an arrangement of variables of the same type, and is called a one-dimensional array (or
list) when given one subscript, and a two-dimensional array (or table) when given two subscripts.

Details on definition of numeric and string arrays will be found in Paragraph 3.5.1.

10

1.4.6 Expression

Arithmetic expression
An arithmetic expression, a means of expressing an arithmetic operation, is composed of operators
and arithmetic element(s).

The table below shows the arithmetic operators arranged in order of operational priority.

Arithmetic
operator Operation Example
- Exponential calculation XY
- : Minus sign —X
* / : Multiplication, division X*xY, XY
+, — : Addition, subtraction X+Y, X-Y

Exponential calculation takes priority over other operations, but any group of operation. enclosed
in parentheses has first priority. There is no limit on the number of levels of parentheses which n_ay be
used.

When an arithmetic expression includes operations of identical priority (multiplication and divi-
sion or addition and subtraction), they are performed in sequence from left to right.

For successive exponential calculations, however, exponents on the right take priority over ones

on the left.

Example: BASIC representation of arithmetic expressions

Arithmetic expression BASIC equivalent
¢ e
s e + -
=t d C/(A+B) —E/D
sinx + 1 SIN(X) "2 +1

String connective expression

String connective expressions are used to combine two or more sets of string data into a single set.

Example: “ABC” + “DEF” — makes “ABCDEF”’
“DEF” + “ABC” — makes “DEFABC”

Relational expression

The term “relational expression™ refers to the combination of two sets of numeric or string data

by a relational operator.

This expression is used in the IF statement. For details, see Paragraph 3.4.3.

11

Logical expression
A logical expression expresses the Boolean sum or product of true or false values — 1 or 0 (zero) —

given by a relational expression, and is used in the IF statement.

1.4.7 Separator

A comma serves as a separator to subdivide a statement into its individual elements.

Example: DATA 3.5,4.66, DAT 1
ON A GOTO 100, 200, 300

12

1.5 Screen editor

The screen editor of BASIC works while you are writing or editing programs in the indirect mode,
allowing fast and easy editing of program lines appearing on the screen by moving the cursor.
BASIC programs are stored in the BASIC text area by numbered line; as mentioned previously,

lines are not stored until the key or the key is pressed. Accordingly, the or

key must also be pressed when lines of the program are changed through cursor operation.

Cursor control

When entering a new program, each line number and sentence are entered in sequence and the
cursor advances one space for each character entered.

When programs are being modified, the cursor is brought to the line which is to be revised before
making the modification. Itbis not necessary to reinput the entire line. The cursor can be moved up,
down, left or right by manipulating the four yellow keys at the top of the keyboard. The key
may be used to return the cursor to the upper left-hand corner of the display screen.

Continuous movement of the cursor may be obtained by pressing one of the four yellow keys

together with the key.

Cursor control yellow keys key: Cursor home and clear

INST . . .
oer | key: deletion and insertion

FIGURE 1.3

13

Modification of lines may involve not only replacing certain characters with others, but insertion
or deletion of characters as well.

To insert characters, first press and hold thekey, then press the key once for each
character to be inserted. This will open space ahead of the position where the cursor is located.

To delete characters, press the key once for each character to be deleted. This will delete
characters located ahead of the cursor.

Deletion of an entire line may be accomplished by entering only the line number and pressing the
orkey. BASIC programs are not destroyed during program execution, nor by error
detection or BREAK operation occurring during execution. Thus, debugging may be accomplished by
repeatedly executing the program to locate errors, which may then be corrected through the screen
editor. This conversational debugging/editing capability is one of the outstanding features of the
BASIC interpreter SB-5510.

Setting tabs

The key to the left of the space bar moves the cursor according to tabulation setting data
stored in the area from §1141 to $114F. This function is convenient for inputting data entries in a
formatted table displayed on the CRT screen.

Immediately after the BASIC interpreter SB-5510 has been activated, tabs are automatically set in
the 10th, 20th and 30th character positions. For example, when the cursor is in the 13th character
position and the TAB key is pressed, the cursor is moved to the 20th character position (i.e., the to
first tab to the right).

Set tabs with the following procedures.

Set the first position in $1141. For example, when the first tab position is to be set in the 15th
character position, execute the following statement.

POKE $1141, 15

The second tab position is to be set in $1142. For example, when the second tab position is to be

set in the 23rd character position, execute.
POKE $1142,23

To finish setting tabs, store the end data, 255, in the location just after that where the last tab

position is stored. For example, execute the following statement.
POKE $1143, 255
Tab setting can be performed using the M command supported by the MONITOR SB-1510.

14

1.6 Initialization

When the BASIC interpreter SB-5510 is activated by the IPL, system variables and default values

are initialized as follows:

m Keyboard
1) Operation mode : normal
2) Lower case letters are entered with the key pressed.
3) All special function keys are undefined.
® Display
1) Character display mode : normal
2) Character size : 40 characters/line

3) Character display scrolling area : maximum (line O through line 24)

4) Graphic display input mode : graphic area 1 (graphic area 1 cleared)
Graphic display output mode : both graphic areas off
Position pointer : POSH =0, POSV =0
B Array

1) No arrays are declared.
® Clock

1) The built-in clock is started with TI$ set to “000000.
® Music function

1) Tempo: 4 (medium tempo : moderato)

2) Duration : 5 (quarter note :)

Chapter 2
BASIC SB-5510 Commands

This chapter describes all BASIC SB-5510 commands. All commands can be used only in the direct

mode.

Command format.

Commands must be coded according to the following rules.

B Small letters and reverse characters cannot be used for any commands.

® Operands which must be specified by the programmer are indicated in italics.

® [tems in brackets “{)" may be omitted or repeated any number of times.

® Separators (commas, semicolons, etc.) must be correctly placed in the specified positions.

16

2.1 Input/output commands

2.1.1 LOAD

Format

Function

Description :

LOAD (file name)

This command automatically loads the computer with a BASIC text or machine
language program stored in a cassette tape file.

If file name of the file to be loaded is specified, the MZ-80B system locates the
file; if file name is not entered, the machine will be loaded with the first BASIC
text file or machine-language program which the system encounters.

When the computer is loaded, it clears the current BASIC text area before accept-

ing the BASIC text; when a machine language program is loaded, the BASIC text
area is not cleared since the LIMIT statement is used to establish a machine lan-

guage program area behind the BASIC text area.

L
E
F
F
L
R
B

FIGURE 2.1

17

2.1.2 SAVE

Format

Function

Description :

2.1.3 VERIFY

Format

Function

Description

SAVE (file name)

This command automatically saves the program stored in the BASIC text area on
cassette tape.

file name is used to assign a name to the BASIC text file saved, so a suitable name
must be given to each file. Each file name is composed of a string of up to 16
characters. If no file name is specified, the BASIC program file will have no name

and later identification will be difficult.

VERIFY (file name)

This command automatically compares the program contained in the BASIC text
area with its equivalent text (file name: ‘file name’’) in the cassette tape file.

If the program and tape file coincide, “OK” will appear on the MZ-80B display

screen; otherwise, “ERROR” is displayed as follows.

”cgcloid”

loid"
cycloid"

FIGURE 2.2

When (file name) of a target file is specified, the MZ-80B system searches for the
file and compares it with the program to be verified if it is located; if { file name?
is not specified, the system compares the program with the first BASIC text file

which it encounters.

18

2.2 Text edition commands

2.2.1 AUTO

Format

Function

Descrip tion :

Example

2.2.2 LIST

Format

Function

Description :

Example

AUTO (s, n)

This command automatically generates definition line numbers when a program is
being entered in the indirect mode.

Supplying the system with this command produces definition line numbers in
specified increments each time the morm key is pressed, so the pro-

grammer needs only to input sentences of program text.

(Is) indicates the beginning line number, and {#n) indicates the increment; the
default value of both is 10.

The AUTO command is terminated when the key is pressed.

AUTO 200, 20 This generates definition line numbers 200, 220,240.......
AUTO This generates definition line numbers 10,20,30..........

LIST (Is-le)

This command causes all or some of the program lines contained in the BASIC
text area to be listed (displayed) on the computer screen.

To list the entire program, enter only the LIST command.

To list part of it, specify the starting line number (Is), the ending line number
(le) or both.

To stop program listing, press the space bar.

LIST This lists the entire program.
LIST 100 This lists line 100 only.
LIST 200- This lists line 200 and succeeding lines.

LIST -500 This lists lines 1 through 500.
LIST 200-500 This list lines 200 through 500.

19

2.2.3 LIST/P

Format

Function

Description :

Errors

2.24 NEW

Format

Function

Description

LIST/P (ls-le>

This command causes all or some of the program lines contained in the BASIC
text area to be listed on the printer.

The MZ-80P5 80-digit line printer must be connected in order to use this com-
mand.

The list range for this command is specified in the same manner as with the LIST

command.

Error 65 Either the printer is OFF state or disconnected
Error 66 Mechanical trouble with the printer

Error 67 Paper has run out of the printer

NEW

This command clears the program contained in the BASIC text area and resets all
variables.

This command puts the system in the state it was in after initial program loading,

making the system ready to accept a new program.

20

2.3 Execution control commands

2.3.1 RUN

Format

Function

Description :

2.3.2 CONT

Format

Function

Description

Note

RUN (Is)

This command executes the program stored in BASIC text area.

Program execution may be started at any desired line by specifying the line num-
ber (Is) in the command. In such cases, the values of variables assigned and the
contents of array elements are maintained just as when a GOTO statement is
executed to jump to another line during program execution.

If no line number is specified, program execution starts at the line with the small-
est line number. In this case, all variables are reset and the array declaration is

cancelled before execution begins.

CONT

This command serves to resume execution of program which has been interrupted
by pressing the key, or by a STOP statement.

This command is usually used during program debugging to continue execution
interrupted (by a STOP statement or the key), to check an intermediate
result or to change variable data in the direct mode.

To restart program execution at a line other than that at which execution was
interrupted, use RUN (line number), or GOTO (line number).

When any program editing is carried out in the indirect mode during a pause in

program execution, this command is not valid.

