
Personal Computer

lllZ·OOOD
DISK BASIC MANUAL

SHARP

SHARP
I

Personal Computer

MZ-808

DISK BASIC Manual

january 1981

080211-150281

Printed in Japan ©SHARP CORPORATION

NOTICE

This manual is applicable to the SB-6510 DISK BASIC interpreter used with the SHARP

MZ-808 Personal Computer. The MZ-808 general-purpose personal computer is supported

by system software which is filed in software packs (cassette tapes or diskettes).

All system software is subject to revision without prior notice, therefore, you are

requested to pay special attention to file version numbers.

This manual has been carefully prepared and checked for completeness, accuracy and

clarity. However, in the event that you should notice any errors or ambiguities, please feel

free to contact your local Sharp representative for clarification.

All system software packs provided for the MZ-808 are original products, and all rights

are reserved. No portion of any system software pack may be copied without approval of

the Sharp Corporation.

ii

Introduction

The DISK BASIC interpreter SB-651 0 is a system software which has a superb file control func­

tion. It fully utilizes the large capacity and high speed accessing feature of the floppy disk file system

so that files can be used not only for data storage but also as a random access data area connected to

the system program. Further, with this interpreter disk files can be used as program segments which

may be called for execution in job units by the program in memory with the CHAIN or SWAP state­

ments.

Data files are classified into two groups according to the file access method: sequential access files

and random access files.

A sequential access file is a block of file data which can be accessed sequentially. Data are accessed

sequentially from the beginning by specifying the file name.

Write

System

Read

BASIC Sequential
access Data file (BSD)

A random access file is a set of file data which can be accessed at random. Each data item is

written in the file as an array element and is assigned with an expression with which the system

controls it.

EXPRESSION
~

Write
(m)

I (n)
System

Read

BASIC Random
access Data file (BRD)

"filename"

In general, when data can be treated in segments (e.g., decimal data used when coding a program

by POKE statement) or it is arranged according to a certain rule (e.g., elements of a table), it is

effective to write it as a sequential access file. When particular data items need to be accessed (e.g., in

the case of information retrieval), it is effective to write it as a random access file.

iii

To access data, first specify the file (a set of data assigned a file name) with a logical file number of

to 127. A logical file number is assigned to a file with a logical open statement as an alternative to

the file name.

The file to which the specified logical file number has been assigned is accessed by the write or

read command issued by a PRINT# or INPUT# statement or by a file close statement.

CHAIN and SWAP are statements which overlay a program upon another program in the memory

and transfer control to the overlying program.

The CHAIN statement is used as a GOTO "filename" function.

Text "ABC" Text "DEF"

CHAIN "DEF"
goto "DEF"

The SWAP statement is used as a GOSUB "filename" function. Control will be returned to the

first program after the overlaid program has been completed. (In this case, overlay is performed again.)

go sub" JKL"
Text "GHI"

I
Text "JKL"

SWAP "JKL"

I return
END

This manual is written with the assumption that readers are familiar with the ordinary BASIC

language.

The greatest care must be taken in handling disk drives and diskettes. Carefully read the notes in

the Floppy Disk Operator's Guide. Notes on handling diskettes are included in Appendix 4.

The master diskette and blank diskette will not be exchanged for new ones after purchase. It is

recommended that the master diskette be copied using the disk copy utility to generate a submaster

diskette, and that the submaster diskette be used ordinarily. Be sure to keep the master diskette in a

safe place.

iv

Contents

Notice ii

Introduction iii

Chapter 1 Outline of DISK BASIC SB-6510

1.1 Activating the DISK BASIC interpreter SB-651 0 2

1.2 Introduction to data file control 3

1.3 Control of sequential access files . 4

1.4 Control of random access files . 7

1.5 Making a chain of programs 10

1.6 Swapping programs . 11

1. 7 Reserved word . 13

1.8 Initialization : 14

Chapter 2 Instructions Unique to SB-6510 15

2.1 Commands 16

2 .1 .1 DIR 16

2.1 .2 DIR/P . 16

2.1.3 SAVE 17

2.1 .4 SAVE/T 17

2.1 .5 VERIFY 17

2.1.6 LOAD 18

2.1.7 LOAD/T 18

2. 1.8 RUN 18

2.2 File control statements . 19

2.2.1 LOCK 19

2.2.2 UNLOCK . 19

2.2 .3 RENAME 19

2.2.4 DELETE 20

2.2.5 CHAIN 20

2.2.6 SWAP 21

2.2.7 WOPEN # 21

v

2.2.8 PRINT# 22

2.2.9 CLOSE# 22

2.2.10 KILL# 22

2.2.11 ROPEN # .. 23

2.2.12 INPUT# 23

2.2.13 XOPEN# 24

2.2. 14 PRINT# () 24

2.2.15 INPUT# () 25

2.2.16 IF EOF (#)THEN 25

2.3 Error processing control . 26

2.3.1 ON ERROR GOTO 26

2.3.2 IF ERN ... 26

2.3.3 IF ERL 27

2.3.4 RESUME 28

2.4 Use of utility programs 29

2.4.1 Use of utility program "Filing CMT" 29

2.4.2 Use of utility program "Utility" 30

Chapter 3 Data Processing Application 35

Chapter 4 Programming Instruction 65

4.1 List of DISK BASIC interpreter SB-651 0 commands, statements and

functions . 66

4.1.1 Commands ... 66

4.1.2

4.1.3

4.1.4

4.1.5

4.1.6

4.1.7

4.1.8

4.1.9

4.1.1 0

4.1.11

File control statements 68

BSD (BASIC Sequential access Data file) control statements 69

BRD (BASIC Random access Data file) control statements 69

Error processing statements 70

Cassette data file input/output statements 71

Assignment statement 71

Input/output statements 71

Loop statement 73

Branch statements 73

Definition statements 74

4.1.12 Comment and control statements 75

4.1.13 Music control statements 76

vi

4.1.14 Graphic control statements 76

4.1.15 Machine language control statements . 78

4.1.16 Printer control statements 79

4.1.17 1/0 input/output statements 79

4.1.18 Arithmetic functions 80

4.1.19 String control functions . 81

4.1.20 Tabulation function , 82

4.1.21 Arithmetic operators 83

4.1.22 Logical operators 83

4.1.23 Other symbols . 84

APPENDIX 85

A.l ASCII Code Table . 86

A.2 Error Message Table 88

A.3 Memory Map . 90

A.4 Handling diskettes . 91

SUPPLEMENT DISK BASIC Error List & File Commands

vii

Chapter 1

Outline of DISK BASIC SB-6510

This chapter outlines programming procedures and use of the DISK BASIC interpreter SB-6570.

The chapter begins with a description of the procedure for activating the BASIC SB-6570, fol­

lowed by general file control concepts.

For details of file control statements and use of the utility programs, see Chapter 2.

For other commands, statements, functions, operators anq symbols, see Chapter 4.

1

2

1.1 Activating the DISK BASIC interpreter SB-6510

DISK BASIC SB-651 0 is stored (along with MONITOR SB-151 0) on a diskette file and must

undergo initial program loading whenever it is to be used. Loading is easily performed. Ready the disk

drive unit, place the master diskette (or submaster diskettet, if available) in disk drive I and simply

turn on the power of the MZ-80B.

The MZ-80B's built-in IPL (Initial Program Loader) automatically starts (photo at left in Figure

1.1), loading both the DISK BASIC interpreter SB-651 0 and the MONITOR SB-151 0. When loading

is completed, the MZ-80B displays the message illustrated in the photo at right and the DISK basic

interpreter begins to operate.

FIGURE 1.1

The SB-651 0 automatically loads and executes the program assigned th~ file name "AUTO RUN"

which is stored on the master (submaster) diskette. This program defines the functions assigned to

the 10 special function keys. By assigning "AUTO RUN" to another program , the program can be

automatically loaded and executed after IPL.

t Procedures for making a submaster diskette are explained on page 32 .

3

1.2 Introduction to data file control

Now we will discuss handling and control of various data and program files that make use of the

large storage capacity and high-speed access function of our floppy disk unit.

We have already noted that DISK BASIC is capable of handling three kinds of files: two data files

- the sequential access file (BSD) and random access file (BRD) - plus one program file - the BASIC

text (BTX). One more file, the machine language program file (OBJ), has been constructed using a sys­

tem program or MONITOR SB-151 0 and recorded on the master diskette. This file is intended to be

run alone or used linked with the program in the BASIC text area; hence, DISK BASIC can utilize it,

but cannot write it or change its contents.

_J, Sequential access file BSD }
Data file

~Random access file BRD
DISK BASIC ·

~BASIC text file BTX }

Machine language program file OBJ
Program file ·

In discussing individual file control instructions, we will first explain procedures for constructing

and using the two kinds of data files; second, we will explain use of the CHAIN and SWAP file state­

ments.

4

1.3 Control of sequential access files

A sequential access file is a data file whose data is recorded or read with sequential access proce­

dures, which accesses data sequentially starting with the first data item.

You already know how to handle data files on cassette tape using BASIC SB-5510. Sequential

access with DISK BASIC is the same, except that the medium is not a cassette tape but a diskette. The

method is, of course, far more practical and provides high speed access, enabling more versatile file

control through several new file control statements.

First, let's compare the DISK BASIC and cassette-based BASIC sequential access statements.

Recording files (writing data)

File open statement

Data write statement

File close statement

Cancel statement

Recalling files (reading data)

File open statement

Data read statement

File close statement

File end detection

WOPEN #n, "file name"

PRINT #n, data

CLOSE #n

KILL #n

ROPEN #n, "file name"

INPUT #n, variable

CLOSE #n

IF EOF (#n) THEN

WOPEN "file name"

PRINT/T data

CLOSE

ROPEN "file name"

INPUT /T variable

CLOSE

Note: The general form of a file open statement includes specification of the drive number and diskette

volume number. These are not shown in the tables above.

As you can see, the statements of these two BASICs closely corresponds to each other in composi­

tion. Did you notice that each DISK BASIC statement always contains the symbol "#n"? This is

called a logical number, and it must be specified whenever a DISK-BASIC-based file is to be accessed.

Cassette-based BASIC permits either writing to or reading from only one file, whereas DISK

BASIC statement utilizes the parallel arrangement of multiple files in the disk system to enable arbi­

trary access and control of multiple files (maximum of 10 files) simultaneously. In addition, it is

deviced so that files opened can be defined with arbitrarily chosen logical numbers, making it unneces­

sary to write their file names every time you want to specify them thereafter.

(This difference is a result of differences in hardware cassette and diskette; that is, cassette files

are essentially sequential in nature, while disk files are random.)

5

As a simple example of sequential access file control, let's discuss the recording of names and

addresses of persons' homes in a sequential access file. Our file, an address list in this example, must be

made in the following form.

Name I
Address I

Name I
Address I file name= "ADDRESS LIST"

Name I
Address j

The reason the above rectangles are not the same length is that data recorded with the sequential

access method is not fixed in length. In a random access file, as we will later mention, all data is given

a fixed length of 32 bytes. When all data is handled in the blocks as in this example, or when most of

the data (addresses in this example) is too long to be recorded in 32 bytes or is not fixed in length, the

sequential access file is more suitable.

Shown below is a program which causes the system to behave as follows: substitute string variables

alternately with names and addresses with the INPUT statement, record a combination of names and

addresses one by one to make "ADDRESS LIST" with 50 combinations in all, then read stored data

out of the file (list) and display it on the CRT screen in groups of I 0 items.

(Writing)

100 WOPEN #3, FD1 @22, "ADDRESS LIST"

110 FOR P= 1 TO 50

120 INPUT "NAME=" ; NA$

130 INPUT "ADDRESS="; AD$

140 PRINT #3, NA$, AD$

150 NEXT P

160 CLOSE #3

(Reading)

200 ROPEN #4, FD1 @22, "ADDRESS LIST"

210 FOR P= 1 TO 5: FOR Q= 1 TO 10

220 INPUT #4, NA$, AD$

230 PRINT NA$: PRINT AD$

240 NEXT Q

250 PRINT "STRIKE ANYKEY"

260 GET X$: IF X$ = " " THEN 260

270 NEXT P

6

280 PRINT "END"

290 CLOSE #4

Data is stored by this program in slave diskette volume number 22 in drive 1. The meaning of each

statement used in this program will be described in the following chapter.

How to detect file end

What is the result when the number of data reads exceeds the number of recorded items? In such

cases, no error occurs and the variables are set with 0 or "null", then a special function, EOF (#n),

detects file end. EOF (#n), becomes "true" if it comes to the end of a file while data is being read

with the INPUT# statement. Hence, if the statement

IF EOF (#n) THEN

is placed after an INPUT# statement, instructions following THEN are executed when EOF (#n)

becomes true (when the file end is detected).

[Problem]

By modifying the sample program, make a program to read and display data from the file "AD­

DRESS LIST" in groups of ten. The number of records is, however, unknown.

[Sample solution]

A sample solution is as follows .