21

2.3.3 MON

Format

Function

Description

2.3.4 BOOT

Format

Function

Description :

MON

This command causes the system to leave the BASIC command level and awdit
input of a command at the MONITOR SB-1510 level.

As is indicated by the memory map (page 88), the system operates at either the
BASIC or MONITOR system level. This command causes execution to jump from
the BASIC to the MONITOR level.

The Monitor commands are M, D, J, S, V and L. For details regarding use of each
Monitor command and return operation from the Monitor level to the BASIC
interpreter level, refer to the MONITOR SB-1510 Reference Manual.

BOOT

This command activates the MZ-80B System IPL (Initial Program Loader).

IPL loads the system program from cassette tape or diskette into the memory.
The BASIC interpreter, the monitor program and/or the user program which are
currently stored in the memory area in which the system program is to be loaded
are erased.

Executing a BOOT command results in the same operation as results from turning
the power switch of the MZ-80B ON or pressing the IPL reset button.

22

2.4 Special function keys list command

2.4.1 KLIST
Format : KLIST
Function : This command displays a complete list of string definitions for special function

keys, thereby enabling you to determine how individual special function keys are
defined.

FIGURE 2.3

Chapter 3
BASIC SB-5510 Statements

This chapter describes all BASIC SB-5510 statements and system variables.

Statement format.

Statements must be coded according to the following rules.
B Small letters and reverse characters cannot be used for any statements.
® Operands which must be specified by thé programmer are indicated in italics.
® [tems in brackets “\)" may be omitted or repeated any number of times.

m Separators (commas, semicolons, etc.) must be correctly placed in the specified positions.

23

24

3.1 Assignment statement

3.1.1 LET

Format

Function

Description :

Note

Correct

Incorrect

(LET) v=e

Voo, A name of numeric variable, numeric array, string variable or string
array

€ Arithmetic expression, string connective expression, variable or con-
stant

Assignment of data expressed by e to a variable or an array element

The data represented by e and the corresponding variable or array must be identi-

cal in data type.

LET may be omitted.

Assignment and equal have different meanings, so that A=A + 1 is a correct as-

signment statement.

10 R(10)=R(10)+1

20 LETSI=SIN(TH*7w + C)>*x A

30 N3§ = “Give me file name”

I=1........ An assignment in direct mode

100 D§=A+B...... The left side is a string variable, while the right side is
numeric data. These are different data types.

110 LOG (K)=LK

23

3.2 Input/output statements

Broadly speaking, input/output statements are used for general control of the keyboard, display

screen, audio output, input/output terminals, printer and external data files. Here only the fundamen-
tal input/output statements (PRINT, INPUT, GET, READ-DATA-RESTORE) are discussed.

The other input/output statements are grouped under the headings of data file input/output,

music output, graphic output, printer output and input/output port access.

3.2.1 PRINT

Format

Function

Description :

PRINT (e; dyeydy....... én dn ?
BR oot o i i o Output data
R L p— Separator or tabulation function

This statement displays consecutive lines of the data (values of constants, varia-
bles, array elements and expressions) designated as output list, in order of listing.
The cursor works as the data output pointer. The data sets are displayed in sequ-
ence with the first line appearing immediately to the right of the position in
which the cursor is located before execution of the PRINT statement.

The data output format depends on the separator, TAB function and SPC func-
tion, as well as cursor control and reverse control codes included in the string
data.

If the data sets are omitted, the cursor advances down one line on the screen with-
out any data being displayed.

Numeric data output is displayed either in the standard format or in scientific no-
tation. Numbers larger in magnitude than 0.00000001 and smaller than 99,999,999
are displayed in the following form.

Blank
X—im = X Ko — = X

Each place is filled with a digit (from O to 9), and the total number of digits (not
including the units place when the number is less than one) is eight or fewer.

When the number includes a decimal point, it may be located between any two
digit positions. Positive numbers are preceded by a blank, and negative ones by

(13 2

the minus sign

26

The exponential display format is used for numbers which cannot be displayed in

the standard format. The exponential display format is as indicated below.

{Bljnk}_x _____ xs{ "}y

When the number is positive, it is preceded by blank; when negative, it is preceded
by a minus sign {“—"").

The mantissa (.X ——— X) is composed of up to eight numerals (from 0 through
9), with zeroes suppressed in the first and last positions. The exponent is a two
digit number YY (Y: O through 9) which is preceded by the exponential sign “E”

13 2

and the plus ““+” or minus sign :

FIGURE 3.1

String data output occurs in succession, starting from the point at which the
cursor is located.

If the string data is, for example, the PRINT statement control code responsible
for cursor control, the control operation will be performed. Since ASCII codes
$00 through $0OF (0 through 15) may also be spécified as data sets with the

PRINT statement, a summary of their functions is set forth below.

PRINT CHR$ ($00) No control.

PRINT CHRS$ ($01) Moves the cursor downward one line.
PRINT CHRS ($02) Moves the cursor upward one line.

PRINT CHRS$ (§03) Moves the cursor to the right one position.
PRINTCHRS$ ($04) Moves the cursor to the left one position.
PRINT CHRS ($05) Brings the cursor to the upper left hand cor-

ner of the display screen.

27

PRINT CHRS ($06) Clears the display and brings the cursor to
the upper left hand corner of the display
screen.

PRINT CHRS$ (§07) Deletes the character to the left of the cur-
sor and moves the cursor to the left one
position.

PRINT CHRS$ ($08) Opens one blank space to the right of the
cursor.

PRINT CHRS ($09) Sets the key input mode of the keyboard to
GRAPHIC.

PRINT CHRS$ ($O0A)............ Sets the key input mode of the keyboard to
SHIFT LOCK.

PRINTCHRS$ ($0B) No control

PRINTCHRS$ ($0C) Sets the key input mode of the keyboard to
REVERSE.

PRINTCHRS$ ($0D) No control

PRINT CHRS (S80E) «cxcc 55 smws s Cancels the GRAPHIC and SHIFT LOCK
key input modes.

PRINT CHRS$ ($OF) Cancels the REVERSE key input mode.

PRINT CHRS$ (§10~§1E) Prints one space.

Two or more output lists are punctuated by two types of separators which differ
in function.

; (Semicolon) Use of this separator results in display of
output lists on successive lines.

,(Comma) This separator causes output lists to be dis-
played in a tabulated format; i.e., the first
character of the followed output list will ap-
pear in the position corresponding to the
position of the forward output list plus 10
spaces. If the forward output list consists of
more than 10 characters, successive tabula-
tion is performed in 10 spaces increments as
required to prevent overlapping.

The TAB function (see paragraph 4.3.1) and SPACES$ function (see paragraph
4.2.4) are used to control tabulation in the PRINT statement, allowing any

desired tabulation.

28

3.2.2 INPUT

Format

Function

Description :

INPUT (String message ;) v, v, ——, vy)
B s ios @ A name of numeric variable, numeric array, string variable or string
array

This statement momentarily interrupts program execution to allow entry of data
(numeric constant, string constant) from the keyboard, and assigns the data input
in sequence to the variables or array elements (referred to as the input list) speci-
fied in the statement.

Execution of this statement causes a question mark (?) to be displayed and the
cursor to flicker to indicate that the system is awaiting data entry. If the state-
ment includes a string message, the system displays that message instead of the
question mark. A semicolon is used to separate the string message and the input
list.

When the input list includes two or more variables or array elements, the input
data is punctuated with commas (,). Data entry is concluded by pressing the
(or [ENT)) key. |)

When the number of data constants entered is smaller than the input list, the MZ-
80B system displays “?” on the following line and awaits entry of subsequent
data; when the number of data constants is greater than the input list, the excess
constants are ignored. The data constants and the input list must be of the same
data type. Spaces entered ahead of and behind string data are ignored. Normally,
a string constant can be entered without being enclosed in quotation marks when

it is preceded or followed by a space or when it includes a comma.

FIGURE 3.2

29

3.23 GET

Format

Function

Description :

V... .. A name of numeric variable, numeric array, string variable or string
array

During program execution, this statement will ascertain what key is being pressed
and will assign the data to a corresponding variable or array element.

This statement, when executed, assigns the individual data entered when a key is
pressed to a specified variable or array element; when no key is pressed, “0”
(zero) is assigned to a specified numeric variable or numeric array element and
(null string) is assigned to a string variable or string array element.

The GET statement allows the entry of one character of key input data each time
it is executed. When the input is numeric data, it is one of integers O through 9;
when the input is string data, it consists of one character. When two or more keys
are pressed, only the key with the highest priority is valid. Numeric variables or

array elements will not accept any input from other than a numeric key.

3.2.4 READ ~ DATA

Format

Function

Description

READ v, {,vy, ——, vy

DATA d,{,d,, ——,dy?

Vpswsewsn A name of numeric variable, numeric array, string variable or string
array

d;....... A numeric constant or a string constant

A READ statement reads a data table described in a DATA statement and assigns

it to variables or array elemeénts.

The READ and DATA statements are used in pairs. Each DATA statement con-

tains a data table composed of one or more statements, and the related READ

statement reads the statements one after another and assigns them one by one to

the individual variables or array elements of the input table. Accordingly, data

present in the data table and the variable or array elements present in the corre-

sponding input table must be of the same data type. If they do not agree, Error 4

(data mismatch) occurs. If the data table of a DATA statement is exceeded during

execution of the related READ statement, Error 24 (Out of DATA) occurs.

30

3.2.5 RESTORE

Format

Function

Description

If another READ statement is executed after the preceding one has read half of
a data table, the remaining data is read without interruption.

The RESTORE statement can be used to fix the position of the data table that is
to be read by the READ statement to be executed next.

RESTORE (line number)

This statement positions the data read pointer at the beginning of the first data
table to be read by a READ statement, or to a data table with a specified line
number.

Given no operand, this statement restores the data read pointer to the beginning
of the first data table; that is, to the beginning of the DATA statement with the
smallest line number. If {line number) is specified in the operand, the pointer is
restored to the corresponding DATA statement, or to the beginning of the follow-
ing DATA statement.

31

3.3 Loop Statement

3.3.1 FOR ~ NEXT

Format

Function

Description:

FOR cv =iv TO fvr (STEP sv)

NEXT (cv?)