300 ROPEN #5, FD1 @22, "ADDRESS LIST"

310 FOR P = I TO 10

320 INPUT #5, NA$, AD$

330 IF EOF (#5) THEN 400

340 PRINT NA$: PRINT AD$

350 NEXT P

360 PRINT "STRIKE ANYKEY"

370 GET X$: IF X$= " " THEN 370

380 GOTO 310

400 CLOSE #5

410 PRINT "FILE END" : END

7

1.4 Control of random access files

A random access file is a data file which permits data to be recorded or recalled using the "random

access" method. The term "random access" refers to the process of recording or recalling each data

item by specifying it as an array element. Unlike sequential access files, random access files permit

addressing any data elements included in a collection of data.

The PRINT# and INPUT# statements used in random access statements contain an "expression"

which specifies the array elements following the logical number, as shown below. This is because ran­

dom access files require designation of the arrays of data of which they are composed.

PRINT #n (expression), data

INPUT #n (expression), variable

r
Array element designation

The "expression" must be given as a numerical value or variable. The statement

INPUT #7 (21), A$

for example, commands the system to read the 21st data element of a group in a random access file

opened with logical number #7 into variable A$.

Note that random data access requires that every data item be recorded in a fixed length. In other

words, random access files require recording numeric and string variables in 32 bytes or less.

Random
access
file

expression
j
1
2
3
4
5
6

32 bytes

+ 12345678+El0 <e--Variable A= 0.12 345678+E10

1
_-----=-:-:A:__::B:_C-=:--=-D--=E'-'F'----=-G--=-H:_I ___ ----1 +------ String "ABCDEFGHI"

A B C <',-------String "ABC"
r-----------~

Numeric variables, including those expressed in exponential notation, do not usually exceed 32

bytes, whereas string variables may extend up to 255 bytes. String variables exceeding 32 bytes can­

not be recorded in one data element of a random access file.

Another difference between random and sequential access files is that a random file can be ex­

panded after it has been initially created. Given random access file "RND I" recorded using an "ex­

pression" of 20, for instance, the file may be expanded to accommodate 30 "boxes" when data is

newly entered with the "expression" set to 30.

8

When data is
added with
the "expression"
set to 30.

"RND 1" "RND 1"

2 2
3 3

Now, let's try to device a program for making a simple inventory list using a random access file. It

is assumed that individual articles are given fixed item numbers from 1 to 50 and that the inventory

list includes five fields of information: item name, unit price, number of units in stock, value (unit

price X number items in) and comments.

When recording inventory data for each article, its item number must be entered first.

Recording inventory data

100 X OPEN # 5, "STORE LIST"

110 INPUT "ITEM NO.="; K

120 IF K = 0 THEN 300

130 INPUT "ITEM NAME ="; N$

140 INPUT "UNIT PRICE ="; P

150 INPUT "NO. OF UNITS="; S

160 INPUT "COMMENTS ="; C$

170 T = P * S

180 PRINT #15 (K *5-4), N$, P, S, T, C$

190 GOTO 110

300 CLOSE #5

310 END

A random access file made with the above program is as follows. If the item number assigned is

K = 12, the five kinds of data entered are stored in elements indicated by the expressions correspond­

ing to 56 through 60.

expression 55
K * 5- 4} 1----=~--=,----__,.~___,
K = 12 ·-~~ f--7-'-,...:,;-~-;;;::--;:e.~~

58
59

60
J----=~~-~~~

61 /---------~
I

BRDfJ.le
"STORE LIST"

9

In this way, data can be arbitrarily arrayed in the file. Hence the file, unlike a sequential access file

which is filled with data in succession, may include empty locations, providing for simple data rewrit­

ing. Next, let's devise a program to recall the random access file "STORE LIST" made as shown above

and display inventory data for a certain article.

Recalling inventory data

500 XOPEN # 17, "STORE LIST"

510 INPUT "ITEM NO.="; J: IF J = 0 THEN 700

520 INPUT #17 (J*5-4), N$, P, S, T, C$

530 PRINT "NO."; J: PRINT "ITEM NAME:"; N$

540 PRINT "UNIT PRICE:"; P

550 PRINT "NO. OF UNITS:"; S

560 PRINT "VALUE:"; T

570 PRINT "COMMENTS:"; C$

580 GOTO 510

700 CLOSE # 17

710 END

In this way, random access files enable the inventory data on specific articles to be called at once

by inputting their article numbers, no matter how many articles are inventoried.

10

1.5 Making a chain of programs

The topic of this section is two program file control statements. These are the CHAIN are SWAP

statements. When some programs are recorded on a diskette, the use of these statements enable you to

call another program while running the recorded programs and move the control to it. In detail, the

CHAIN statement enables you to connect any program to the ones recorded on a diskette, and the

SWAP statement enables you to call any program in the form of subroutine. First is described the

CHAIN statement to connect or join programs.

The form of the CHAIN statement is as follows.

CHAIN FD1@50, "TEXT 2"

This statement commands the system to clear a program then present in the text area (it, however,

keeps the values of variables), overlay that area with the text named "TEXT 2" that is recorded on the

diskette of volume number 50 present in drive 1 and move control to the head of that text. The execu­

tion of this text frees the system from the control of the then running BASIC text and compels it to

read the text "TEXT 2" anew, moving control to its head. When two programs are connected, the

values of variables and the function defined by the DEF FN in the original program are kept.

The function of the CHAIN statement can be grasped as one of "GOTO" statement.

TEXT "ABC" TEXT "DEF" TEXT "GHI"

goto "DEF" goto "GHI"

------ goto "file name"

The use of the CHAIN statement enables you to process such a huge program as to overflow the

BASIC text area by dividing it into pieces and then uniting them again as illustrated above. That is,

the CHAIN statement joins component programs every time they are processed. Therefore, the state­

ment and the SWAP statement we will next refer to can be said to be an indispensable aid in coping

with complicated, versatile data processing in small businesses.

Apart from such a sophisticated application, it is quite exciting and interesting to join various texts

on a diskette. The DISK BASIC, as seen from this, has an original world - which cannot be created by

the conventional BASIC - in that enables programs to extend themselves.

11

1.6 Swapping programs

The SWAP statement reads a program from a diskette file, overlays another program with it or link

them, and leaves control to that program text, resuming control by the original program the instant

the execution of the text has been completed. Such behaviour is just the same as referring to a sub­

routine in a text; a fetched program returns to the location next to the one that has been subjected to

the SWAP statement. Hence, the SWAP statement can be grasped as a subroutine call. To achieve the

above-mentioned action correctly a program text that has the SWAP statement must be temporarily

stored in a diskette before the execution of swapping. The program control process cannot then return

to the stored original program text before the text area is renewed and the subprogram is called and

completely executed. The SWAP statement is generally available in the following form .

SWAP FDd@v, "file name"

This form orders the system to swap a subprogram specified by "file name" that is stored on the

diskette with volume number v present in drive d (d = 1 to 4). Storing of a program text prior to

execution of a subprogram occurs onto the diskette present in the drive that has last executed the DIR

FDd command. This means that the drive must be loaded with a diskette that allows temporary writ­

ing of a program text. The swapping level must be less than 1.

Let's follow the program file behaviour by taking a simple example in order to understand the

SWAP statement. How does the file when the DIR FDl command is executed?

[Program present in the text area]

10 REM COMPOSER

20 Ml$ = "A7B6 + C3A7A3"

30 M2$ = "B + C + D + E6A3"

40 M3$ = "+ F6A3 + E7"

50 PRINT "PLAY THE CELLO"

60 SWAP FD2@7, "PLAYER"

70 PRINT "VERY GOOD"

80 END

[Program file "PLAYER"]

10 REM CELLO PLAYER

20 MUSIC Ml$, M2$, M3$

30 PRINT "OK?"

40 END

This file is present on slave diskette

No. 7 inserted in drive No. 2.

12

Initially, the text "COMPOSER",

present in the text area, is exe­

cuted.

First the SWAP statement, line

No. 60, shelters the text on the

diskette present in the drive FD 1

that has executed the DIR com­

mand, and renews the text area.

Second the text area is overlayed

with BTX "PLA YEW' and the

program is executed to play mel-'

odies.

On the completion of playing,

the sheltered COMPOSER re­

turns, saying "VERY GOOD."

Text area Drive File

Player plays melodies.

Overlaying
@ ,J T~ I J flJJ I

;~~~~i:R): i [} c__ Ji I £
,--,,.,..-~~-.,..,--.,.-,

"OK?"

Return

13

1. 7 Reserved word

A BASIC sentence is composed of reserved words-also called key words-which include state­

ments, built-in functions and special signs (and also commands), and other elements, such as constants,

variables, arrays and expressions. Table 1.1 shows all reserved words of the DISK BASIC interpreter

SB-6510.

~ ABS IMAGE/P REM

ASC INP RENAME

ATN INPUT RESET

AUTO INPUT# RESTORE

w BLINE INPUT/T RESUME

BOOT INT RETURN

[g CHAIN [RJ KILL REW

CHANGE KLIST RIGHT$

CHARACTER$ [IJ LEFT$ RND

CHR$ LEN ROPEN#

CLOSE LET ROPEN/T

CLOSE# LIMIT RUN

CLOSE/T LINE []] SAVE

CLR LIST SAVE/T

CONSOLE LIST/P SET

CONT LN SGN

COPY/P LOAD SIN

cos LOAD/T SIZE

CSRH LOCK SPACE$

CSRV LOG SQR

CURSOR [M] MID$ STEP

[Q] DATA MON STOP

DEFFN MUSIC STR$

DEF KEY [ill NEW STRING$

DELETE NEXT SWAP

DIM [QJ ON ITJ TAB

DIR OUT TAN

DIR/P [] PAGE/P TEMPO

~ END PATTERN THEN

ERL PEEK TI$

ERN POINT TO

ERROR POKE [Q] UNLOCK

EXP POSH USR

[f] FAST POSITION @] VAL

FOR POSY VERIFY

@] GET PRINT ~ WOPEN#

GO SUB PRINT# WOPEN/T

GOTO PRINT/P lliJ X OPEN#

GRAPH PRINT/T
[[] IF [B) READ

TABLE 1.1 All reserved words of the DISK BASIC interpreter SB-651 0

14

1.8 Initialization

When the BASIC interpreter SB-5 510 is activated by the IPL, system variables and default values

are initialized as follows:

• Keyboard

1) Operation mode : normal

2) Lower case letters are entered with the [. SHIFT) key pressed.

3) The function of each special function key is defined by program "AUTO RUN" as follows.

FIGURE 1.3

• Display

1) Character display mode : normal

2) Character size : 40 characters/line

3) Character display scrolling area : maximum (line 0 through line 24)

4) Graphic display input mode : graphic area 1 (graphic area 1 cleared)

Graphic display output mode :

Position pointer :

• Array

1) No arrays are declared.

• Clock

both graphic areas off

POSH= 0, POSY= 0

1) The built-in clock is started with Tl$ set to "000000".

• Music function

1) Tempo: 4 (medium tempo :moderato)

2) Duration : 5 (quarter note : j)

Chapter 2

Instructions Unique to SB-651 0

This chapter describes SB-657 0 commands, statements and utilities which are not supported by

the ordinary cassette BASIC interpreter SB-5570.

Command and statement format

Commands and statements must be coded according to the following conventions.

• Small letters and reverse characters cannot be used for any commands and statements.

• Operands which must be specified by the programmer are indicated in italics.

• Items in brackets "()"may be omitted or repeated any number of times.

• Separators (commas, semicolons, etc.) must be correctly placed in the specified positions.

15

16

2.1 Commands

2.1.1 DIR

Format

Function

Description

2.1.2 DIR/P

Format

Function

DIR (FDd)

d drive number : 1 through 4

Displays the file directory of the diskette specified.

When FDd is omitted, the value defaults to the number of the drive against which

the last DIR FDd command was executed.

The contents of the directory are as follows:

• Volume number

For the master diskette, "MASTER" is displayed.

• The number of unused sectors remaining.

• Mode, lock condition and file name of each file on the diskette .

The four file modes are indicated with the following codes:

BTX BASIC text file

BSD BASIC sequential access file

BRD BASIC random access file

OBJ : Object file

To indicate the lock condition, an asterisk is attached to the file mode.

Locked files cannot be overwritten or deleted, nor can their pames be changed.

The file name specified during file creation must be always used to call the

file.

When many "files are contained on a diskette, the directory cannot be displayed in

a single frame. The display is fixed once a frame is filled, and the cursor appears.

The frame containing the remainder of the directory can then be brought to the

screen by pressing the

can be executed.

DIR <FDd) / P

key. When the display is fixed, another command

d drive number : 1 through 4

Prints the directory of the diskette in drive d on the line printer.

2.1.3 SAVE

Format

Function

Description

Example

2.1.4 SAVE/T

Format

Function

2.1.5 VERIFY

Format

Function

17

SAVE (FDd@v,) "file name"

d drive number : 1 through 4

v diskette volume number

Assigns the specified file name to the BASIC text contained in the text area and

stores it on the diskette in the specified drive.

The diskette on which the BASIC text is to be saved is specified with the FDd@v

operand.

When this operand is omitted, the text will be stored on the diskette in the de­

fault drive.

"file name" consists of a string of up to 16 characters enclosed with quotation

marks.

SAVE "D" . .. Assigns the file name "D" to the BASIC text in the text area and

stores it on the active diskette. The text is stored in the BTX file mode.

SA VE/T (file name)

Assigns the file name to the BASIC text in the text area and stores it on the cas­

sette tape.

VERIFY (file name)

This command automatically compares the program contained in the BASIC text

area with its equivalent text (file name: "file name") in the cassette tape file.

18

2.1.6 LOAD

Format

Function

Description

Example

2.1.7 LOAD/T

Format

Function

2.1.8 RUN

Format

Function

LOAD (FDd@v,) "file name"

d drive number : 1 through 4

v diskette volume number

Loads the specified BASIC text file into memory from the specified diskette.

The diskette is specified with the FDd@v operand.

When it is omitted, text is stored on the diskette in the default drive.

LOAD FD2, "A" ... Loads the BASIC text assigned the file name "A" from the

diskette in drive 2 into the text area.

LOAD "TEXT 1 " . . . Loads BASIC text "TEXT 1" from the diskette in the

active drive into the text area.

LOAD/T (file name)

Loads the BASIC text assigned the file name from the cassette tape into the text

area.

RUN (FDd@v,) "filename"

d drive number : 1 through 4

v diskette volume number

"file name" BTX file or OBJ file

Loads the BASIC text (BTX) assigned the file name "file name" from the dis­

kette, and then executes it from its beginning.

Therefore,

RUN "file name"= LOAD "file name"+ RUN

Loads the machine language program (OBJ) assigned the file name "file name"

from the diskette, and then executes the program at the start address. In such

cases, system control is transferred from the BASIC interpreter to the machine

language program.

19

2.2 File control statements

2.2.1 LOCK

Format

Function

Description

2.2.2 UNLOCK

Format

Function

2.2.3 RENAME

Format

Function

Description

LOCK (FDd@v,) "file name"

d drive number : 1 through 4

v diskette volume number

This statement locks a specified file.

When a file is locked, requests to modify it will be denied. For example, the

command prohibits DELETE or RENAME operations or writing of data in the

case of random access files. It is good practice to lock files of a permanent or

semi-permanent nature . The file mode symbols in the file directory display are

followed by an asterisk to indicate protected files. (The write protect seal served

as a hardware lock for an entire diskette)

UNLOCK (FDd@v,) ''file name"

d drive number : I through 4

v diskette volume number

This statement unlocks a specified file.

RENAME (FDd@v,) "file name 1 ","file name 2"

d drive number : 1 through 4

v diskette volume number

This statement renames a specified file.

To rename a file, its current name and its new name must be specified in this

order. If a renamed file is identical in name and mode to any file currently stored

on the same diskette, an error occurs.

The RENAME statement is prohibited for any locked file .

20

2.2.4 DELETE

Format

Function

Description

2.2.5 CHAIN

Format

Function

Description

DELETE (FDd@v ,) "file name"

d drive number : 1 through 4

v diskette volume number

This statement deletes a specified file from the diskette.

This statement" is prohibited for any locked file. If you want to delete locked

files, it is necessary to execute the UNLOCK statement first, then the DELETE

statement.

CHAIN (FDd@v,) "file name"

d drive number: 1 through 4

v diskette volume number

This statement chains the program execution to BASIC text on the diskette.

CHAIN FD2@7, "TEXT B" ... Chains the program in the BASIC text area to

BASIC program "TEXT B" on the diskette volume 7 in drive 2. That is, program

"TEXT B" is loaded in the BASIC text area and program execution is started at

its beginning. Before the text is loaded, the BASIC text area is cleared but all

variable values and contents of user functions are given to the program. The

CHAIN statement has the same function as GOTO ''file name" .

CHAIN "PROGRAM 3" ... Chains the program in the BASIC text area to

program "PROGRAM 3" on the diskette in the active drive.

2.2.6 SWAP

Format

Function

Description

21

SWAP (FDd@v,) ''file name"

d drive number : I through 4

v diskette volume number

This statement swaps the program execution to BASIC text on the diskette.

SWAP FD2@7, "TEXT S-R" ... Swaps the current program for BASIC program

"TEXT S-R" on diskette volume 7 in drive 2. The current program text is saved

on the diskette in the drive specified in the last DIR FDd command, then pro­

gram "TEXT S-R" is loaded into the text area and is executed from its beginning.

When the swapped program is finished, the saved program is loaded again and

program execution is started at the statement following the SWAP statement. The

values of variables and the contents of user functions are transferred between the

two program. No SWAP statement can be used in a swapped program. The SWAP

statement has the same function as GOSUB "file name" .

• BSD (BASIC Sequential access Data file) control

2.2.7 WOPEN#

Format

Function

Description

WOP EN # l, (FDd@v , > "file name"

l logical number

d drive number : I through 4

v diskette volume number

This statement opens a diskette file to allow a sequential access file to be written

on the diskette.

WOPEN #3, FD2@7, "SEQ DATA I" ... Defines the file name of a BSD (BASIC

sequential access data file) to be created as "SEQ DATA I" and opens it with

logical number 3 assigned on diskette volume 7 in drive 2.

22

2.2.8 PRINT#

Format

Function

Description

2.2.9 CLOSE#

Format

Function

Description

2.2.1 0 KILL#

Format

Function

Description

PRINT #l, d 1 (, d2 , ... , dv>

l logical number

di write data

This statement writes the data d 1 , d 2 •• . dv (numeric data or string data) in order

in the BSD assigned logical number 1 which was opened by a WOPEN# statement.

PRINT #3, A, A$... Writes the contents of variable A and string variable A$ in

order in the BSD assigned logical number 3 which was opened by a WOPEN#

statement.

CLOSE (#!)

l logical number

This statement closes a BSD assigned logical number I.

CLOSE #3 ... Closes the BSD assigned logical number 3 which was opened by

the WOPEN #3 statement.

By closing the BSD, the BSD which has the file name defined in the WOPEN #

statemnt is created on the specified diskette, and the logical number assigned is

made undefined.

KILL(#!)

l logical number

This statemnt kills a BSD assigned logical number l.

KILL #3 ... kills the BSD assigned logical number 3 by the WOPEN# statement.

Logical number 3 is made undefined.

2.2.11 ROPEN#

Format

Function

Description

2.2.12 INPUT#

Format

Function

Description

23

ROPEN #I, < FDd@v,) "file name"

l ... logical number

d ... drive number : 1 through 4

v ... diskette volume number

This statement opens a diskette file to allow a sequential access file to be read

from the diskette.

ROPEN #4, FD2@7, "SEQ DATA 1" ... Opens BSD "SEQ DATA 1" on dis­

kette volume 7 in drive 2 with logical number 3 assigned to read data in BSD.

INPUT # l , v1 (, v2 , . • • , Vn)

l .. . logical number

vi ... read data

This statement reads data stored in the specified BSD in order and assignes to vari­

ables v1 , v2 • •. Vn (or array elements).

INPUT #4, A(l), B$... Reads data sequentially from the beginning of the BSD

assigned logical number 4 which was opened by the ROPEN# statement and sub­

stitutes numerical data into array element A(l) and string data into string variable

B$.

CLOSE #4 statement closes the BSD assigned logical number 4 and the logical

number undefined.

24

• BRD (BASIC Random access Data file) control

2.2.13 XOPEN#

Format

Function

Description

XOPEN # l, <FDd@v,) "file name"

l ... logical number

d . . . drive number : 1 through 4

v ... diskette volume number

Generally, XOPEN# opens a BRD for writing and reading data (CROSS open).

XOPEN #5, FD3@18, "DATA Rl" ... This statement cross-opens BRD "DATA

Rl" on diskette volume 18 in drive 3 with logical number 5 assigned or, if the file

does not exist on the diskette, cross-opens a BRD by defining its file name as

"DATA Rl" to create it on the diskette with logical number 5 assigned.

2.2.14 PRINT# ()

Format

Function

Description

PRINT # l (n), d 1 (, d2, . .. , dn)

l ... logical number

n ... item expression

di ... write data

This statement writes numeric or string data on elements n, n + 1, ... , n+n of

the BRD assigned logical number 1 which was opened by the XOPEN# statement.

PRINT #5(11), R(ll) ... Writes the contents of !-dimensional array element

R(ll) on element 11 of the BRD assigned logical number 5 which was opened by

the XOPEN# statement.

PRINT #5(20), AR$, AS$... Writes the contents of string variables AR$ and

AS$ on element 20 and element 21 of the BRD assigned logical number 5, respec­

tively. All BRD elements have a fixed length of 32 bytes and, if the length of

string variable exceeds 32 bytes, the excess part is discarded.

25

2.2.15 INPUT#()

Format

Function

Description

INPUT # l (n), V 1 (, v2 , ••• , Vn)

l ... logical number

n ... item expression

vi ... read data

This statement reads data stored in the specified elements of the specified BRD.

INPUT #5(21), R$... Reads the content of element 21 of the BRD assigned

logical number 5 which was opened by the XOPEN# statement into string varia­

ble R$.

INPUT # 5(11), A(ll), A$(12) ... Reads the contents of element 11 and ele­

ment 12 of the BRD assigned logical number 5 into linear numeric array element

A(ll) and linear string array element A$(12), respectively.

CLOSE #5 statement closes the BRD assigned logical number 5 which was

opened by the corresponding XOPEN# statement.

KILL #5 statement kills the BRD assigned logical number 5 and the logical num­

ber undefined.

CLOSE ... Closes all open files.

KILL . . . Kills all open files.

2.2.16 IF EOF(#) THEN

Format

Function

Example

number.

IF EOF(#l) THEN lr (or statement)

l ... logical number

Transfers program control to the routine starting to specified line number lr if an

EOF (End of file) is detected when as INPUT# statement is executed against a

BSD or a BRD.

IF EOF(#5) THEN 1200

26

2.3 Error processing control

2.3.1 ON ERROR GOTO

Format

Function

Description

2.3.2 IF ERN

Format

Function

Description

ON ERROR GOTO lr

lr reference line number : error processing routine

This statement declares the number of the line to which program execution is to

be moved in order to correct errors.

Declaring an error processing routine with the ON ERROR GOTO statement

allows errors to be corrected during program execution without the system re­

turning to the BASIC command level. When the ON ERROR GOTO statement is

executed, program execution will be moved to <error processing routine) if any

error has occurred. This enables the error number (ERN) and the number of the

line on which the error occurred (ERL) to be ascertained, and allows subsequent

processing to be performed in accordance with the IF ERN or ERL statements.

The RESUME statement serves to move program execution back to the point at

which the error occurred.

Execution of a new ON ERROR GOTO statement invalidates any preceding one.

IF ERN expression THEN lr

IF ERN expression THEN statement

IF ERN expression GOTO lr

lr reference line number

This statement ascertains the identification numbers of errors, and causes branch­

ing when those numbers are ones specified.

When an error occurs, the corresponding error number is placed in system variable

ERN (see the Error Table on page 88). This enables an IF ERN statement in an

error correcting routine declared by the ON ERROR GOTO statement to deter­

mine what type of error has occurred. The IF ERN statement may be used in

either of the following forms:

(1) IF <relational expression of ERN) GOTO, or

(2) IF <relational expression of ERN) THEN statement or lr.

(See the descriptions of the IF~ THEN and IF~ GOTO statements.)

Example

2.3.3 IF ERL

Format

Function

Description

Example

27

The statement shown below causes program execution to jump to line 1200 when

Error 5 (String Overflow) occurs, indicating tliat the string length exceeded 255

characters.

800 IF ERN= 5 THEN 1200

IF ERL expression THEN lr

IF ERL expression THEN statement

IF ERL expression GOTO lr

lr reference line number

This statement determines the number of the line on which an error has occurred

and causes branching to a specified line.

Since system variable ERL is loaded with the number of the line on which an

error occurred, the IF ERL statement in the routine declared by the ON ERROR

GOTO statement is able to ascertain this line number from system variable ERL.

The IF ERL statement, like the IF ERN statement, may be used in two forms:

IF ~THEN or IF ~ GOTO.

The statement shown below causes program execution to jump to line 1300 when

an error occurs on line 250.

810 IF ERL = 250 THEN 1300

28

2.3.4 RESUME

Format

Function

Description

RESUME <NEXT)

RESUME lr

lr reference line number or 0

This statement returns program execution to the main program after correction of

an error.

The system holds the number of the line on which the error occurred in memory

and returns program execution to that line or to another specified line after the

error is corrected.

The RESUME statement may be used in any of the following four forms:

RESUME: This returns program execution to the statement in which the error

occurred.

RESUME NEXT: This returns program execution to the statement just after the

one in which the error occurred.

RESUME <line number): This returns program execution to the line specified by

<line number).

RESUME 0: This returns program execution to the beginning of the program,

or to the line with the smallest line number.

If the system encounters any RESUME statement when there is no error condi­

tion, Error 21 (RESUME- no ERROR) will occur.

29

2.4 Use of utility programs

Utility programs "Filing CMT" (OBJ) and "Utility" (OBJ) are stored on the master diskette toge­

ther with DISK BASIC interpreter SB-6510, MONITOR SB-1510 and some application programs, as

shown in Figure 2.1 the file directory of the master diskette.

FIGURE 2.1

In the following paragraphs, use of utility programs are explained.

2.4.1 Use of utility program "Filing CMT"

This utility program transfers machine language program from cassette file to the diskette as it is.