& vy nma control variable : numeric variable or array element

wo..o..... initial value : numeric constant, variable, array element or expression
fr ... final value

S i smmnes step value

These statements cause a specified routine to be repeated.

The control variable for the repeat block (loop) consisting of the FOR ~ NEXT
statements is first filled with an initial value. The NEXT statement is executed at
the end of the routine. The increment specified by step value is then added to the

value of control variable.

~ If the sum is below the final value, program execution returns to the executable

statement directly behind the FOR statement to repeat the routine.

The step value is usually a positive increment, but negative ones may be used as
well. When the step value set is a negative increment, the final value must be set
below the initial value. The loop is executed until the value of the control variable
is smaller than the final value. If the step value is not given, the increment is fixed
at 1.

Mult'iple loop

FOR ~ NEXT loops may be overlapped in multiple layers. In such cases, however,
these loops must be nested. Inner loops must be entirely contained within outer
loops, and all loops must use different control variables.

The nest may contain a maximum of 15 loops. If multiple layers end at the same
location, then they can be collected in one NEXT statement. At such times, the
operand of the NEXT statement must contain a string of control variable labels

that are separated with commas, starting with the label of the innermost loop.

32

Example

Incorrect

If the NEXT statement corresponds to the last FOR statement, its control variable

label can be omitted.

Program
10 FOR X=1TO 9
20 FOR Y=1 TO 9
30 PRINT X*Y ; :‘ inner loop
40 NEXT Y
50 PRINT
60 NEXT X
70 END

outer loop

Number of nested layers is 2. FIGURE 3.3 shows a result of execution of this

multiple loop.

Program

100
110
120
130
140
150

-
-

€MZoVZuUMM

zgommmmmmm

axn
e 0

na o
MU LWDN

BN
AHWWNGD

WWNNNG U
w~

N
NLLWWD ~»O

wh
OB BN
NAOOE® NO
O~OUVIAD
PRWAN

I
1
2
3
3
S
6
7
e
Ul
i
2
3
3
S
6
7
8
=l

JPYTCRVENENEN, T, WX N

£ OMBND
NBROU PO
ONOLE PO
ADUEU BN
AONO® A
WOWNUT NG

wo
m
w

FIGURE 3.3

FV =30
FOR N=0 TO FV STEP 3 —
PRINT A$(N)

FOR I=1 TO §

PRINT A (N, D),

NEXT N, I =

loop are not nested

If the system encounters a NEXT statement without a corresponding FOR state-

ment, Error 13 occurs.

If more than 15 loops are nested, Error 11 occurs.

33

3.4 Branch statements

34.1 GOTO

Format

Function

Description:

GOTO Ir

Ir . .. reference line number

This statement causes program operation to jump unconditionally to the statement
on line number Ir.

If the statement on line number /r is executable, it and subsequent statements will
be executed; if it is non-executable, program execution jumps to the first sub-

sequent executable statement.

3.4.2 GOSUB ~ RETURN

Format

Function

Description:

GOSUB Ir

RETURN

Ir . . .reference line number

This statement unconditionally transfers program operation to the subroutine be-
ginning on line number Ir ; after execution of the subroutine, program operation is
returned to the line immediately following the GOSUB statement by a RETURN
statement at the end of the subroutine.

A subroutine is a sequence of statements that is used to process a specific type of
problem at one or more points in the program. Use of subroutines to handle repeti-
tive occurrences of such problems allows the available BASIC text area to be used
more efficiently by shortening the program text, contributing to systematic pro-
gram construction.

Up to 15 levels of subroutines may be invoked either by the main program or by
higher level subroutines.

The GOSUB statement achieves program branching, and the corresponding RE-
TURN statement at the end of the subroutine causes program return. Each RE-

TURN statement must, of course, correspond to one GOSUB statement.

34

3.43 IF ~THEN

Format

Function

Description:

IF e THEN Ir

IF e THEN statement

e relational or logical expression

Ir. ... reference line number

This statement evaluates the state described by a relational or logical expression,
and causes conditional branching depending upon the result.

If a relational expression is true, or if the specified conditions of a logical expres-
sion are fulfilled, the program process following THEN in the sentence is executed.
When a reference line number follows THEN, program operation jumps to the indi-
cated line. THEN c;an also be followed by other statements, which allows construc-
tions such as IF THEN IF ~ .

If a relational expression is false, or if the specified conditions of a logical expres-
sion are not satisfied, program execution advances to the following line and the
program process following the IF ~ THEN statement is ignored. The logical dia-
gram below illustrates the function of the IF ~ THEN statement.

IF statement

False

expression

To the next specified
line

Jump to the line specified
by Ir

IF ~ THEN is followed by a specified
statement, it is executed and program
execution then proceeds to the execut-
able statement.

FIGURE 3.4 Function of the IF ~ THEN statement

35

Example

Practice

Cautionary notes on comparison of numeric data
Every numeric value handled by BASIC SB-5510 is internally represented in the
binary floating decimal point system. Binary notation does not always provide for
exact representation of numbers other than integers; it should therefore be noted
that when a relational or a logical expression which includes the result of a mathe-
matical operation is subjected to a comparison test, the expected program opera-
tion may or may not be performed depending on whether there is any disagree-
ment between the result of the mathematical operation and the expected result.
Discrepancies may also exist between the value expressed in internal notation and
that output in external notation. For example, even when the result of an opera-
tion is mathematically expected to be an integer, the value expressed in internal
notation may not be an integer if any data other than integers is processed.
Internal representation of the numeric value of (ten times the value obtained by
dividing 1 by 10) and that of the integer 1 differ from each other.
Program

10 A=1/10%10

20 IF A =1 THEN PRINT “TRUE” : GOTO 40

30 PRINT “FALSE”

40 PRINT “A=";A

50 END
Operation
RUN................ entered from the keyboard
FALSE 1)
......... display on screen
A= 1 |

This result shows that the internal value of A differs from the mathematically
expected value since “TRUE” was not printed, and it also shows the error is
not in the first 8 decimal places since the number display is 1 (the expected
value). However, if the IF statement is of the form;
IF ABS(A—-1)<.1E-8THEN...

the value of A will be compared with 1 to an accuracy of 1/108.

1) Varying the accuracy of comparison, determine what degrée of error exists
between the value of A and 1.

2) Determine whether or not any error occurs when the arithmetic expression
10 A=1>10/10 is evaluated.

36

344 IF ~GOTO

Format

Function

Description :

3.45 IF ~GOSUB

Format

Function

Description :

IF e GOTO Ir
B 3535 a8 relational or logical expression
IF iiains reference line number

This statement evaluates the state represented by a relational or logical expres-
sion, and causes branching according to the result.

This statement induces conditional branching in the same manner as the IF ~
THEN statement; the statement causes program operation to jump to line number
Ir when specified conditions are fulfilled, and advances program execution to the
following line when the conditions are not fulfilled. IF ~ GOTO Ir and IF ~
THEN Ir have identical functions; however, multi-statements following an IF ~

GOTO statement have no meaning in program execution.

IF e GOSUB Ir

8 yxa s relational or logical expression

W iwis reference line number

This statement evaluates the state represented by a relational or logical expres-
sion, and causes program operation to jump to a subroutine according to the
result.

This statement, like the IF ~ THEN statement, activates conditional branching; it
calls the subroutine beginning on line number /r when specified conditions are
satisfied. Return from the subroutine will be made to the first executable state-
ment following the IF ~ GOSUB statement (or to a statement preceded by the IF

~ GOSUB statement when it includes a multi-statement).

37

3.4.6 ON~ GOTO

Format

Function

Description:

ON e GOTO Iry (, Iry, Iry,...., Ir,)
enumeric variable, array element or expression
Ir;. ... reference line number

This statement causes program operation to jump to one of several specified line
numbers according to the value of the expression e.

The target lines of a transfer caused by ON ~ GOTO statements are specified by
placing the corresponding reference line numbers after GOTO — with each line
number separated by a comma (,). Any number of line numbers may be specified
provided they can be placed on one line. Transfer to the first line specified will be
made if the integer part of the value of the expression is 1; transfer to the second
line specified if the value is 2, and so forth. If the value of the expression is less
than 1, or if its integer part exceeds the number of line specifications made, pro-
gram execution advances to the first executable statement following the ON ~:
GOTO statement.

If the internally represented value of the expression is not an integer, its integer
part decides the target line for the transfer; e.g., when the internal representation
of value A is 1.9999999, transfer is made to the first target line specified. Accord-
ingly, it is necessary to consider the internal representation of each value of the

expression being used. (See the description of the IF ~ THEN statement.)

3.47 ON ~ GOSUB

Format

Function

Description :

ON e GOSUB [r; (,Iry, Iry,..... , Ir,)
e numeric variable, array element or expression
Wi wai reference line number

This statement calls one of several subroutines whose line numbers are specified.
The ON ~ GOSUB statement is fundamentally the same as the ON ~ GOTO state-
ment, but differs in that program operation returns to the first executable state-

ment following the ON ~ GOSUB statement after execution of the subroutine.

38

3.5 Definitive statements

3.5.1 DIM

Format

Function

Description:

DIM q, (i) ¢, ay (i3),....,an (in))

DIM b, (iy, j1) €, by (15 72) s -+ s by (in 5 7n)?
ai one-dimensional array

bi. ... two-dimensional array

in,jndimensions

This statement declares the dimensions of one-dimensional or two-dimensional
arrays and secures necessary memory area.

Use of either one-dimensional or two-dimensional arrays (numeric or string arrays)
requires that the size of each array be declared by the DIM statement.

The subscripts which indicate the elements of an array can be expressed with any
numbers from 0 to 255, but the range of usable numbers may be limited according
to how the memory is used.

When two or more arrays are declared they must be punctuated with commas (,).

Array declaration for the one-dimensional array (list)

DIM A (20)..... This prepares 21 array elements — A (0) to A (20) — for one-
dimensional numeric array A ().

DIM ST$ (99) . .. This prepares 100 array elements — ST$ (O) to ST$ (99) — for

one-dimensional string array ST$ ().

Array declaration for the two-dimensional array (table)

DIM N1 (5,11) This prepares 72 (6x12) array elements — N1 (0, 0) to N1
(5, 11) — for two-dimensional numeric array N1 (,).