To call this utility program, enter

RUN "Filing CMT"

The display screen is as shown in Figure 2.2.

* TRANSFER FROM CMT (OBJECT TAPE) TO FD *
SET TAPE! OK?

(B KEY : BOOT START)

DRIVE NO. m

FIGURE 2.2

Set ready the cassette tape file which has to be transferred into the diskette, and specify the drive

number.

30

The following example transfers BASIC interpreter SB-5 510 from the cassette file to the diskette

in drive 2.

* TRANSFER FROM CMT (OBJECT TAPE) TO FD *
SET TAPE! OK?

(B KEY: BOOT START)

DRIVE NO.2

LOADING BASIC SB-5510

(R) KEY : RESTART

OTHER KEY: BOOT START

FIGURE 2.3

You obtain the obJect file (OBJ) "BASIC SB-5510" on the diskette in drive 2. Therefore, to call

BASIC interpreter SB-5 510 from the diskette file, simply enter

RUN "BASIC SB-5510"

2.4.2 Use of utility program "Utility"

This utility program has two functions, that is, initializing diskettes and copying diskettes. To call

this utility program, enter

RUN "Utility"

The display screen is as shown below.

* * UTILITY * *
[COMMAND TABLE]

DISKETTE INIT I

SLAVE-DISK INIT S

DISKETTE COPY C

BOOT START B

? ~

FIGURE 2.4

When a I command is entered, the display is as shown in Figure 2.5.

31

[COMMAND TABLE]

DISKETTE INIT I

SLAVE-DISK INIT S

DISKETTE COPY C

BOOT START B

? I

DRIVE NO.~

FIGURE 2.5

The utility program requests the operator to specify drive number.

When a new diskette is used, it must first be initialized (that is, formats the diskette so that data

are able to be written or read). During initialization, the diskette is formatted.

S command assigns a volume number to a initialized diskette for making a slave diskette. Figure

2.6 shows an example where the slave diskette in drive 1 is made with volume number 25 assigned.

[COMMAND TABLE]

DISKETTE INIT I

SLAVE-DISK INIT S

DISKETTE COPY C

BOOT START B

? s
VOLUME NO. 25

FIGURE 2.6

Any number from 1 through 127 can be specified for the volume number. Different numbers must

be assigned to each diskette so that a diskette can be specified with its volume number in a logical

open statement.

32

C command copies a diskette. The following example copies the diskette in drive 1 on diskette in

drive 2.

[COMMAND TABLE]

DISKETTE INIT

SLAVE-DISK INIT

DISKETTE COPY

BOOT START

? c
FROM

DRIVE NO.1

TO

DRIVE NO.2

COPY

I

s
c
B

Same as contents
ofSLAVE 1

FIGURE 2.7 Slave diskette copying

Any number of submanster diskettes can be made by copying the master diskette using this

.diskette copy command. However, submaster diskettes cannot be made by copying another submaster

diskette.

FIGURE 2.8

33

NOTE: It is recommended that a write protect seal be placed on the original diskette to prevent it

from being accidentally arased.

ERROR INDICATIONS : DISK ERROR = 50 The disk drive is not ready.

DISK ERROR = 41 Disk drive hardware error ..

Chapter 3

Data Processing Application

This chapter introduces a typical example of file control program using DISK BASIC in order that

the user may utilize the fundamental programming technique described in the example.

35

36

Data processing application

This program performs the following: data file generation, file-based calculations, data sorts and

data list generation. This program is designed so that it is applicable to a variety of situations, such as

inventory control and generation of a list of student records. The user determines the application.

This program consists of the following jobs:

Data file format

Main Job Subjob

Ll. Define

2. Clear

1. Format---,-

Ll. Disk Read

2. RAM Read

2. Read----,--

Ll. To Disk

2. To Printer

3. Write------,--

4. Inform

5. Process~ 1. Delete

L2. Operation

3. Sort

6. Data Input---.L--1. Data Store

2. Correction

This program generates a data file in the format shown in the Figure 3.1. The maximum number of

fields N is 10 and the maximum number of data records M is 150. A group of data records which are

arranged on the same line as in this Figure is represented by a data record number. For example, data

record 2 represents the group of data fields on the highlighted line in the Figure 3 .1. Data is input as

a unit consisting of the group of data fields represented by the data record number. Deletion of a data

record number means that the group of data fields represented by the data record number is deleted.

Field 1 Field 2 Field N

3 Data Data Data

M-1

M Data Data Data

FIGURE 3.1

37

Data length

The length of the input data must be specified for every field. A length equal to or greater than

that of the longest data element belonging to a field must be specified for the field.

Data attribute

Whether input data is numeric data or alphanumeric data must be specified. The program processes

alphanumeric data as string data. Only the following codes are significant.

Numeric 01H~04H, 07H, 08H, ODH, lBH, 20H, 2BH, 2DH, 2EH, 30H~39H (according to

ASCII)

Alphanumeric 01H~04H, 07H, 08H, ODH, lBH, 20H~7EH (according to ASCII)

Program Execution

a) Setting date

Enter the date from the keyboard in the order month, day and year. The length of the month and

day is up to 2 digits and that of the year is up to 4 digits. For example, to enter Nov. 9, 1981, press

keys as follows.

CDCDIENT) ~ 01ENT) ~ CD00[DIENT)
or

CD CDIENT) ~ 01ENT) ~ 0[DIENT)
The I CR] key may be pressed instead of the I ENT J key. See Figure 3.2.

FIGURE 3.2

38

b) Job selection Uob selection routine)

The character string "MAIN JOB" flashes on the bottom line of the CRT display screen. Select

from among the 6 main jobs by pressing one of keys C2J to 0- See Figure 3.3.

FIGURE 3.3

After the main job is selected, select a subjob. See Figure 3.4.

FIGURE 3.4

Notes: This program and data generated by this program must be stored in the same diskette .

During execution of this program, the (CR) or (ENT] key must be pressed to conclude

data entry from the keyboard to make the key input data significant.

39

Job 1: Format

(1) Define

Defines the name, length and attribute for every field according to data entered from the key­

board. Data entered must satisfy the following conditions:

Field name

Data length

Up to 16 alphanumeric characters

Up to numerics 79. The total length of all fields must be 79 or less.

Data attribute "1" for numeric data and "0" for string data

The above items must be specified for every field required. See Figure 3.5. Pressing the [TAB J key

returns control to the job selecting routine. See Figure 3.3.

FIGURE 3.5

(2) Clear

Clears the file and cancels all field definitions. This subjob is to be executed before defining a new

data file.

Job 2: Read

(1) Disk read

Displays the names of the first 6 data files stored on the disk. The operator must enter a number

corresponding to the file to be read when it is displayed on the screen. If the name of the file to be

read is not found among the 6 names displayed, press the space bar and the program displays the

names of the next 6 files stored on the disk. Repeat until the desired file name is found. When no

more files remain on the disk, the program displays "END" at the lower right of the last file name.

When any files remain, it displays "TO BE CONTINUED" at the lower right of the last file name. See

Figure 3.6.

40

FIGURE 3.6

When a file name is selected, the program reads and stores the corresponding data file into mem­

ory. Pressing the [TAB j key returns control to the job selection routine.

(2) RAM read

Displays data in the file in the memory.

This subjob operates in either the automatic read or the step read mode. Enter ~ or Q from

the keyboard to select the mode.

In the automatic read mode , all data records in the data file are displayed consecutively. By press­

ing the space bar during execution in the automatic read mode, display operation can be suspended.

Pressing the space bar again restarts display operation. See Figure 3.7.

FIGURE 3.7

41

In the step read mode, data records in the data file are displayed one by one. Pressing the space

key displays the next data record. See Figure 3.8.

FIGURE 3.8

The mode can be alternated by pressing [D or 0 while the operation is suspended.

Pressing the [TAB j key returns control to the job selection routine.

Job 3: Write

(1) To disk

Stores the data file on the disk. The operator must specify a file name of up to 16 characters.

File names which have already been specified cannot be used. See Figure 3.9.

FIGURE 3.9

42

(2) To printer

Prints a data file listing. Pressing the (TAB I key during execution stops printing and returns control

to the job selection routine.

Job 4: Inform

Displays field definitions defined by job 1 on the CRT screen. See Figure 3.10.

* * * Data Processmg Program , • * Date 9 NOV, 1981

[Field[[Name[[Lenyth] [Attribution)

1. Student Number 4 Alphanumeric
2. Student Name 17 Alphanumeric
3. No. of Subjects 3 Numeric
4. English 5 Numeric
5. French 5 Numeric
6. Mathematics 5 Numeric
7. Science 5 Numeric
8. Social Studies 5 Numeric
9. Average of Marks 5 Numeric

10.

[No. of Store Data" 15[

1 Format 2 Read 3 Wnte I:IJIIm 5 Process 6. Data Input

Message Return to main job select with depressing any key.

FIGURE 3.10

Pressing any key returns control to the job selection routine .

43

Job 5: Process

(1) Delete

Deletes a group of successive data records. The operator must specify the first record number of

the group and the number of data records to be deleted. Data records following the group deleted are

moved up to the data record preceding the group deleted. See Figure 3.11. Pressing the [TAB I key

returns control to the job selection routine.

FIGURE 3.11

(2) Operate

Performs arithmetic operations concerned with two fields of the data file. The operator must

specify the type of arithmetic operation to be performed. Keys GJ through 0 correspond to addi­

tion, subtraction, multiplication and division, respectively. The two fields to be subjected to opera­

tions and the field in which the results are to be stored must also be specified. For example, when each

data element in field I is to be multiplied by the corresponding data element in field 3 and each result

is to be stored in field 5, specify as shown in Figure 3.13. If field 5 is not defined, it must be defined

by job I before this job is executed.

FIGURE 3.12 FIGURE 3.13

44

It is possible to store the result of addition of the data elements in field 1 and field 2 in field 1. In

this case, the previous contents of field 1 are lost. An appropriate length must be defined for fields in

which the results of arithmetic operations are to be stored. If the length of the result exceeds the

defined length of the field, the result is insignificant. The program ignores the second decimal place

and on in the result.

Pressing 0 when the operation is selected causes the program to add all data elements in a field

and obtain their average.

All fields subjected to arithmetic operations must be numeric fields.

Pressing the [TAB J key returns control to the job selection routine.

(3) Sort

Rearranges the order of data in the specified numeric field. This subjob operates in either of two

modes.

In the descent mode, it arranges data from the largest downward. In the ascend mode, it arranges

data from the smallest upward . Keys [2] or Q set the descent or ascend mode, respectively. See

Figure 3.14.

FIGURE 3.14

Pressing the [TAB/ key returns control to the job selection routine.

45

Job 6: Data Input

(1) Data Store

Places data entered from the keyboard into the defined fields according to the field definitions.

The program displays the defined fields for the first data record on the CRT screen according to the

field definitions.

'--y---' ~

____-A _____, \ ~
Field I Field 2 Field 3 Field 4

(6 characters) (4 characters) (7 characters) (3 characters)

"'" represents the beginning of each field. Data for each field can be entered to the position just

before the next"'". Data exceeding the defined length cannot be entered. The program counts a space

as a character for an alphanumeric field and igonores it for a numeric field. See Figure 3.15.

FIGURE 3.15

Press either the I CR) or I ENT) key after data for each field has been entered; then data for the

next field can be entered. After all data for the first data record have been entered, the program dis­

plays all the fields for the second data record and so on. All data for the data file can be input in this

manner. During execution of this subjob, the definition of the field in which data in currently being

entered is displayed in the upper part of the CRT display. Refer to them when entering data. See

Figure 3.16.

46

FIGURE 3.16

Pressing the [TAB I key returns control to the job selection routine.

(2) Correction

Corrects data which has already been input.

First specify the record number, then the program displays the specified data record . Then, press

the I CR] orIENT] key until the cursor is positioned in the field containing the data to be corrected.

Enter the corrected data then advance the cursor to the next field to be corrected by pressing the

CR] orIENT] key. For example, to correct the data in field 5, press the [CR] or [ENT I key four

times and enter the corrected data. After the data has been entered, be sure to press the I CR] or

I EN T I key to advance the cursor then press the [TAB I key. Corrections are made significant by pressing

the [TAB I key. See Figure 3 .17.

FIGURE 3.17

Pressing the [TAB I key returns control to the job selection routine.

47

Primary Program Variables

AA Number of data files already stored on the disk.

TD$ Date

JM Main job number

SJ Subjob number

NF Number of fields defined (Nl = NF- 1)

PI Number of data records (PI = P- I)

A$(J,I): Data stored in data record I, field (J + 1)

A$ (J, 0) stores the name of field (J + I).
B (I) The length of the data field (I + I)

A (I) The attribute of the data field (I + 1)

U Sum of the length of defined data fields.

Machine Language Routine

Machine language data are stored in the memory area from $FE7E to $FFFF. The area contains

three subroutines.

(1) Subroutine starting at $FE7E (keyboard input routine)

This subroutine obtains data entered from the keyboard and stores it in the area corresponding to

string variable IP$. To call this subroutine, the following data must be set in advance.