DIM S§ (11, 30) This prepared 372 (12x31) array elements — S$ (0, 0) to S$

(11, 30) — for two-dimensional string array S$ ().

On execution of the DIM statement, all elements of the declared array are loaded

€C

with O (zeroes), or “”’ (null string).
If any array is specified which is larger than the declared array size, Error 7 (Di-
mension Overflow) occurs.

Execution of the CLR statement disables all array declarations.

39

3.5.2 DEF FN

Format

Function

Description:

Example

DEF FNf(x)=e

fname of function: one of the alphabetical capital letters A~Z
xname of variable: one of the alphabetical capital letters A~Z
€numeric expression

This statement can be used to define any single-variable function.

The name of each function to be defined can be specified by putting an appro-
priate alphabetical character directly after FN, and the name of the variable to
which the desired function is to be assigned can be specified by placing the corre-
sponding set of characters in parentheses following the name of the function. Ac-
cordingly, a maximum of 26 user functions may be coricurrently defined. The
statement may also be used to define nested functions by placing the definitive
expression of a previously defined function in the function which is currently being
defined. Nested functions may contain a maximum of 5 levels of definitions.

If functions are nested beyond this limit, Error 12 (Function Nesting) occurs. A
single DEF statement can define only one user function.

Examples of definition of commonly used functions other than those built into the
system (trigonometric, inverse trigonometric, and hyperbolic functions) are given
in Table A.4 at the end of this manual.

FIGURE 3.5 shows a graphic display using two defined functions.

,_
.
=7

ITIELW

F=53

R
1

FIGURE 3.5

40

Correct

Incorrect

3.5.3 DEF KEY

Format

Function

Description:

10 DEF FNA(X)=TAN (X —7m/6)
20 DEF FNB (X)=FNA(X)/C+X
. FNA (X), a function previously defined, is used in the definition of FNB (X).
Nested function.
10 DEF FNK (X)=SIN(X/3+7/4),FNL(X)=X "2
....DEF and FN are not coupled.

DEF KEY (k) =s

k....key number:1~10

Scharacter string

This statement defines function for any of the ten function keys.

A number from 1 through 10 is assigned to key number, and a string or command
representing the function is indicated on the left of the definitive expression. The
carriage return function may be included in each function assigned to a special
function assigned to a special function key; if the W and fm keys are

simultaneously pressed, the =3}’ symbol is input, so that the carriage return func-

tion is performed when the function key is pressed.

If two or more DEF KEY statements are executed against the same function key,
only the last definition is valid.

When defining a multi-command or multi-statement to a special function key, use
“1” as a separator. For example, when the multi-command, LOAD: RUN ,
is defined to special function key 1, execute DEF KEY (1) = LOAD! RUN —
For the KLIST command, “!” is displayed as “:”.

Compeuter MZ-Z0E

F
F
F
F
3
F
'EF

MZ-Z29E

FIGURE 3.6

41

3.6 Remark statement and control statements

3.6.1 REM
Format : REM r
r....aremark message
Function : This statement refers to a comment statement contained in the program list.

 Description: The REM statement, a non-executable statement, serves as a comment statement to
make it easy to review the program list. When this statement is encountered during

program execution, execution jumps to the next executable statement.

42

3.6.2 STOP

Format

Function

Description:

3.6.3 END

Format

Function

Description:

3.64 CLR

Format

Function

Description:

STOP

This statement stops program execution and returns system operation to the com-
mand level.

Execution of a STOP statement stops program execution and displays “Stop in I”’,
where [is the number of the line at which program execution has been interrupted.
This allows data content to be checked. The CONT command serves to restart pro-
gram execution. (For details, see the CONT command.) The STOP statement,

unlike the END statement, does not close any files (see below).

END

This statement terminated program execution and returns system operation to the
command level.

Execution of this statement terminates program execution, closes all files, displays

the message “Ready”’, and returns system operation to the command level.

CLR

This statement clears all variables and arrays.

This statement sets the value of all numeric variables to 0 (zero), and clears all
string variables; it also cancels dimensional declarations for all arrays.

Hence, when an array is required after the CLR statement has been executed, it

must be redeclared by executing the DIM statement.

43

3.6.5 CURSOR

Format

Function

Description:

3.6.6 CSRH

Format

Function

Description:

CURSOR x, y
X ..., X-coordinate : arithmetic expression
Yoo Y-coordinate : arithmetic expression

This statement positions the cursor on the display.
Messages issued by a PRINT or an INPUT statement appear beginning at the cursor
position.
The CURSOR statement can move the cursor to any position on the display. Co-
ordinate data carried by the CURSOR statement is represented by arithmetic ex-
pression. The data may be composed of integers within the following range for the
80-character and the 40-character modes:
m 80-character mode

X-coordinate : 0 to 79

Y-coordinate : 0 to 24
® 40-character mode

X-coordinate : 0 to 39

Y-coordinate : 0 to 24
If the value of arithmetic expression is not an integer, its decimal fraction is dis- .

carded. The Y-coordinate may extend beyond the scrolling area.

CSRH
This is a system variable Which indicates the current location of the cursor on the
horizontal axis. .
The cursor position changes each time the CURSOR, PRINT, or INPUT statement
is executed, and its X-coordinate is shown by this variable. The value this function
takes stays within the following ranges for each character display mode:
80-character mode: 0 < CSRH £ 79
40-character mode: 0 < CSRH £ 39

44

3.6.7 CSRV
Format : CSRV
Function : This is a system variable which indicates the current location of the cursor on the

vertical axis.
Description: The value CSRV takes stays within the following range for both character modes

mentioned above:

0<CSRV<E 24
3.6.8 CONSOLE
Format : CONSOLE (Sis, le) (,Cn) {,R) (,N)
I wsxsps start line of the scrolling area
[& .iinus end line of the scrolling area
B cssoasa number of the characters/line
Function : This statement fixes the scrolling area of the display, changes the character display

mode between 80 characters/line and 40 characters/line, or character and graphic
display mode between reverse mode and normal mode.
Description: The operand of the CONSOLE statement determines which of three functions
shown below are activated.
®m Fixing the scrolling area
CONSOLE Sis,le The top line refers to line O of the display and the
bottom line to line 24. .ls and /e fix the scrolling area.
Herce, 0 Is < le < 24.

This area, however, must cover at least three lines.

(1]

NZNNTOOO OO0
=B W

- 4
Lol ol e el d NIV (9799

=== D Z V6 —~TNW—
A ==X P o

TUCTIMMOO | CCX

=

ADZ O N~
mmoo M
—X—=03X

Z

UB
M<
T
UR
+1
IN
N
S P
AB:
+1
N
+1
™
NT
>
u

FIGURE 3.7

45

®m Changing the character display mode

CONSOLE C80...... This sets the character display mode to “80 charac-
ters/line”

CONSOLE C40...... This sets the character display mode to “40 charac-
ters/line”

,_

=

%“
Sonened

N 3
]

:PRINT CHR$(6) : TEMPO 6
R$(68) +CHR$ (68)

?7) :F§=CHR$(204) +CHR$(204)

4

1o
=3

: 1$=CHR$ (252) +CHR$ (252)

SRR

KRS (1) :P=i Ri(3) AR
A AT A ILL S BE e DS DA IME DI SHEPGEIOEIPEDERCEAEHIE
SHHSHCS NS 1B sHEHHS #HS + TS +DSHMS DS 4DSHHS +ASHCS+KS4DSHBE+DS+1S

#wOWI ~T~ %

+ 6+
SEEaTIssess
e
ggigg

118$TB’
ONX, Y:PATTERNLG, 11§

BiE
SEsagns
§3§E*

!
g
=

RS

2685 TEP3

185TEP28

¥ :PATTERN{6, 128

{ SOSUBZGBETGSGPHOZ :60SUB2168:60T018688
1CBRCC" -RETURN

FERUN
g@%ﬁ“
o

f 0
R1686-G'
R

-2
3
g8

FIGURE 3.8

® Changing the character and graphic display mode
CONSOLE R This sets the character and graphic display mode to
reverse mode.
CONSOLE N This sets the character and graphic display mode to

normal mode.

FIGURE 3.9

46

3.6.9 CHANGE

Format

Function

Description :

CHANGE

Reverses the function of the key concerned with alphabetic keys.
Small letters are input from the keyboard by pressing the key after
the BASIC interpreter has been activated. This is convenient for entry of BASIC
commands and statements, which mainly consist of capital letters. However, it
is natural to input messages with capitals entered by pressing the key
in the same manner as with an ordinary typewriter. This can be achieved by issu-
ing the CHANGE statement. Issuing the CHANGE statement again returns the
function of the key to its original condition.

CJC I

]m[J[](][__J[J[JJ TAPE CONTROL

CURSOR KEYS - -]

(e) (F2) (k) (re) (rs) (CFe) (F7) (k8] (F9] (Fro] W@@E

EUUUULJL_Q Sl =] [EHE g g

\

o
~

) ,
_ . @ & || liome) ||| Dec 1“] 5
[V)

00

H SHIFT 0

LINT =
e B e

-Zm

)
]

2

3.6.10 REW

Format

Function

Description :

FIGURE 3.10 Locations of alphabetic keys

REW

This statement rewinds the cassette tape.

The REW statement operates in the same manner as the cassette deck key.
The system executes the next statement immediately after the REW stétement
has been issued to the cassette tape deck. The cassette tape deck w‘illviza'utc‘)matic-
ally stop when rewind is completed. If no cassette tape is loaded, no operation is

performed and the next statement is executed.

47

3.6.11 FAST

Format

Function

Description :

3.6.12 SIZE

Format

Function

Description :

3.6.13 TI$

Format

Function

Description :

FAST

Fast-forward the cassette tape.

The FAST statement operates in the same manner as the cassette deck (FF) key.
The system executes the next statement immediately after the FAST statement

has been issued to the cassette tape deck.

SIZE

This variable shows the amount of unused memory area.

In detail, this variable shows the number of bytes of unused BASIC program
memory area.

If “PRINT SIZE” is executed, the number of bytes of unused BASIC memory

area is displayed on the screen in decimal notation.

TI$

This system variable is a 6-digit string which represents the current time told by
the built-in clock.

The clock indicates the current time with the six digit number of the TI$ variable
as it ticks off seconds. This variable shows the hour with its first two digits, the
minute with the next two digits, and the second with the last two digits. For
example, when TI$ is “131753”, it indicates that the clock time is 13 hours
17 minutes 53 seconds. TI$ begins with “000000” when the BASIC interpreter
is activated. The clock may be adjusted to any time. To adjust the clock to 8:00
pm according to a time signal, enter the string TI$ = “200000” and input a car-
riage return at the moment the time signal occurs. Of course, indication is made
within the following limits:

00 to 23 hours, 00 to 59 minutes, 00 to 59 seconds.

48

3.7 Music control statements

3.7.1 MUSIC
Format : MUSIC x§$
x$..... string data
Function . This statement automatically plays music.
Description : Musical data is composed of string data which symbolize musical notes; the

tempo of the musical performance is as set by the TEMPO statement.

The following indicates how the melody or sound effect is converted into string
data.

Musical notes are assigned according to pitch (octave and scale) and duration;

a musical note (octave assignment) { # (sharp)) scale { duration)

Octave assignment

The sound range covers three octaves as shown in Figure 3.11.

\/O =
— a2

(s O
‘\" O"
) co®

° e

. - D

A

| Low range | | Mid-range | | High range |

- Not assigned +

FIGURE 3.11

The black points indicate C notes, and the three C notes are separated by octave
assignments as follows;
10w C somet:iuanmns s -C

49

Scale assignment

CDEFGAB and # are used for scale assignment.

Relationship between the scale and CDEFGAB is shown in Figure 3.12. The #
symbol is used for semitone assignment.

Rests (no sound) are assigned with R.

do| re |mi| fa |sol| la | ti
| |] | | Rest
E F|G|A|B

#C #D #F #G #A R

FIGURE 3.12

Duration assignment
This assignment determines the duration of a note whose pitch has already been
assigned. Note durations from thirty-second to whole are assigned with numbers

from 0 to 9 as shown in Figure 3.13. This assignment also applies to rests (R).

i 7 7 v 7 2 2 - - -
32nd 16th Dot 16th 8th Dot 8th Quarter Dot quarter Half Dot half Whole
rest rest rest rest rest rest rest rest rest rest

5 P J b > 4 Ex o
32nd 16th Dot 16th 8th Dot 8th Quarter Dot quarter Half Dot half Whole
note note note note note note note note note note

0 1 2 3 4 5 6 7 8 9

FIGURE 3.13
When notes of identical duration are repeated, duration assignment for the second
note may be omitted.
If no duration assignment is made, program execution is carried out with quarter
note durations (duration 5) regarded to be assigned.
Example Substitute the 2 octave G major scale into G$ using quarter and eighth notes and

play G3.
10 G$=“~G5-A3-BCDE#FG5A3B+C+D+E+#FG8R5”
20 MUSIC GS$

50

3.7.2 TEMPO
Format : TEMPO x
X ..., an integer from 1 through 7
Function . This statement sets a musical tempo.

Musical notes contained in MUSIC statements are played at a speed corresponding
to the tempo set with this statement.
Tempo data represented by x must be an integer from 1 through 7. ““1” activates
the slowest tempo and “7” the fastest tempo:

TEMPO1 Lento, Adagio (slowest speed)

TEMPO 4 Moderato (medium speed)

TEMPO 7 Molto Allegro, Presto (fastest speed)

51

3.8 Graphic control statements

3.8.1 GRAPH

Format

Function

Description :

Example

GRAPH (Ia) (, Ob) (, C) (, F)

@ 5 5010 graphic area number : 1 or 2

(s graphic area number : 1,2, 12 or 0

This statement sets the graphic input or output mode and clears or fills the graphic
memory area.

This statement performs the following four functions; the particular function

performed depends on the operand of the GRAPH statement.

Assignment of the graphic input mode to graphic areas

GRAPH I1..... Assigns the graphic input mode to graphic area 1.
GRAPH 12..... Assigns the graphic input mode to graphic area 2.
® Assignment of the graphic output mode to graphic areas
GRAPH O1 Assignsthe graphic output mode to graphic area 1.
GRAPH 02 Assigns the graphic output mode to graphic area 2.
GRAPH 012 ... Assigns the graphic output mode to graphic areas 1 and 2.
(or O21)
GRAPH OO Resets the graphic output mode.
® Clearing graphic areas
GRAPH C Clears the graphic area that is in the graphic input mode.
® Graphic area filling
GRAPH F Fills the graphic area that is in the graphic input mode.

Graphic display information is stored in areas that are in the graphic input mode
by the GRAPH, SET, RESET, LINE, BLINE, or PATTERN statements, whole
data contained in areas in the graphic output mode is displayed on the screen.
Other information appearing on the screen may be overlaid with information
stored in graphic areas 1 and/or 2.

Operands of the GRAPH statement may be punctuated by commas (,).

The GRAPH statement shown below clears graphic data from the display, puts
graphic area 2 in the input mode, clears graphic area 2, puts graphic area 1 in the

input mode, clears graphic area 1 and puts graphic area 1 in the output mode.

GRAPH 00,12,C,11,C, Ol

52

3.8.2 SET

Format

Function

Description :

Example

SET x,y
X ... numeric data : X-coordinates
Voo, numeric data : Y-coordinates

This statement sets a dot in any position in a graphic area operating in the input
mode.
The dot position is specified with X- and Y-coordinates. As shown in Figure
3.17, the X-coordinate of the graphic area can range from 0 to 319 — from left to
right — and the Y-coordinate from 0 to 199 — from top to bottom. If specified
coordinates lie outside of the graphic area they are ignored and no error occurs as
long as the coordinates stay within the following ranges:

0 X-coordinate = 16383

0 £ Y-coordinate £ 16383

If the limits of the graphic area are exceeded during a sequence of operations,

IIA

interruption of program execution does not occur as long as data stays within

these ranges.

Figure 3.14 shows a graphic display using the SET statement.

-

S
a
a
=]
+
B
=]

[y
MZWONG
ZMomon
OX DD

FIGURE 3.14

53

3.8.3 RESET

Format

Function

Description

Example

RESET x,»
®ieeaa numeric data : X-coordinates
Voeuuo. numeric data : Y-coordinates

This statement resets any dot in a graphic area operating in the input mode.
Specification of dot positions with X-Y-coordinates and the range of the out-
of-area coordinates are the same as for the SET statement.

The following program is intended to fill graphic area 1 and draw concentric
circles with radii of 10, 20,30 ..., 150.

Coordinates outside the graphic area are ignored.

Figure 3.15.

Program
10 GRAPH I1, F,01: FOR R=0 TO 150 STEP 10
20 FOR T=0 TO 2 STEP 0.01
30 RESET R>*xCOS (T>w) + 200, R>*SIN (T>m)+ 160
40 NEXT T, R
50 END
Operation

Figure 3.15 shows the result of execution this program.

FIGURE 3.15

54

3.8.4 LINE

Format

Function

Description

Example

3.8.5 BLINE

Format

Function

Description :

LINE X1,Y15X2,)2 < s X35,Y35 - 5Xn,Vn)
X; numeric data : X-coordinates
¥; numeric data : Y-coordinates

This statement draws a line in the graphic area that is in the input mode.
This statement draws a line by setting dots from the first set of coordinates to
the second set of coordinates. When the operand specifies three or more sets of
coordinates, the system draws corresponding segments one after another.

Drawing a square in the graphic area 1.

GRAPH 11,C,01
ReR8Y130, 180,220,150, 190,60, 166,

FIGURE 3.16
BLINE X1,YV15X%X2,Y2 € 2 X35Y35 -5 X0, Vn)
X; numeric data : X-coordinates
¥Y; numeric data : Y-coordinates

This statement draws a black line in a graphic area.
The procedure for drawing a black line and for describing the operand are the

same as for the LINE statement.

55

3.8.6 POSITION

Format

Function

Description :

Y-coordinates

POSITION x,y
X s s 3 numeric data : X-coordinates
Paan s numeric data : Y-coordinates
This statement sets the location of the position pointer in the graphic area.
The PATTERN statement is executed starting at position coordinates indicated
by the position pointer. The position pointer moves each time any one of these
statements is executed. The POSITION statement specifies the coordinates to
which the pointer is to be moved.
The position pointer can be set to any point within the following maximum and
minimum limits.

0 £ X-¢oordinate £ 319

0 £ Y-coordinate = 199
Because, the graphic display area extends only from O to 319 on the X axis and
from 0 to 199 on the Y axis. Figure 3.17.

X-coordinates

00 319

199

FIGURE 3.17

Position pointer

The position pointer indicates the dot position in the graphic area. The pointer
is controlled by graphic control statement PATTERN.

Execution of a statement moves the position pointer to the position indicated.
Thus, the position pointer has a function similar to that of the cursor for

character display.

56

3.8.7 PATTERN

Format

Function

Description :

PATTERN (x;,)> x83 (,x53) {(,x28) Coxp) (L,x,8)
X; eunn. numeric data : number of layers
x;$ string data : dot pattern data in units of 8 bits

This statement draws a desired dot patternin the graphic area which is in the input
mode.

The statement includes a number of pairs of numeric values and string variables
separated by commas.

The string variable specifies the arrangement of dots in a single line of the graphic
pattern, and the numeric value indicates the number of layers of that line. The
pattern is drawn starting at the location specified by the position pointer. The
position pointer moves automatically as the statement is executed.

The direction in which lines are stacked depends upon the sign of the numeric

__»

value. If the value’s sign is , stacking progresses from the top down; if the
value is positive, stacking is performed in the opposite direction. Any number
of layers of dots may be stacked, but any dots outside the graphic area are not
displayed. When the operand does not include a numeric value to specify the
number of layers, the data last specified serves as the default value.

The default value when BASIC is activated is “8”. Dot patterns are given in
units of 8 bits, and dot units of 8 dots each are set along the X axis from the
location of the position pointer according to each 8 bit unit. Since each unit
consists of 8 bits, there are 256 possible combinations of dots. Each combination
is expressed as a binary number.