Addresses $FFFE

and $FFFF Video-RAM address ($D5 50)

Address $FFFC

Address $FFF A

Address $FFFB

Starting address of the area in which data is to be stored, written in offset

from $D550.

Input data attribute

1 = numeric data

0 = alphanumeric data

Input data length

Line numbers 7000 to 7050 are assigned to this subroutine. This subroutine is invoked by GOSUB

7500 or GOSUB 7600.

(2) Subroutine starting at $FFDD

This subroutine shifts data on the 3rd through 20th line on the CRT display screen upward one

line when the display mode is in the 80 characters/line mode. As a result, the 20th line becomes a

space line. This subroutine is invoked by GOSUB 7070 or GOSUB 7080.

48

(3) Subroutine starting at $FFEA

This subroutine obtains one character entered from the keyboard and stores its corresponding

ASCII code in $FFF9.

Line number 7780 is assigned as the start address of this subroutine. It is called by GOSUB 7780.

This subroutine is also invoked by GOSUB 7070 or GOSUB 7800.

Structure of Files Generated

Each data file generated is stored as a serial data file (BSD) on the diskette with an appropriate

name assigned. At the same time , a random data file (BRD) containing information related to each

data file, i.e ., the file name, date, number of fields defined and number of data records is generated

and stored with the file name "Storage File" assigned.

49

Flowchart

The flowchart of this program is shown in the following. The program listing is shown later. The

following flow chart is for reference only and does not include all details of the program.

Sets di splay in the
80 characters / I ine
mode. GOTO 1540

Declares array
variables. GOTO 1500

Declares s tart line
numbers of error
process ing routines .

GOTO 2000

Reads string variable Fi le name
"Variable Data"____.. data from di skette.

GOTO 2250

File name Loads machine language
"DATA·DEC2" - data from diskette into

RAM .

GOTO 2500

File name Checks the number

R$ = ""Storage File" - of fil es generated
in the past.

GOTO 2650

No GOTO 4000

GOTO 4200

GOTO 4500

No

GOTO 3000 GOTO 3500

To '' Format ~ routine

GOTO 3600

To "Define " routine

"Format"

To "Clear " routine

To "Disk Read" routine

" Read"

To "RAM Read" routine

To "To Disk" routine

'' Write"

To "To Printer " routine

To "Delete" routine

To "Sort" routine "Process"

T o "Operate" routine

To "Data Store" routine)

" D~ta Input"

To "Correction" routine

50

GOTO 1000

'' Define" start

Keyboard input
routine

S tores fi eld name.

Writes dummy data.

(1540- 1740)

NF-I : Number of fi elds already def ined

J = O:Field name
J = l : Data length
J =2: Data attribute

Yes

J =2 No

No

Message

"Clear" start (1530)

Initializes field
variables.

GOTO 1000

"S torage F il e"

No

'' Disk Read" start

Reads information
data r elated to files
stored on diskette.

Sets keyboard input
cond itions for reading
fi le.

Keboard input
rou tine

Reads specifi ed file
from di s kette.

51

(2000 - 2200)

GOTO 1000

No

No

Yes

52

Sets "Auto Read "
mode.

Select " Auto Read"
or '' Step Read" mode.
(By key-in)

S ets "Step Read"
mode.

Suspends di splay
operation.

GOTO 1000

Yes

"Storage File"

No

Writes file
information
in the infor­
mation file.

Sotres file in
diskette with
specified file
name assigned.

''To Printer '' start

Prints defined
field names.

GOTO 1000

(2650 - 2840)

Yes

Message

GOTO 1000

No

No

Displays name, length
and data attribute of
a defined field.

Displays definition
status of remaining
fields.

GOTO 1000

53

GOTO 1000

54

No

No

"Delete" s tart

Adjusts number of
data records to be
del eted.

Shifts the data
records upwards.

(4000 - 4120)

GOTO 1000

GOTO 1000

No

Selection of fields
subject to operation
and field in which
result is stored

Executes specified
operation.

Obtains result · up
through 1st decimal
place.

Stores result.

No

Specification of field
subject to operation

Performs addition.

Obtains average.

GOTO 1000

Sets insignificant
data.

55

GOTO 1000

56

Keyboard input
routine

Determining number
of data records to be
s tored

Yes

GOTO !000

No

GOTO 1000

Message

No

Selection of
"Descend" or
"Ascend ''

Sets specified mode.

(4200 - 4490)

Yes

GOTO 1000

No

Sets ini tial s tack
for sor ted fi elds.

Pushes s tack.

Pops s tac k.

Sets data exchange
range.

Sets r eference for
data exchange.

Exchanges data.

Divides data exchange
ranges.

Pushes stack.

57

58

1 CONSOLECBO
2 PRINT II •••••••
3 PRINT" •.••..•
4 PRINT" ..••.••
6 PRINT" •••.•..
7 PRINT" .•••..•
8 PRINT" .••••••
9 REM

This program makes the serial data files 'Variable Data'
and 'DATA-DEC2' which are used in the main program
'DATA PROCESSING MAIN PROGRAM'.
Before executing the main program, the above two files
'Variable Data' and 'DATA-DEC2' must be stored in a
diskette in which the main program is stored.

10 DIM F$(2) ,K$(1) ,KM<2l ,LM<2l ,M$(5) ,M(8) ,FR$(4) ,FF$(4)
20 DIM FM$(6l,FS$(4l,ER$C14l,W4$(1),CP<4l,S$(2),0$(4l,DT$(2)
30 CP<Ol=21:CP<1l=23:CP<2l=24:CP(3l=1:CP(4)=17
40 MD$= "JUNFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"
41 0$= " Field ":0$(0l="["+O$+"A J + ["+0$+"8 J = ["+O$+"C J"
42 0$(1)="["+0$+"A J - ["+0$+"8 J = ["+0$+"C J"
43 0$(3)="["+0$+"A J I ["+0$+"8 J = ["+O$+"C]":0$(4l="Summation of one field"
44 FOR I=1 TO 79:S$(0l=S$(0)+".":S$(1l=S$(1l+" ":S$(2l=S$(2l+".":NEXT
45 LM <Ol =16: Ll"l (1) =2: LM (2) =1: I<M (0) =0: I<M (1 l =1: ~<M (2) =1: R$="Storage File"
46 0$(2l="["+O$+"A J * ["+0$+"8 J = ["+O$+"C J"
50 W4$(0l="t":GT$="16121212001312"
60 K$ (0) ="Al phanume1~i c": I<$ (1) ="Numeric"
70 DT$(0l="Month •••• ":DT$(1l="DAY .••.•• ":DT$(2l="Year
80 M$(0)=" !.Format ":M$(1)=" 2.Read ":M$(2)=" 3.Write ":M$(3)=" 4.Inform"
90 M$(4)=" 5.Process ":M$(5)=" 6.Input Data"
100 M<Ol=12:M(1)=23:M<2l=32:M(3)=42:M(4l=53:M(5l=65:M(6l=12:M(7l=27:M<8>=42
110 F$(0)="Field Name (Up to 16 characters)"
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

F$(1l="Field Length <Total Length< 80)"
F$(2l="Field Attribute<O=Alphanumeric, !=Numeric)"
FR$ < 0 l =" .ijfliiMiii'!WJI" : FR$ < 1 l = "-=u!SR~" : FR$ < 2 l =" '"91'51'!!1

W": FR$ < 4 l =" •Rf"::+&m" FR$ <3> ="-Mii•i
FF$(0)=" Main job
FF$(3)=" Error

":FF$(1)=" Subjob ":FF$(2)=" Select

FM$ < 0 l =" ... ;;t:'l'ili'Q
FM$ < 1 l = "•R•l?llhl
FM$ (2) ="•1911m-~
FM$(3l="~m

":FF$(4)=" Message :
"'j.'l.i!!lm «nnn.1- ·IIOU•iiu

FM$ (5) =" -.ml•l?IRi·- -=!iiD
FM$ (6 > = ''•R•D...U•ii- z:llllljlijjir-MWII!]iWW''
FS$(0)=" Specify one of above files [1 to J"
F S $ (1 l = ":;miPJij.'l.i!!lm
FS$ < 2 l =" ..._,~~=~~:i:IOI;::);;;~ ... --;;~<Wi;!~;;;U;;;i.
FS$(3)=" Specify operational format number."

Jlll!ili.tilf:l*

FS$(4)=" Return to main job select with pressing any key."
ER$(0)=" Invalid .•••••• No Data or No File"
ER$(1)=" Invalid Data"
ER$(2)=" Total length is over 79.":ER$(5)=" File is filled. "

M•DiFWfml!ll''

ER$(3)=" Total length is filled.":ER$(6)=" Impossible ••• Alphanumeric Fiel
d"

325
330
340
350
360

zed. "
370
380
390
400
410
420
430
440
500
600

3
610
620

ER$(4)=" Fields are filled."
ER$(7)=" 'No stored file"
ER$(8)=" Printer is not ready.":ER$(9)=" Printer is in mechanical trouble."
ER$(10)=" Print paper is lack.":ER$(11)=" Disk drive is not ready."
ER$<12>=" Disk memory capacity is lack. ":ER$(13)=" Diskette is not initiali

ER$(14)=" Same file name exsists."
WOPEN#1,"Variable Data'':PRINT#1,K$(0l,K$(1l,W4$(0l,GT$,MD$,R$
FORI=OT02:PRINT#1,S$<Il,LM<Il,KM(Il,DT$(1l,F$(Il:NEXT
FOR I=O TO 4:PRINT#1,CP(Il,0$(Il,FR$(!),FF$(ll,FS$(Il:NEXT
FOR I=O TO 6:PRINT#1,FM$CI):NEXT
FOR I=O TO 5:PRINT#1,MS<I>:NEXT
FOR I=O TO 8:PRINT#1,M(I):NEXT
FOR I=O TO 14:PRINT#1,ER$CI):NEXT:CLOSE
WOPEN#l,"DATA-DEC2":FORI=OT0378:READ A:PRINT#1,A:NEXT:CLOSE:END
DATA 213,42,254,255,58,252,255,95,22,0,25,34,252,255,58,251,255,95,229,25,4

DATA 34,254,255,58,249,255,183,40,11,62,32,67,35,4,205,122,12,43,16,250,225
DATA 1,127,32,58,250,255,183,40,3,1,58,48,62,250,8,123,186,32,31,205,113,8

59

630 DATA 205,176,255,205,214,255,8,61,32,238,205,104,12,254,128,56,4,214,128,24
,2
640 DATA198,128,205,122,12,24,218,205,138,255,24,226,205,122,12,35,20,201,122,1

83
650 DATA 202,128,255,21,205,116,255,43,201,123,186,202,128,255,205,116,255,35,2

0
660 DATA 201,122,183,202,128,255,123,146,254,0,40,228,197,79,6,0,229,213,205,11

6,255
670
680
690

45
700
710

1
720
730
740
750

,254
760
770

5~12

780

DATA
DATA
DATA

DATA
DATA

DATA
DATA
DATA
DATA

DATA
DATA

DATA

84,93,27,205,135,12,43,62,32,205,122,12,209,225,43,21,193,201,123,186
40,91,229,42,254,255,205,104,12,254,32,225,32,,79,205,116,255,123,61
146,254,0,40,186,197,71,42,254,255,43,205,104,12,35,205,122,12,43,16,2

62,32,205,122,12,193,201,209,209,62,128,18,1,1,0,201,193,205,116,255
42,252,255,75,6,0,209,213,197,205,104,12,18,35,19,13,32,247,193,209,20

205,104,12,254,128,216,214,128,205,122,12,201,205,190,14,205,190,14
205,190,14,201,205,113,8,184,56,4,185,218,223,254,245,58,250,255,183
40,56,241,254,43,202,223,254,254,45,202,223,254,254,46,202,223,254
254,32,202,223,254,254,0,200,254,13,40,164,254,27,40,151,254,4,202,229

254,7,202,251,254,254,3,202,240,254,254,8,202,33,255,205,128,255,201
241,24,218,197,6,96,16,254,193,201,1,80,5,17,160,208,33,240,208,205,13

201,6,160,205,113,8,254,0,32,2,16,247,50,249,255,201

60

1 REM ••••••.•••••• DATA PROCESSING MAIN PROGRAM
2 REM
3 CONSOLEC80:PRINTCHR$C6>; :PRINT"Do you need the explanation of this program?"
4 PRINT"If so, press the 'Y ' key.":PRINT"The main program is executed with pres

sing the other key."
5 PRINT: PRINT: PRINT" <Note> You should use the diskette except the master diske

this program is rewritten." tte on which
6 PRINT" Files 'Data Processing', 'Explanation-D.P ' , 'Variable Data' and

'DATA-DEC2' should be transferred."
7 PRINT" With executing the program '**String-Machine', 'Variable Data'

and 'DATA-DEC2 ' will be made."
8 A$="":GETA$:IFA$=""GOT08
9 IFA$="Y"THENCHAIN"Explanation-D.P"
10 LIMIT$FE7E:KILL:DIMA$C9,201),A(9),8(9),F$C2),K$(1),KMC2),LMC2),M$C5>,MC8),FR