For example, the following dot-pattern is given by binary number “010011107,
or decimal number 78. This dot pattern is represented by string data CHR$(78)

or CHR$($4E).

——
Dots to be set

FIGURE 3.18

_String constant “N”” may be used in this case because CHR$(78) = CHRS$(34E)

= ‘GN’7‘
If A = “ABCDEFG”, for example, the graphic pattern shown below is drawn
when the following PATTERN statement is executed:

PATTERN -5, A$

57

5 layers 3

The position pointer starts here.
| ‘

The position pointer stops here.

FIGURE 3.19

The 8-dot pattern is drawn from the top downwards because the numerical value
specified by the operand is negative —5, and “FG” moves to the right as it is

drawn since a S-layer stack is specified.

Example Let’s produce Gothic characters as a graphic pattern. Let capital letters be formed
of 16 x 16 dot patterns and small letters of 16 x 8 dot patterns, keeping in mind
that dots are set along the X-axis in units of 8 dots each. Dot pattern data is gen-
erated by writing each character on graph paper. For example, A’ is written on
graph paper as shown in FIGURE 3.20. This 16 x 16 dot pattern data is stored in
array CL$ (1). The layer is to be stacked from the top downward.

Then, the array is given by
CLS$ (1) = CHRS$ ($10) + CHRS ($28) + ———— + CHRS$ ($00)
In a similar manner, CL$ (1) through CL$ (26) and SL$ (1) through SL$ (26) are
given data. Then, issue
PATTERN —16, CLS$ (1)
and Gothic type will be displayed on the CRT screen.
$10 \ $10
$28 $20
$26 $A0
$66 $60
$66 $60 a WG TE@OMND
L o WHORCTUBBED T
$26 $60 e)
$16 $60 abcdefahis fInmoparstu
$24 $60
$08 $60 tuvinrh 386
$18 $60
$0C $68
$06 $F0
$03 $60
300 $00
$00 $00

FIGURE 3.20 Die Fraktur

58

3.8.8 POINT

Format

Function

3.8.9 POSH

Format

Function

3.8.10 POSV

Format

Function

POINT (x,y)
X..... numeric data : X-coordinates
Yo numeric data : Y-coordinates

This function scans graphic areas to determine whether specified dots are set or
reset.
The results are indicated by numerals O through 3.

Result of the

POINT function Point information
0 Points in both graphic areas 1 and 2 are reset.
1 Only point in graphic area 1 is set.
2 Only point in graphic area 2 is set.

3 Points in both graphic areas 1 and 2 are set.
When the system is provided only with graphic area 1, the result of the POINT
functionis O or 1.
With this statement, for example, the coordinates of the intersection of two

curves can be obtained.

POSH
This is a system variable which indicates the current location on the horizontal
axis of the position pointer in the graphic display area.

The value POSH takes stays within the following range:
0 <POSH £ 319

POSV
This is a system variable which indicates the current location on the vertical axis
of the position pointer in the graphic display area. The value POSV takes stays

within the following range:

0< POSV £ 199

59

3.9 Data file

3.9.1 WOPEN/T

Format

Function

Description :

3.9.2 PRINT/T

Format

Function

Description :

Note

Example

input/output statements

WOPEN (/T) (file name)

This statement opens a cassette file to allow a sequential data file to be written on
cassette tape.

The WOPEN/T statement declares “Write Open” for each sequential data file, and
file name specifies the name of the sequential data file to be written.

If the WOPEN/T statement has been executed, numeric and string data are
assembled in sequence in the memory when the PRINT/T statement is executed.
This data set is not stored on cassette tape as a sequential data file until the
CLOSE/T statement is executed.

Nameless data files will result it no file names are specified. It is advisable to give
to each data file a distinct name to indicate its contents. This will prevent confus-

ing data files with each other.

PRINT/T d; (,d;,ds3,..... ,dy)
di..... numeric or string data
This statement writes data in succession to the cassette data file opened with the
WOPEN/T statement.
Execution of the PRINT/T statement writes the output list specified in its
operand in succession on a cassette data file. Output lists can contain both
numeric and string data. When assigning two or more sets of data to one PRINT/T
statement, the data sets must be separated by commas (,).
Do not attempt to replace or run a cassette tape while any file stored there is
open; otherwise correct file control will become impossible.
The following program creates the sequential data file “Name list” on the cassette
tape. This file may have two hundred Name-strings.

10 WOPEN/T “Name list”

20 FOR N=1 TO 200:PRINT/T N$(N) : NEXT

30 CLOSE/T

60

3.9.3 CLOSE/T

Format

Function

Description :

3.9.4 ROPEN/T

Format

Function

Description :

3.9.5 INPUT/T

Format

Function

CLOSE (/T)

When the WOPEN/T statement has been executed, this statement closes
WOPEN/T and creates a sequential data file on the cassette tape.

When the ROPEN/T statement has been executed, it closes ROPEN/T.

When WOPEN/T is closed, the statement stores the sequential data file data list
set up by the PRINT/T statement on cassette tape, under the file name declared
by the WOPEN/T statement. Closing ROPEN/T allows ROPEN/T or WOPEN/T

to be declared for other data files.

ROPEN (/T) (file name)

This statement opens cassette files, enabling the system to read data from
sequential data files on a cassette tape.

The ROPEN/T statement declares “Read Open” for each sequential data file,
and file name specifies the name of the sequential data file to be opened for
reading. If the ROPEN/T statement has been executed, data stored on the
cassette tape can be sequentially assigned to variables or array elements with
the INPUT/T statement. After the data has been read, the CLOSE/T statement
is executed to close the file.

If the ROPEN/T statement is not accompanied by a file name, it opens the
BASIC sequential data file which is first found.

INPUT/T v; (,V2,V3,...,V,)

v; numeric or string variable or array element

This statement reads data in sequence from the cassette data file opened with
the ROPEN/T statement.

61

Description :

When the INPUT/T statement is executed, data read from the cassette file are
assigned in succession to the variables or array elements of the input list specified
by the INPUT/T statement’s operand. Hence, the data list on the cassette-file
and that of the INPUT/T statement must be identical in data type. Out of File
occurs if the file data is exhausted before completion of the INPUT/T statement.
If numeric data elements on a sequential data file read by the INPUT/T statement

correspond to string variables (or array elements), they are assigned accordingly.

When such numeric data is “5.17”°, for example, it is handled as a string data

T

Handling the file end

If “Out of File” occurs while data is being read from a sequential data file, an error
is generated and the system returns to the BASIC command level. When the
number of field data elements is known, the error is prevented by setting an equal
number of data reads. When the number of filed data elements is unknown and
program execution is not to be interrupted by “Out of File”, it is advisable to
attach the character string “END OF FILE” to the end of each sequential data
file to indicate its end, thereby preventing the Error 63 (out of file).

62

3.10 Machine language control statements

3.10.1 LIMIT

Format : LIMIT x
X .uno. address : numeric data or a four-digit hexadecimal number

Function : This statement limits the BASIC program memory area.

Description : When a machine language program is to be used in conjunction with a BASIC
program, or when specific data is to be placed in memory, reservation of user
memory area with the LIMIT statement is required to partition it from the
BASIC program area. To divide the memory into two areas, the last address of
the BASIC program area must be specified in the operand; the value of that
address is specified with a numeric variable, or a hexadecimal number.

The LIMIT MAX statement is used to restore the original BASIC text area.
Refer to the memory map in the Appendix.
Example : LIMIT S$DFFF This statement limits the BASIC program memory area
up to $DFFF (hexadecimal).
3.10.2 POKE

Format : POKE x,d
X i nmn address : numeric data or a four-digit hexadecimal number
d..... numeric data

Function : This statement stores data in arbitrary memory addresses.

Description : This statement writes one byte of data in the memory address specified in

address; any address may be specified.

Each byte of data stored must have a binary value from O to 255. If it is numeric
data, any integer from 0 to 255 may be stored; if it is string data, the ASCII code
corresponding to its leading character is stored. The POKE statement may be
executed for any memory address irrespective of the LIMIT statement, and thus
may destroy the entire BASIC or MONITOR if not used with care.

The user area secured with the LIMIT statement is not used at all by the BASIC
program. When entering machine language programs or data with the POKE

statement, it is advisable to execute the LIMIT statement in advance.

63

3.10.3 PEEK

Format

Operation

3.10.4 USR

Format

Operation

Format

Operation

PEEK (x)

X.ooun. address : numeric data or a four-digit hexadecimal number

This function gives the contents of the memory address indicated by the value of
numeric data x. Since data in the memory consists of 8 binary digits (bits), a
result from 0 to 255 will be obtained.

The value of x must be from 0 to 65535. Memory addresses may also be specified
by four hexadecimal digits preceded by a § sign. To store data in specified

memory addresses, the POKE statement is used.

USR (x)

X..... address : numeric data or a four-digit hexadecimal number

In this format, the USR function transfers program control to the memory
address indicated by the value of numeric data x. This operation is the same as
that resulting from CALL x, the machine-language command which causes
branching to a subroutine. Accordingly, when the system encounters any return
command — RET, RETcc — during execution of a machine-language program,
program control is returned to the statement following the statement which
executed the USR function.

The value of x must be in the range from 0 to 65535. Memory addresses may also

be specified by four hexadecimal digits preceded by a sign ($).

USR (x,x$)

X.ouoon. address : numeric data or a four-digit hexadecimal number

x$..... string data

When string data is given together with address data, this USR function places the
first address of the memory area containing string data x$ in the CPU’s DE
register and the length of x§ in the BC register prior to execution of a CALL
command contained in a machine-language program. This function can also serve

to deliver string data used in a BASIC program to a machine-language program.

64

3.11 Printer control statements

Refer to the Printer (MZ-80P5) Manual for details of BASIC program operation and printer

handling.