$(4) ,FF$(4) ,FM$(6) ,FS$(4) ,ER$114) ,W4$(1) ,CC9) ,D(9) ,CPC4) ,S$(2)
30 DIMEC2>,0$C4>,DT$C2),XC1,100):A3=1:TEMP06:P=1:P1=0:0N ERROR GOT06000
100 ROPEN#1, "Vari ab 1 e Data": INPUT#! ,1<$ (0) , K$ (1) , W4$ ((I) , GT$, MD$, R$: FORI=OT02: I NP

UT#1,S$CI> ,LMCI> ,I<M<I> ,DT$<1> ,F$(1) :NEXT
120 FDRI=OT04:INPUT#1,CPCI>,O$CI>,FR$CI>,FF$CI>,FS$CI>:NEXT:FORI=OT06:INPUT#l,F

M$CI>:NEXT:FORI=OT05:INPUT#1,M$CI>:NEXT
130 FORI=OT08:INPUT#1,MCI>:NEXT:FORI=OT014:INPUT#1,ER$CI):NEXT:CLDSE
200 X=65150:ROPEN#1,''DATA-DEC2":FORI=OT0378:INPUT#1,A:POI<EX+I,A:NEXT:CLOSE
500 PRINTCHR$C6>;S$CO):PRINTS$CO):CURSOR0,20:FORI=1T04:PRINTS$CO>:NEXT:PRINTS$C

O>;:CURSORO,O
520 PRINTTAB (13); ~~~---rpJ51111:jiiWii- li&MM:Iiiii4!!iii::tuWW••311

; TAB (59);,.,.._ ..
700 CURSDR16, 17: PRINT"......... Input today' s date ••.•••••• ": A7=3: GOSUB7080
710 FORI=OT02
720 CURSDR27,17:PRINTDT$CI>:A4=1:A5=2:IFI=2THENA5=4
730 A6=37:GOSUB7600:IFD1=0GOSUB7070:GOT0700
740 IFIP<1THEN7930
75Q ONIGOTD800,820
760 IFIP >12GDTD7930
770 X=IP:GOTD820
800 Y=IP:IFCIP>31)+CCX=2>*<IP >29))+(CCX=4)+CX=6)+CX=9)+CX=1111*CIP=311)GOTD7930
820 A7=1:GOSUB7080:NEXT
840 DT$=LEFT$ CSTR$ CYI +" "+MID$ CMO$, 3*X-2, 31 +", "+STR$ UP> +S$ < 1 >, 12)
850 A$=0T$:GOSUB7900:CURSORO,O:PRINTTABC78-LENCTD$JI;TO$
1000 GOSUB7070:CURSOR0,1:PRINTS$(0):CURSOR0,21:PRINTFR$COJ;FM$COJ:PRINT:PRINTS$

<OJ: PRINTS$ CO>;
1010 CP=O:GF=O:K=O:JM=O:GOSUB7100:JM=G:IFG3=0GOT01010
1130 CURSDRMCG-1>,21:PRINTM$CG-1>:IFJM=4GOTD3 000
1160 CURSOR0,23:PRINTFF$C1J;FM$CJM>:CP=1:GF=O:I<=1:GOSUB7100:SJ=G:IFG3=0GOT01000
1200 CURSDRMCG+51,23:A$=FM$CJMJ:GOSUB7910:PRINTTD$
1210 ONJMGOT01500,2000,2500,3000,4000,3500
1250 ER=O
1260 GOSUB7400:GOT01000
1500 IFSJ=1GOT01540
1530 GOSUB7920:f'RINT"clearing buffer ! !":FORL1=0TON1:FORL2=0TOF'1:A$CL1,L21="":N

EXTL2,L1:P=1:NF=O:P1=0:N1=0:U=O:GOT01000
1540 IFCNF >=101+CU >=791THENER=5:GOT01260
1545 Y=NF:A6=37:ZZ=O
1560 FORI=NFT09:FORJ=OT02:IFCJ=O>*<U=79JGOTD1695
1580 CP=l: X= 1: GOSUB7700: PRINT" Information : Input "; F$ CJ); : A4=1<M (J) : A5=LM (J)
1585 IFJ=1THENPRINTTABC60J;"[Remainder =";79-U;" J"
1590 IF J =OTHENCURSORO, 17: PRINT "•ji(I:Jt=--" ; : A$=STR$ < I+ 1 I : GOSUB7900: PR I NTTD$;
1600 CURSOR15,17:F'RINTLEFTCFCJJ,151;" =":GOSUB7600:IFD1=0GOT01700
1610 ONJGOT01630,1660
1620 A$CI,OI=IF'$:GOT01680
1630 IFIP<=OTHENER=1:GOSUB7400:GOT01590
1640 U=U+IP:IFU>79THENU=U-IP:ER=2:GOSUB7400:GOT01590
1650 BCII=IP:GOT01680
1660 A<I>=IP:IFCIP<>O>*<IP<> 11THENER=l:GOSUB7400:GOT01580
1680 A7=2:GOSUB7080:NEXTJ
1690 A7=3:GOSUB7080:NF=NF+l:N1=NF-1:NEXTI
1695 X=1:CP=24:GOSUB7700:PRINTFF$C4);" ";ER$(4);:K=4:CP=2:GF=2:GOSUB7110
1700 IFY=NFGOT01000

1705 IFP=lGDTDlOOO
1710 FORI=lTDPl:FORJ=YTDN1:IFACJl=OTHENA$CJ,Il=LEFT$CS$C1l,BCJl):GOT01740
1730 A$CJ,Il=LEFT$CS$C1l,BCJl-1l+"O"
1740 NEXTJ,I:GOT01000
2000 IFSJ=2GOT02250
2005 N=O:M=O:XOPEN#1,R$:INPUT#1C1l,AA:IFAA=OTHENCLOSE:GOT01250
2020 FDRI=1TDAA:CURSDR0,17:IFN=6GOT02090
2030 IFN<>OGOSUB7940:GOT02070
2040 PRINT"[No. J";TAB<12l; "[File Name J";TABC32l; "[Date J";

61

2050 PRINTTABC46l;''[No. of Data J";TABC63l;"[No. of Field J":A7=2:GOSUB7080:G
OSUB7940

2070 CURSORO, 17:PRINTTABC3l ;N+l; ".";TABC10) ;A$;TABC31l ;TD$;TABC53l ;P1;TABC71l ;N
F:N=N+1

2080 A7=1:GOSUB7080:NEXT
2090 CURSOR50, 17: IFC6*M+Nl<AATHENPRINT".......... To be continued. ":CM=l:GOT02

110
2100 CM=O:PRINT" •.•.•.••.• End"
2110 CP=24:X=1:GOSUB7700:PRINTTABC13l;FS$COl;:CURSDR47,24:PRINTN;:CF'=2:G1=1:G2=

N:K=2:GF=3:GOSUB7110:0NG3+1GDTD2140,2150
2130 IFCM=1THENM=M+1:N=O:GOSUB7070:CURSOR0,17:GOT02030
2140 CLOSE:GOT01000
2150 I=6*M+G:GOSUB7940:CLOSE:GOSUB7070:GOSUB7920:PRINT"reading 1 1 "

2180 RDPEN#1,A$:FORI=OTON1:FORJ=OTOP1:INPUT#1,A$CI,Jl:NEXTJ,I:U=O
2200 FORI=OTON1:INPUT#l,ACil,BCil:U=U+BCil:NEXT:CLOSE:GOT01000
2250 IFP=1GDTD1250
2252 CURSOR0,24:PRINTFR$C2l;FS$C1l;:Gl=l:G2=2:CP=2:K=2:GF•O:GOSUB7110
2260 IFG3=0GDTD1000
2263 CURSDRM<5+Gl,24:A$=FS$Cll:GOSUB7910:PRINTTD$;:GOSUB7450:I=O:SS=G
2280 IFI~P1THENI=O:A7=1:GOSUB7080
2290 I=I+1:CURSOR0,16:PRINT"IImi!II";:A$=STR$Cil:GOSUB7900:PRINTTD$
2300 FORJ=OTDN1:PRINTA$(J,Il;:NEXTJ:PRINT:PRINTIT$:IFSS=2GOT02350
2310 GF=1:GG=2:GOSUB7800
2320
2350
2355
2360
2365
2367
2370
2375
2500

ONG3+1GOT02375,1000,2350,2360
CURSOR70,24:PRINT" STOP ";:GF=2:GOSUB7800
ONG3GOTD1000,2370,2360
SS=G: CURSOR 12, 24: I FG=2THENPR I NT "•Wfl!ii!'W::l51i!'F
PRINT" 1. Auto Read ~::l51i!'F-";
IFSS=2GOT02350
CURSOR70,24:PRINT" ____ ";
A7=2:GOSUB7080:GOT02280
IFP=1GDTD1250

2505 IFSJ=2GOT02650

2.Step Read ";:GOT02367

2510 ZZ=O:CURSOR o, 17:PRINT"Specif\:l file name CUp to 16 characters) :"
2520 A4=0:A5=16:A6=45:GOSUB7010:IFASCCIF'$l=128GOT01000
2540 FORI=1T016:IFASCCMIDCIP,I,1ll<>32GOT02555
2550 NEXT:ER=l:GOSUB7400:GOT02510
2555 GOSUB7080:GOSUB7920:PRINT"writing 1 1 "

2560 WOF'EN#1,IP$:FORI=OTDN1:FORJ=OTOP1:PRINT#1,A$CI,Jl:NEXTJ,I
2580 FORI=OTONl:PRINT#l,ACil,BCil:NEXT:CLOSE:XX$=IP$+DT$+STR$CN1l+STR$CPl
2590 XDPEN#1,R$:INF'UT#1C1l,AA:AA=AA+1:PRINT#1C1l,AA:PRINT#1CAA+ll,XX$:CLOSE:GOT

01000
2650 PRINT/PCHR$C18l;"*** Data Processing *** ";DT$
2660 PRINT/P:PRINT/P:FORI=OTDN1:PRINT/PTABC50l;"Field";I+1;"= ";A$CI,Ol:NEXT:PR

INT/P:PRINT/P
2700 B=O:W1$="":W2$="":W3$="":W$="":H=O:IFCU+N1l>79THENH=1
2710 FDRI=OTON1:CCil=B+BCil-INTCBCil/2)-1:B=B+BCil:DCil=B-1:IFH=OTHENCCil=CCil+

I: D <I) =DC I)+ I+ 1
2720 NEXTI:FORI=OTDNl:W$="":FORJ=1TOBCil-H:W$=W$+"-":NEXTJ:Wl$=W1$+W$+"r":W2$=W

2$+W$+"+":W3$=W3$+W$+"-'-"
2740 NEXTI:Wl$=LEFT$CW1$,LENCW1$l-ll+"-":W2$=LEFT$CW2$,LENCW2$l-1l+"-":W3$=LEFT

$(W3$,LENCW3$l-ll+"-":PRINT/PCHR$C17)
2750 PRINT/PW1$:FORI=1TONF:PRINT/PTABCCCI-1ll;STR$Cil;TAB<D<I-1ll;:IFI<>NFTHENP

RINT/F'W4$COl;
2760 NEXT:PRINT/P:PRINT/PW2$
2770 FORI=lTOP1:FORJ=OTON1:PRINT/F'A$CJ,I>;:IFJ<>N1THENPRINT/F'W4$CHl;
2785 NEXTJ:PRINT/P:GF=1.:GOSUB7800:IFG3<>0GOT02840

62

2820 IFI=P1THENPRINT/PW3$:GOT02840
2830 PRINT/PW2$:NEXTI
2840 PRINT/PCHR$Cl6):GOT01000
3000 IFNF=OGOT01250
3005 CURSOR3,17:PRINT 11

[Field J 11 ;TABC201; 11
[Name J 11 ;TABC35l; 11

[Length] 11
;

3010 PRINTTABC50l; 11
[Attribution] 11 :A7=2:GOSUB7080:FORI=1T01C!:CURSORO, 17

3030 PRINTTABC10- LENCSTR$CI>>>;STR$CIJ; 11
•

11 ;TABC16);:IFI>NFGOT03070
3040 PRINTA$CI-1,0l;TABC40-LENCSTR$CBCI-1>>>>;STR$CBCI-1ll;TABC50l;K$CACI-1l)
3070 A7=0:GOSUB7080:NEXTI:CURSOR48,17:PRINT 11 [No. of Store Data = 11 ;P1; 11

]
11

3090 X=1:CP=24:GOSUB7700:PRINTFF$C4l; 11 11 ;FS$C4l;:K=4:CP=2:GF=O:G1=-48:G2=207:G
OSUB 7110:GOT01000

3500 IFNF=OGOT01250
3502 IFSJ=2GOT03600
3503 IFP=201THENER=5:GOT01120
3505 GOSUB7450
3510 CURSOR0,16:PRINT 11 No.";P:CURSOR0,18:PRINTIT$
3520 FORI =OTON1:GOSUB7500
3530 IFD1=0GOT01000
3540 NEXTI:P=P+l:Pl=P-1
3550 IFP=201 THENX=1: CP=24: GOSUB7700: PRINTFF$ (4); II II; ER$ (5);: 1<=4: CP=2= GF=2: GOS

UB7110:GOT01000
3560 A7=4:GOSUB7080:GOT03510
3600 CURSORO, 17:PRINT 11 Specify cor-rection item nLtmber- CWithin";Pl; ") : 11

3610 A4=1:A5=LENCSTR$CP>>:A6=45:GOSUB7600
3620 IFD1=0GOT01000
363 0 IFCIP >P1l+CIP< 1>GOSUB7650:GOT03610
3640 A7=3:GOSUB7080:J=IP:GOSUB7450
3650 CURSOR0,16:PRINT 11 No. 11 ;IP:FORI=OTON11PRINTA$CI,J>;:NEXT:PRINT:PRINTIT$
3720 A3=0:B=P:P=J:FORI =OTON1:GOSUB7500:IFD1=0GOT03740
3730 NEXT
3740 A3=1:P=B:A7=4:GOSUB7080:GOT03600
4000 IFP=1GOT01250
4005 ONSJ-1GOT04500,4200
4007 CURSOR0,17:PRINT 11 Specify first deletion item number- CWithin 11 ;P1;"> : 11 :A5=L

EN CSTR$ CP1))
4010 A6=50:A4=1:GOSUB7600:IFD1=0GOT01000
4020 IFCIP<1l+CIP>P1JGOSUB7650:GOT04010
4025 NN=IP:A7=2:GOSUB7080
4030 CURSOR0,17:PRINT 11 5Pecify number of deletion item : 11 :A6=50:GOSUB7600
4040 IFD1=0GOT01000
4050 IFIP<1GOSUB7650:GOT04030
4060 A7=5: GOSUB7080: GOSUB7920: F'R I NT" deletion 1 1 II

4080 IFCNN+IP>>=PTHENP=NN:P1=P-1:GOT04120
4090 PP=P-NN-IP:P=P-IP:P1=P-1
4100 FORJ=OTON1:FORI=OTOPP- l:A$CJ,NN+Il=A$CJ,NN+IP+I>:NEXTI,J
4120 GOSUB7070:GOT04000
4200 CURSOR0,24:PRINTFF$C2l;FS$C2l;:GF=O:K=2:CP=2:G1=1:G2=2:GOSUB7110
4220 IFG3=0GOT01000
4230 CURSORMCG+5J,24:A$=FS$C2):GOSUB7910:PRINTTD$;
4240 CURSORO, 17:PRINT"Specify sort field Cwithin";NF; ") : ":A4=1:A5=2:A6=40:

GOSUB7600

0

4250 IFD1=0GOT01000
4252 IFCIP<1J+CIP >NFJGOSUB7650:GOT04240
4254 ST=IP-1:IFACST>=OTHENER=6:GOSUB7400:CURSOR0,24:PRINTFF$C2l;FS$C2>;:GOT0423

4256 A7=5:GOSUB7080:GOSUB7920:PRINT"sor-ting ! !":Yl=O:IFP1=1GOT01000
4300 Y2=1:Y3=Pl:GOSUB4480
4310 GOSUB4490:I=Y2:J=Y3:X=VALCA$CST,INTCY2+Y3l/2J>
4315 IFG=1GOT04350
4320 FORI=ITOY3:IFVALCA$CST,I>> < XTHENNEXT
4330 FORJ=JTOY2STEP-1:IFVALCA$CST,J>> >XTHENNEXT
4340 GOT04370
4350 FORI=ITOY3:IFVALCA$CST,Il) >XTHENNEXT
4360 FORJ=JTOY2STEP-1:IFVALCA$CST,J>><XTHENNEXT
4370 IFI>JGOT04400
4380 FORII=OTON1:CHS=ASCII,J):ASCII,Jl=A$(I!,I):ASCII,IJ=CHS:NEXTII

4390 I=I+1:J=J-1:GOT04315
4400 Y4=Y3:IFY2<JTHENY3=J:GOSUB4480
4410 Y3=Y4:IFI<Y3THENY2=I:GOSUB4480
4420 IFYl< >OGOT04310
4430 GOTOlOOO
4480 XCO,Yll=Y2:XC1,Yll=Y3:Yl=Yl+l:RETURN
4490 Yl=Yl-l:Y2=XCO,Yl):Y3=X<1,Yl>:RETURN

63

4500 ZZ=O:CURSOR14,17:PRINT"**** Format of Arithmetic Operation ****":A7=2:GQ
SUB7080

4510 FORI=OT04:CURSOR10,17:PRINT "[";!+1;" J ";O$CI):A7=1:GOSUB7080:NEXT
4520 CP=24:X=1:GOSUB7700:PRINTFR$C2>;FS$(3);:G1=1:G2=5:GF=O:K=2:CP=2:GOSUB7110
4540 IFG3=0GOT01000
4550 OP=G:GOSUB7070:IFG=5GOT04900
4553 GOSUB7070:CURSOR0,17:PRINTO$CG-ll:A7=2:GOSUB7080
4555 A$=" QperandOperator Result":FORI=OT02
4560 CURSOR20,17:PRINTMIDCA,8*I+1,8l;" Field "5CHR$(65+Il;"="
4570 A4=1:A5=1:A6=40:GOSUB7600:IFD1=0GOT01000
4580 IFCIP<Ol+CIP>NFlGOSUB7650:GOT04560
4600 IFA<IP-1l=OTHENER=6:GOSUB7400:GOT04560
4610 ECil=IP-l:A7=1:GOSUB7080:NEXT
4620 A7=2:GOSUB7080:GOSUB7920:PRINT"calculation ! !":ONOP-1GOT04650,4660,4670,5

020
4640 FORI=1TOP1:Z=VALCA$CECO>,I>>+VALCA$CEC1),!)):GOT04800
4650 FORI=lTOP1:Z=VALCA$CECOl,I>>-VALCA$CEC1),!)):GOT04800
4660 FORI=1TOP1:Z=VALCA$CECO>,I>l*VALCA$CEC1l,I>>:GOT04800
4670 FORI=1TOP1:IFVALCA$CEC1>,I>>=OTHENA$CEC2),l)=LEFTCSC2>,BCEC2))):GOT04820
4680 Z=VALCA$CECO>,I>l/VALCA$CEC1>,I>l
4800 Z=INTCZ*10+0.5)/10:A$CEC2),I)=RIGHT$CS$Cl>+STR$CZl,BCEC2)))
4810 IFLENCSTR$CZ>l>BCEC2llTHENA$CEC2),!)=LEFTCSC2>,BCEC2>l>
4820 NEXT:GOTOIOOO
4900 CURSOR0,17:PRINTO$COP-1>;":";TABC29l;"Field ="
4910 A4=1:A5=2:A6=37:GOSUB7600:IFD1=0GOT01000
5000 IF<IP<Ol+CIP>NF>GOSUB7650:GOT04910
5010 GOT04620
5020 J=IP-l:LK=O:FORI=1TOP1:LK=LK+VALCA$CJ,!)):NEXT:A$CJ,151l=STR$CLK)
5030 GOSUB7070:CURSOR0,17:PRINT"Field";IP;" :";TABC14l;"SAM =";LK;TABC40l;"AVER

AGE =";INTCLK/Pl*lOOl/lOO:GOT03090
6000 IFCCERL=100l+CERL=200)l*CCERN=50l+CERN=40llTHENCURSOR0,17:PRINT''Data file

does not e~:sist. Otherwise, disk is not ready.":f<ILL:END
6005 IFCERL=7550l+CERL=7620lTHENIP$="O":RESUME
6010 IFCERL=2560l*CERN=42lTHENER=14:GOSUB7400:f<ILL:RESUME2510
6020 IFCERN=65J+CERN=66l+CERN=67lTHENER=ERN-57:GOT06060
6030 IFERN=50THENER=11:GOT06060
6040 IFCERN=53l+CERN=54lTHENER=ERN-41:GOT06060
6050 GOSUB7080:CURSOR0,17:PRINT"Resumption impossible":KILL:END
6060 GOSUB7420:A7=3:GOSUB7080:CURSOR0,17:IFERN=53THENPRINT''Replace with new dis

kette.":A7=3:GOSUB7080:CURSOR0,17
6065 PRINT"Press any key after proper procedure."
6070 GOSUB7780:IFG=-48GOT06070
6080 GOSUB7070:CURSOR33,17:PRINT"Resumption ! 1 '':f<ILL:IFERN<>53THENRESUME
6090 XOPEN#1,R$:INPUT#1C1l,AA:CLOSE:RESUME2560
7000 A6=0:IFI=OGOT07020
7005 FORI1=0TOI-1:A6=A6+BCI1>:NEXT:GOT07020
7010 POKE$FFFA,A4:POKE$FFFB,A5:GOT07040
7020 POKE$FFFA,ACil:POKE$FFFB,BCil
7040 POKE$FFFE,$50:POKE$FFFF,$D5:POKE$FFF9,A3:POKE$FFFC,A6
7050 ROPEN#1,USRC$FE7El:INPUT#1,IP$:CLOSE:RETURN
7070 A7=16
7080 FORI1=0TOA7:USRC$FFDD>:NEXT:RETURN
7100 G1=VALCMIDCGT,2*JM+1,1)):G2=VAL<MIDCGT,2*JM+2,1ll
7110 R=O:RV=-1:VR=O
7120 CURSORO,CPCCP):IFGF=2GOT07170
7130 GOSUB7780:IFG=-48GOT07170
7140 IFG=-21THENG3=0:GOT07240
7145 IFGF=3THENIFG=- 16THENG3=2:GOT07240
7150 IFCG>G1-1>*<8<G2+1)THENG3=1:GOT07240

64

7160 GOSUB7650
7170 IFGF=1GOT07120
7190 IFCGF=2>*CVR=50JGOT07240
7200 R=O:RV=-RV:VR=VR+l:IFRV<OTHENPRINTFR$CK>;:GOT07120
7210 PRINTFF$CK>;:GOT07120
7240 IFGF<> 1THENPRINTFF$CK>;
7250 RETURN
7400 CP=24:X=l:GOSUB7700:PRINTFF$(3)JER$CER>;:GOSUB7650
7410 CP=2:K=3:GF=2:GOSUB7110:CP=24:X=ZZ:GOSUB7700:RETURN
7420 GOSUB7070:CURSOR0,17:PRINTFF$(3);ER$CER>:GOSUB7650:CP=4:K=3:GF=2:GOSUB7110

:RETURN
7450 IT$="": FORI I =OTON1: IT$=IT$+" ·" "
7455 IFBCII> >1THENFORJJ=1TOBCII)-1:IT$=IT$+"-":NEXTJJ
7460 NEXTII:RETURN
7500 CP=1:X=1:GOSUB77QO:PRINT"Field";I+l;TABC15J;A$CI,O>;TABC40J;K$CA<I>>;
7510 PRINTTABC60);"Length=";B<I>:GOSUB7000:IFASCCIP$)=128THEND1=0:RETURN
7540 IFACI>=OGOT07580
7550 IP$=S$C1J+STR$CVALCIP$)):IP$=RIGHT$CIP$,BCIJ>
7580 A$CI,P>=IP$:01=1:RETURN
7600 GOSUB7010:IFASC<IP$J=128THEND1=0:RETURN
7610 IFA4=0THEND1=1:RETURN
7620 IP=INTCVALC I P$JJ:IP$=STR$CIP>:D1=2:RETURN
7650 MUSIC"+BOR+BR+B":RETURN
7700 CURSORO,CP:PRINTS$CXJ;:CURSORO,CP:RETURN
7780 USRC$FFEAJ:G=PEEKC$FFF9J-48:RETURN
7800 GOSUB7780:IFG=-48THENONGFGOT07850,7800
7810 IFG=-21THENG3=1:RETURN
7820 IFG=- 16THEN G3=2:RETURN
7830 IFCG >O>*<G<GG+1JTHENG3=3:RETURN
7840 GOSUB7650:GOT07800
7850 G3 =0:RETURN
7900 TD$="":FORII=1TOLENCA$J:TO$=TD$+CHR$CASCCMID$CA$,II,1JJ+128):NEXT:RETURN
7910 TD$=''":FORI=1TD14:TD$=TD$+CHR$CASCCMIDCA, CG-11*15+I,1))-128>:NEXT:RETURN
7920 CURSOR 15, 17: PRINT" Wait a minute 1 1 Under "; :RETURN
7930 GOSUB7650:GOT0720
7940 INPUT#1CI+1J,XX$:A$=LEFTCXX,16>:TD$=MID$CXX$,17,12>:N1=VALCMID$CXX$,29,1

>>:P=VALCMIDCXX,30,3)):NF=Nl+l:Pl=P-l:RETURN

Chapter 4

Programming Instructions

This chapter summarizes all commands, statements, operators and symbols of the DISK BASIC

interpreter SB-65 7 0.

65

66

4.1 List of DISK BASIC interpreter SB-6510 commands, statements
and functions

4.1.1 Commands

DIR DIR FDd

DIR FD3

DIR

DIR/P DIR FDd/P

LOAD LOAD "A"

LOAD FD2@10 "A"

LIMIT $DOOO: LOAD "B"

LOAD/I LOAD/I "C"

SAVE SAVE "D"

Displays the file directory of the diskette in drive d (d=l~4).

The contents of the directory are as follows:

1) Volume number
2) Number of unused sectors

3) Mode, lock condition and file name of each file on the

diskette

Note: When a directory is listed on the CRT, the display is fixed

and the cursor appears when the frame is filled.