3.11.1 PRINT/P

Format

Function

Description :

PRINT/P (e; d; esdy e, d,)
€ ... Output data
di Separator or tabulation function

This statement outputs print data (characters or control codes) to the printer.
Print data output by PRINT/P statement are handled in nearly the same manner
as the PRINT statement does with the display.
In detail, the PRINT/P statement causes the printer to print numeric data (value
of numeric constants, numeric variables, numeric array elements or expressions)
and string data (contents of string constants, string variables, string array
elements, or string connective expressions), and uses separators ‘s, ¢, and the
TAB function in the same manner as does the PRINT statement.
Only when transfer codes CHRS$ (0) to CHRS (30), or CHR$ ($00) to CHRS$
($1E), are output does the PRINT/P statement cause data processing different
from that of the PRINT statement.
The character print mode has eight settings which determine the size of individual
characters printed (or the number of characters per line) and whether to space
lines or not as shown below. These eight settings are selected by CHRS$ (16) to
CHRS$ (21) and maintained, once chosen, until another character print mode
conversion code is received. Both character print mode conversion and control
codes can be placed in any locations in the output data list.

CHRE (5) wwics s+ Home

CHRS$ (6) Cancels the enlarged character mode or reduced character

mode, and sets the normal mode 1 with line spacing, and

home.
CHRS (16) Sets the normal mode 1 with line spacing
CHRS (17) Sets the normal mode 2 without line spacing
CHRS (18) Enlarged character mode
CHRS$ (19) Cancels the enlarged character mode
CHRS$ (20) Reduced character mode -

CHRS (21) Cancels the reduced character mode

65

3.11.2 IMAGE/P

Format

Function

Description :

IMAGE/P x$

x$... .. string data

This statement causes the printer to draw a desired dot pattern according to the
operating mode (image mode 1 or 2).

The MZ-80PS printer can operate in the normal mode, used for printing charac-
ters, and in two image modes.

Image mode 1

When the printer is operating in image mode 1, data output to the printer with
the IMAGE/P statement are handled as following dot patterns.

Each dot pattern consists of 8 bits of data which determine the vertical arrange-
ment of eight dots. Image mode 1 allows the printer to print 480 dot patterns on
one line, so that the dots are arranged as a square lattice. CHRS$ functions 0 to
255 may be used to represent any possible arrangement of dots.

Image mode 2

When the printer is operating in image mode 2, output data are handled in the
same manner as in image mode 1. Image mode 2 differs from image mode 1 in
that it allows the printer to print 816 dot patterns on one line; horizontal spacing

of dots is smaller than vertical spacing.

66

3.11.3 COPY/P

Format

Function

Description :

3.11.4 PAGE/P

Format

Function

Description :

COPY/P n
7/ display area : 1,2,3 or 4
This statement causes the printer to copy an entire frame of data displayed on
the computer screen.
There are three types of data display: character display, graphic display of graphic
area 1 and graphic display of graphic area 2. The type of data display to be copied
is specified in the operand of the COPY/P statement. The statement may be used
without regard for the mode in which the printer is operating.
Copying a character display
To copy a character display, the following COPY/P statement must be executed.
COPY/P 1
Copying a graphic display
Dot pattern data is output for printing in the same manner as in the image mode.
Since the system has two graphic areas, the following three types of COPY/P
statements are allowed:
COPY/P 2 ... This causes the printer to copy the dot patterns set in graphic
area 1.
COPY/P 3 ... This causes the printer to copy the dot patterns set in graphic
area 2.
COPY/P 4 ...This causes the printer to copy the dot patterns set in both
graphic area 1 and graphic area 2.

The COPY/P statement can be used without regard for any GRAPH statements

executed.
PAGE/P x
¥ o eww numeric data

This statement sets the number of lines to be contained in one page of the printer.
The printer normally prints 66 lines per page. When the number of lines is speci-
fied by the PAGE statement, the system forces the printer to print out informa-
tion on the specified number of lines as one page. This holds true for both the

character and image print mode.

67

3.12 I/0 input/output statements

3.12.1 INP

Format

Function

3.12.2 OUT

Format

Function

INP @p,v
Dssses port number : numeric data
B evons numeric variable or array element, or string variable or array element

The I/O port number is specified by @p. This number is identical to the I/O port
number for the CPU which is represented by a decimal number (0 < p < 255).
Each I/O port is a parallel terminal of 8 bits, and is loaded with input data from
0 to 255. A number from O to 255 is assigned to each numeric variable, and a
name from CHR$ (0) to CHRS (255) is assigned to each string variable.

OUT @p,x
Disss s port number : numeric data
X 100w 08 numeric or string data

The I/O port number is specified in the same manner as with the INP statement.
Data to be output must range from 0 to 255. If the data is numeric data, a
number from 0 to 255 is output;if it is string data, the ASCII code corresponding
to its first character is output.

Use of the INP and OUT statements depends on how the I/O port is used. For

details, consult the universal I/O card manual.

Chapter 4
BASIC SB-5510 Functions

This chapter lists all built-in functions of BASIC SB-5510 in the order of arithmetic functions,
string control functions and tabulation functions. For functions relating to graphic display and ma-
chine language control, refer to the description of each group in the preceding chapter.

Any of the built-in functions can be called at any program location without prior definition.

70

4.1 Arithmetic functions

4.1.1 ABS

Format

Function

Examp/e

4.1.2 INT

Format
Function

Example

4.1.3 SGN

Format

Function

Example

ABS (x)
This function gives the absolute value |x| of numeric data x. That is, when x > 0,
ABS (x) = x, and when x < 0, ABS (x) = —x.
PRINT ABS (3 —8)
3
Ready

INT (x)
This function gives the largest integer smaller than x for numeric data x.
PRINT INT (9.99), INT (x)
9 3
Ready
PRINT INT (-35.6)
-36
Ready

SGN (x)
This function ascertains whether the value of numeric data x is greater than, less
than or equal to zero and indicates the result with 1, O or —1 as follows:
When x > 0, SGN (x)=1
Whenx =0, SGN (x)=0
When x < 0, SGN (x)=-1
PRINT SGN (SGN (A#*(-A)) -0.5)
-1
Ready

71

4.1.4 SQR
Format : SQR (x)
Function : This function gives the square root+/x of numeric data x. x must be greater than
or equal to zero.
Example : Program
10 FOR X=1 TO 5
20 PRINT X, SQR (X)
30 NEXT
Operation
RUN
1 1
2 1.4142136
3 1.7320508
4 2
5 2.236068
Ready
4.1.5 SIN
Format : SIN(x)
Function : This function gives the sine of numeric data x in radians.
Example . Figure 4.1 shows a sine curve.

o r
DO BWNOF -
WZUOO® VDK

R
R
R
®

FIGURE 4.1 A sine curve

72

4.1.6 COS

Format

Function

Example

4.1.7 TAN

Format

Function

4.1.8 ATN

Format

Function

COS (x)
This function gives the cosine of numeric data x in radians. When the value of
numeric data D is given in degrees, its cosine is obtained by converting it to
radians and applying the COS function is as follows:

COS (D#r/180)

Figure 4.2 shows a curve.

FIGURE 4.2

TAN (x)
This function gives the tangent of numeric data x in radians. If the value of TAN

(x) is too large, Error 2 (Operation result overflow) occurs.

ATN (x)

This function gives the arctangent of numeric data x (the angle whose tangent is
x) in radians. Though arctan x has an infinite number of results, only the result
between —7/2 and n/2 will be obtained (that is, the principal value). When the

result is to be expressed in degrees, the expression ATN (x)#*180/x is used.

73

4.19 EXP

Format

Function

Example

4.1.10 LOG

Format

Function

41.11 LN

Format

Function

EXP (x)

This function gives the value of exponential function e* (the natural logarithmic
base e raised to the x power) for numeric data x.

PRINT EXP (1), EXP (2)

27182818 7.3890561
Ready

LOG (x)
This function gives log;, x (the value of the common logarithm of x) for numeric
data x.
x must be greater than 0.
When A > 0, A + 1 and numeric data X is given, log A X (the value of the loga-
rithm of X with the base A) can be obtained with either of the following expres-
sions:

LOG (X) / LOG (A)

or

LN (X) / LN (A)

IN(x)
This function gives In x (the value of the natural logarithm of x) for numeric
data x.

x must be greater than 0.

74

4.1.12 RND

Format

Function

RND (x)

This function generates pseudo-random numbers, which take any value between
0.00000001 and 0.99999999, and works in two manners depending on the value
of numeric data x.

When the value of x is O or a negative number, the function gives the initial value
of the pseudo-random number group it generates, and when the value of X is
larger than O, the function gives a pseudo-random number next to the one
previously given in the pseudo-random number group.

Usually, a number larger than O is used as the value of x. Howéver, initializing
the pseudo-random number group by setting x at O or a negative number gives

duplicability to the group.

79

4.2 String control functions

42.1 LEFTS$

Format

Function

Example

422 MID S

Format

Function

Example

LEFT $ (x$,n)
This function gives string data comprised of the left » characters of string data
x$.
n must be a number between 0 and 255.
If n > LEN (x$), then LEFT $ (x$, n) =x$;and if n = 0, then LEFT § (x$, n) =
¢ (null string).
Program
10 AS$ = “Personal Computer MZ-80B”
20 B$=LEFT §$ (AS, 17)
30 PRINT BS$
Operation
RUN

Personal Computer
Ready

MID $ (x$,m, n)
This function gives string data comprised of the n characters following the mth
character from the beginning of string data x§.
m must be a number between 1 and 255, and » a number between 0 and 255.
If » > LEN (x$) — m, then MID (x$, m, n) = RIGHT $ (x$, LEN (x$), —m +1);
and if n = 0, then MID § (x$, m, n) = ©“ ” (null string).
Program
10 AS$ = “Personal Computer MZ-80B”
20 C§=MID § (AS, 10, 8)
30 PRINT C§
Operation
RUN
Computer
Ready

76

4.2.3 RIGHT $

Format

Function

Example

424 SPACE S

Format

Function

Example

RIGHT § (x$,n)
This function gives string data comprised of the right n characters of string data
x§.
n must be a number between 0 and 255.
If n > LEN (x§), then RIGHT $§ (x$, n) = x$; and if n = 0, then RIGHT $ (x$,
n) = “” (null string).
Program
10 A$ = “Personal Computer MZ-80B”
20 DS = RIGHT § (AS, 6)
30 PRINT D§
Operation
RUN
MZ-80B
Ready

SPACE § (x)

This function gives a string of successive spaces whose length is expressed by the
value of numeric data x.

This function, when used with the PRINT statement, may serve as tabulation

or to delete items displayed.

Program
10 PRINT SPACE § (5); “Code”; SPACE §$ (7); “Meaning”
Operation
RUN
Code Meaning

Ready

77

4.2.5 STRING $

Format : STRING § (x$,n)
Function : This function gives a string of n repetitions of the first character of string data
x$.

A string of consecutive spaces is given by the SPACE § function.
Example : Program
10 R$ =STRING § (“*”, 10)
20 PRINT RS;“ Table 1 ”;R$
Operation
RUN

sokkkkkckokkk Table 1 skeckskesskskokskokk

Ready

4.2.6 CHRS

Format : CHRS (x)

Function : This function gives characters corresponding to ASCII codes expressed as numeric
data x.
To convert characters into ASCII codes, the ASC function is used.

Example : Figure 4.3 shows all characters corresponding to ASCII codes 31 — 255. Opera-
tion of PRINT CHRS$ (x) statement in case of ASCII codes 0 through 30 is

summarized in pages 84 — 85.

r

0 WNF—

25%
A) ;SPACES$ (1) ;

Zu QOO0
L delv]

BES ot T

RS - 3 NTIN

R
R " 1
34 > E
G H v
[N m
o p ¥
2 & o
B <
7 A
b 1 A
ea

-
Q

FIGURE 4.3

78

427 ASC

Format

Function

Example

4.2.8 STRS

Format

Function

Example

ASC (x$)
This function gives the ASCII code — a decimal number — of the first character
of string data x§.
For the relations between characters and ASCII codes, see the ASCII Code Table
(Table A.2).
To convert ASCII codes into characters, the CHR$ function is used.
PRINT ASC (“ABC”)
65
Ready

STRS$ (x)

This function gives a string that expresses the value of numeric data x. This string
will be expressed in scientific notation if that is the form in which the value of
X is expressed.

To convert a numeric string into a number, the VAL function is used.

Figure 4.4 shows operation of the STR$ function.

8%58608)

FIGURE 44

79

429 VAL
Format : VAL (x$)
Function : This function gives the numeric constant represented by string data x$. To
convert numeric data into a string, the STR$ function is used.
Example : Figure 4.5 illustrates operation of the VAL function.
i @ .
2 +MID$(VS$,4,3>+MIDS!
Vs
Ra
RU
Re
#
FIGURE 4.5
4.2.10 LEN
Format : LEN(x$)
Function : This function gives the number of characters that make up string data x$, includ-
ing spaces and characters which are not displayed by the PRINT statement.
Example : PRINT LEN (“Personal Computer MZ-80B”’)

24
Ready

80

42.11 CHARACTER §

Format : CHARACTER $(x,y)
Function : This function gives characters located on the screen in the positions specified by
x and y as string data.
Coordinate data are given by arithmetic expressions, variables or constants.
Coordinates must lie within the ranges shown below.
m 80-character mode
x-coordinate : 0 to 79
y-coordinate : 0 to 24
m 40-character mode
x-coordinate : 0 to 39
y-coordinate : 0 to 24
Example : Figure 4.6 illustrates operation of the CHARACTER § function.

-
U
Lij)

Zu OO0 OO

: FOR X=8 TO 39
C(CHARACTERS$ (X, Y>> +128)

CooOuh W

R
R

FIGURE 4.6

81

4.3 Tabulation function

43.1 TAB

Format

Function

TAB (x)

This function, used with the PRINT statement, causes the cursor to be moved
forward to the line position indicated by numeric data x. |

If the current cursor position exceeds the value of x, the tabulation function is
inoperative (no action is performed).

The value of x must be between 0 and 255 (although O and 1 are considered

identical).

APPENDIX

The Appendix includes the following;

m ASC// Code Table. Table A.T

m BASIC interpreter SB-5510 Error Message Table Table A.2
This table lists all the possible errors which may occur during program execution. The interpreter
notifies the operator of occurrence of an error during program execution or operation in the direct
mode with the corresponding error number.

u Memory Map

m Trigonometric and hyperbolic functions

83

84

A.1 ASCII Code Table

A table of hexadecimal ASCII codes is shown in FIGURE 2.22 of the Owner’s Manual.

CODE CHARACTER

CODE CHARACTER

CODE CHARACTER

CODE CHARACTER

CODE CHARACTER

0

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

NULL

= = [}
= 3] 2 7] 5] [B] [L] [o] L]

SET
LOCK

L
SCRIPT

RVS
CRNCEL

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77

©|[o]|[N][o][;][&]

.\:H || b]-. “u

Z|[r][x][c][=][x][@][m][m][g][o][m]|[>][®

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103

1D AN [<]x][=]<][€][H][»][x][o][v][o][z

4

BERRRIEE

104 -

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

=N I<]x][E]<][e]le] [«][5][e]e]e][=3]1B] === ==

127

85

CODE CHARACTER

CODE CHARACTER

CODE CHARACTER

CODE CHARACTER

CODE CHARACTER

128

129

130

131

132

133

134

135

136

e e elpt]1][2]]E

137

138

139

140 11

141

142

143

144

145

146

147

148

149

150

151

152

FoRIYFOew/®

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

ANEENANAEEERRENGE B EEHHH B H

180
181 B
182 6]
183
184 8]
185 E
186 n
187 B
188
189 =
190
191
192
193 (A
194 B|
195
196 D]
197
198
199
200
201 n
202
203
204
205 M|

206 N
207 [
208 P
209 =]
210 R|
211 |
212
213
214
215
216
217
218
219
220
21
222
223 =
224
225 a |
226 b]
227
228 d|
229 B
230
231 g

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Sl -] -Ind<]x]z l<]cl+]o]-]olojols 3 -I=]-]- |5

86

A.2 Error Message Table

Error No. Meaning
1 Syntax error
2 Operation result overflow
3 Illegal data
4 Data type mismatch
5 String length exceeded 255 characters
6 Insufficient memory capacity
7 The size of an\array defined was larger than that defined previously.
8 The length of a BASIC text line was too long.
9
10 The number of levels of GOSUB nests exceeded 16.
11 The number of levels of FOR-NEXT loops exceeded 16.
12 The number of levels of functions exceeded 6.
13 NEXT was used without a corresponding FOR.
14 RETURN was used without a corresponding GOSUB.
15 Undefined function was used.
16 Unused line number was used.
17 CONT command cannot be executed.
18 A writing statement was issued to the BASIC control area.
19 Direct mode commands and statements are mixed together.
20
21
22
23
24 A READ statement was used without a corresponding DATA statement.
25
26
27
28
29
30
31
32
33
34
35

87

Error No.

Meaning

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

OPEN statement (ROPEN or WOPEN) was issued to a file which is already open.

Out of file

The printer is not ready.

Printer hardware error

Out of paper

Check sum error

88

A.3 Memory Map

$0000

MONITOR
SB-1510
$1220
. $1220 : Cold start address
BASIC interpreter $1280 : Hot start address
SB-5510
$FFFF

A.4 Trigonometric and hyperbolic functions

Some functions which are not provided as built-in functions can be easily obtained by using built-

in functions in combination as shown below:

secant SEC(X) = 1/COS(X)

cosecant CSC(X) = 1/SIN(X)

cotangent COT(X) = 1/TAN(X)

arcsine ARCSIN(X) = ATN(X/SQR(—X*X+1))

arccosine ARCCOS(X) = —ATN(X/SQR(—X*X+1)) + 1.5708
arcsecant ARCSEC(X) = ATN(SQR(X*X—1)) + (SGN(X)—1)*1.5708
arccosecant ARCCSC(X) = ATN(1/SQR(X*X—1)) + (SGN(X)—1)*1.5708
arccotangent ARCCOT(X) = —ATN(X) + 1.5708

hyperbolic sine SINH(X) = (EXP(X) — EXP(—X))/2

hyperbolic cosine COSH(X) = (EXP(X) + EXP(—X))/2

hyperbolic tangent TANH(X) = —EXP(—X)/(EXP(X) + EXP(—X))>*2+1
hyperbolic secant SECH(X) = 2/(EXP(X) + EXP(—X))

hyperbolic cosecant CSCH(X) = 2/(EXP(X) — EXP(—X))

hyperbolic cotangent COTH(X) = EXP(—X)/(EXP(X) — EXP(—X))*2+1
hyperbolic arcsine ARCSINH(X) = LOG(X + SQR(X>*X+1))

hyperbolic arccosine ARCCOSH(X) = LOG(X + SQR(X*X—1))

hyperbolic arctangent ~ARCTANH(X) = LOG((1+X)/(1-X))/2

hyperbolic arcsecant ARCSECH(X) = LOG((SQR(—X*X+1) + 1)/X)
hyperbolic arccosecant ARCCSCH(X) = LOG((SGN(X) *SQR(X*X+1) + 1)/X)
hyperbolic arccotangent ARCCOTH(X) = LOG((X+1)/(X-1))/2

an S s =
e = o IE 3

B e, T

	Sharp_MZ-80B_BASIC_Language_Manual_front
	172605
	172616
	172622
	172625
	172631
	172635
	172641
	172644
	172650
	172654
	172700
	172703
	172710
	172713
	172719
	172723
	172729
	172732
	172738
	172742
	172748
	172751
	172758
	172801
	172807
	172811
	172817
	172820
	172826
	172830
	172836
	172839
	172846
	172849
	172855
	172859
	172905
	172908
	172915
	172918
	172924
	172927
	172934
	172937
	172944
	172947
	172953
	172957
	173003
	173006
	173012
	173016
	173022
	173025
	173032
	173035
	173041
	173044
	173116
	173126
	173132
	173136
	173142
	173145
	173151
	173155
	173201
	173204
	173211
	173214
	173220
	173224
	173230
	173233
	173239
	173240
	173241
	173243
	173249
	173252
	173259
	173302
	173308
	173312
	173318
	173321
	173327
	173331
	173337
	173340
	173346
	173350
	173356
	173400
	173406
	173413
	Sharp_MZ-80B_BASIC_Language_Manual_back