To display the next frame of the directory, press the

[c R J key. Other command may be executed once the

display is fixed.

Displays the files directory of the diskette in drive 3. When a DIR

FDd command is executed, the system stores the drive number so

that it may be omitted (if the same drive is specified) for the direct

execution instructions and file access instructions explained below.

Displays the file directory of the diskette in the active drive which

is last specified in a DIR FDd command.

Prints the file directory of the diskette in drive d on the line printer.

Loads BASIC text (BTX) assigned the file name "A" from the

diskette in the active drive into the text area.

Loads the BASIC text assigned the file name "A" from volume 10

in drive 2 into the text area.

To load a machine language program file (OBJ) to be linked with a

BASIC text, the BASIC area of memory must be partitioned from

the machine language area by the LIMIT statement.

Loads the BASIC text assigned the file name "C" from the cassette

tape into the text area.

Note: When a LOAD command or a LOAD/I command is execut­

ed for a BASIC text file, the text area is cleared of any pro­

grams previously stored.

Assigns the file name "D" to the BASIC text in the text area and

stores it on the diskette in the active drive. The text is stored in the

BTX file mode.

SAVE/T SAVE/T "E"

RUN RUN

RUN 1000

RUN "F"
+

(BTX)

RUN FD3@7 "G"
+

(OBJ)

VERIFY VERIFY "H"

AUTO AUTO

AUTO 200,20

LIST LIST

LIST - 500

LIST/P LIST/P

NEW NEW

CONT CONT

MON MON

67

Assigns the file name "E" to the BASIC text in the text area and

automatically stores it on the cassette tape .

Executes the BASIC text in the text area from the top.

Note: The RUN command clears all variables (fills them with 0 or

null string) before running text.

Executes the BASIC text starting at line number 1000.

Loads the BASIC text assigned the file name "F" from the diskette

in the active drive and executes it from its beginning.

Loads machine language program assigned the file name "G" from

the diskette of volume 7 in drive 3, and then executes the program

starting at the start address. In such cases, system control is trans­

ferred from the BASIC interpreter to the machine language pro­

gram.

This command automatically compares the program contained in

the BASIC text area with its equivalent text assigned the file name

"H" in the cassette tape file.

Automatically generates and assigns line numbers 10, 20, 30

during creation.

Automatically generates line numbers at intervals 20 starting at line

200. 200,220,240

An AUTO command is terminated by pressing the [BREAK) key.

Displays all lines of BASIC text currently contained in the text

area.

Displays all lines of BASIC text up through line 500.

Prints out all lines contained in the BASIC text area on the line

printer.

Clears the text area and variable area.

Further, disestablishes the machine language program area set by a

LIMIT statement by removing the partition.

Continues program execution which was halted by a STOP state­

ment or the [BREAK) key, starting at the statement following the

STOP statement or the statement halted by the [BREAK) key.

Transfers system control from the BASIC interpreter to the MONI­

TOR.

(To transfer system control from the MONITOR to the BASIC

interpreter, execute monitor command J .)

68

BOOT

KLIST

BOOT

KLIST

Activates the MZ-80B system initial program loader.

Displays a complete list of string definitions for special function

keys, thereby enabling you to determine how individual special

function keys are defined.

4.1.2 File control statements

LOCK

UNLOCK

RENAME

DELETE

CHAIN

SWAP

LOCK "ABC"

LOCK FD4@7 "ABC"

UNLOCK "ABC"

100 UNLOCK FDl "A"

RENAME "A", "B"

DELETE "A"

CHAIN FD2@7 "TEXT B"

CHAIN "TEXT B"

Locks file "ABC" on the diskette in the active drive.

Locks me "ABC" on the diskette (whose volume number is 7), in

drive 4 .

The locked me cannot be updated or deleted.

When the file directory is listed, the locked file name is indicated

with an asterisk.

Unlocks file "ABC" on the diskette in the active drive.

Unlocks file "A" on the diskette in drive 1.

(This is an example of a statement used in a program.)

Changes the name of file "A" on the diskette in the active drive to

"B".

Deletes file "A" from the diskette in the active drive .

Chains the program in the BASIC text area to BASIC program

"TEXT B" on the diskette volume 7 in drive 2. That is, program

"TEXT B" is loaded in the BASIC text area and program execution

is started at its beginning. Before the text is loaded, the BASIC text

area is cleared but all variable values and contents of user functions

are given to program "TEXT B".

The CHAIN statement has the same function as GOTO "filename".

Chains the program in the BASIC text area to program "TEXT B"

on the diskette in the active drive.

SWAP FD2@7 "TEXT S-R" Swaps the current program for BASIC program "TEXT S-R" on

diskette volume 7 in drive 2.

The current program text is saved on the diskette in the drive speci­

fied in the last DIR FDd command, then program "TEXT S-R" is

loaded into the BASIC text area and is executed from its beginning.

When the swapped program is finished, the saved program is loaded

again and program execution is started at the statement following

the SWAP statement. The values of variables and the contents of

user functions are transferred between the two programs. No

SWAP statement can be used in a swapped program. The SWAP

statement has the same function as GO SUB "filename".

69

4.1.3 BSD (BASIC Sequential access Data file) control statements

WOPEN #

PRINT#

CLOSE#

KILL#

ROPEN #

INPUT#

CLOSE#

WOPEN #3, FD2@7,

"SEQ DATA 1"

PRINT #3 , A, A$

Defmes the file name of a BSD (BASIC sequential access data file)

to be created as "SEQ DATA 1" and opens it with logical number

3 assigned on diskette volume 7 in drive 2.

For WOPEN #statements including a USR function operand, see

page 78.

Writes the contents of variable A and string variable A$ in order in

the BSD assigned logical number 3 which was opened by a WOPEN

#statement.

(In writing data, 256 bytes are treated as a unit.)

CLOSE #3 Closes the BSD assigned logical number 3 which was opened by the

(corresponding to WOPEN #) WOPEN #3 statement.

KILL#

ROPEN #4, FD2@7,

"SEQ DATA 1"

INPUT #4 A(l), B$

CLOSE #4

By closing the BSD, the BSD which has the file name defined in

the WOPEN # statement is created on the specified diskette, and

the logical number assigned is made undefined.

Kills the BSD assigned logical number 3 by the WOPEN # state­

ment. Logical number 3 is made undefined .

Opens BSD "SEQ DATA 1" on diskette volume 7 in drive 2 with

logical number 3 assigned to read data in BSD.

For ROPEN #statements including a USR function, see page 79.

Reads data sequentially from the beginning of the BSD assigned

logical number 4 which was opened by the ROPEN # statement

and substitutes numerical data into array element A(l) and string

data into string variable B$.

Close the BSD assigned file number 4 and makes the file number
(corresponding to ROPEN #) undefined.

4.1.4 BRD (BASIC Random access Data file) control statements

XOPEN #

PRINT#()

XOPEN #5 , FD3@18,

"DATA R1"

PRINT #5(11), R(ll)

Generally , XOPEN# statement opens a BRD for writing and read­

ing data (Cross open).

This statement cross-opens BRD "DATA Rl " on diskette volume

18 in drive 3 with logical number 5 assigned or, if the file does not

exist on the diskette, cross-opens a BRD by defining its file name

as "DATA Rl " to create it on the diskette with logical number 5

assigned.

Writes the content of linear array element R(ll) on field 11 of

the BRD assigned logical number 5 which was opened by the

XOPEN #statement.

70

PRINT#()

INPUT#()

CLOSE#

KILL#

IF EOF (#)

PRINT #5(20), AR$, AS$

INPUT #5(21) , R$

INPUT #5(11), A(ll),

A$(12)

CLOSE #5

CLOSE

Writes the contents of string variables AR$ and AS$ on field 20

and field 21 of the BRD assigned logical number 5, respectively.

All BRD fields have a fixed length of 32 bytes and, if the length

of string variable exceeds 32 bytes, the excess part is discarded.

Reads the content of field 21 of the BRD assigned logical num­
ber 5 which was opened by the XOPEN # statement into string

variable R$.

Reads the contents of field 11 and field 12 of the BRD assigned

logical number 5 into linear numeric array element A(11) and

linear string array element A$(12), respectively.

Closes the BRD assigned logical number 5 which was opened by

the corresponding XOPEN #statement .

Closes all open files .

KILL Kills all open files.

10 IF EOF (#5) THEN 700 Transfers program control to the routine starting to line number

700 if an EOF (End of File) is detected when an INPUT# state­

ment is executed against a BSD or a BRD.

4.1.5 Error processing statements

ON ERROR

GOTO

IF ERN

IF ERL

RESUME

ON ERROR GOTO 1000

IF ERN=44 THEN 1050

IF ERN=350 THEN 1090

Declares that the number of the line to which program execution is

to be moved, if an error occurs is 1000.

Jumps to the statement on line number 1050 if the error number is

44.

Jumps to the statement on line number 1090 if the error line num­

ber is 350.

IF (ERN=53)*(ERL=700) Terminates the program if the error number is 53 and the error line

THEN END number is 700.

650 RESUME

With DISK-BASIC, the error number and error line number are set

in special variables ERN and ERL, respectively, if an error occurs

during program execution.

Returns program execution to the main program after correction

of an error .

Returns program execution to the statement in which the error

occurred.

700 RESUME NEXT

750 RESUME 400

800 RESUME 0

71

Returns program execution to the statement just after the one in

which the error occurred.

Returns program execution to line number 400.

Returns program execution to the beginning of the program.

4.1.6 Cassette data file input/output statements

WOPEN/T 10 WOPEN/T "DATA-l"

PRINT/T 20 PRINT /T A, A$

CLOSE/T 30 CLOSE/T

ROPEN/T 110 ROPEN/T "DAT A-2"

INPUT/T 120 INPUT/T B, B$

CLOSE/T 130 CLOSE/T

4.1.7 Assignment statement

I (LET) A= X+ 3

4.1.8 Input/output statements

PRINT lOPRINT A

? A$

100 PRINT A; A$, B; B$

Defines the file name of a cassette data file to be created as

"DAT A-1" and opens.

Writes the contents of variable A and string variable A$ in order

in the cassette data file which was opened by a WOPEN/T state­

ment.

Closes the cassette data file which was opened by a WOPEN/T

statement.

Opens the cassette data file specified with file name "DATA-2".

Reads data sequentially from the beginning of the cassette data file

which was opened by the ROPEN/T statement and substitutes

numerical data into variable B and string data into string variable

B$ respectively.

Closes the cassette data file which was opened by a ROPEN/T

statement.

I Substitutes X+ 3 into numeric variable A. LET may be omitted.

Displays the numeric value of A on the CRT screen.

Displays the character string of variable A$ on the CRT screen.

Combinations of numeric variables and string variables can be spec­

ified in a PRINT statement. When a semicolon is used as the separa­

tor, no space is displayed between the data strings. When a colon is

used, variable data to the right of the colon is displayed from the

next tab set position.

(A tab is set every 10 character positions.)

72

INPUT

GET

READ-DATA

RESTORE

110 PRINT "COST ="; CS

120 PRINT

10 INPUT A

20INPUT A$

30 INPUT "VALUE?"; D

40INPUT X,X$,Y,Y$

10 GET N

20 GET K$

Displays the string between double quotation marks as is, and CS .

Performs a new line operation (i.e., advances the cursor one line).

Obtains numeric data for variable A from the keyboard.

Obtains string data for string variable A$ from the keyboard.

Displays "VALUE?" on the screen before obtaining data from the

keyboard. A semicolon separates the string from the variable .

Numeric variables and string variables can be used in combination

by separating them from each other with a comma. The types of

data entered from the keyboard must be the same as those of the

corresponding variables.

Obtains a numeral for variable N from the keyboard . When no key

is pressed , zero is substituted into N.

Obtains a character for variable K$ from the keyboard. When no

key is pressed, a null is substituted into K$.

Substitutes constants specified in the DATA statement into the

corresponding variables specified in the READ statement. The

corresponding constant and variable must be of the same data type .

10 READ A, B, C In READ and DATA statements at left, values of25, -0.5 and 500

1010 DATA 25 , -0.5, 500 are substitutes for variables A, Band C, respectively.

10 READ H$, H, S$, S In the example at left, the first string constant of the DATA state-

30 DATA HEART, 3 menton line number 10 is substituted into the first variable of the

35 DATA SPADE, 11 READ statement; that is; "HEART" is substituted into H$. Then,

numeric constant 3 is substituted into numeric variable H, and so

on.

10 READ A, B, C

20 RESTORE

30 READ D,E

100 DATA 3, 6, 9, 12, 15

With a RESTORE statement , data in the following DATA state­

ment which has already been read by preceding READ statements

can be re-read from the beginning by the following READ state­

ments.

The READ statement on line number 10 substitutes 3, 6 and 9 into

variables A, B and C, respectively. Because of the RESTORE state­

ment , the READ statement on line number 30 substitutes not 12

and 15, but 3 and 6 again into D and E, respectively.

73

4.1.9 Loop statement

FOR~TO

NEXT

10 FOR A= 1 TO 1 0

20 PRINT A

30 NEXT A

The statement on line number 10 specifies that the value of varia­

ble A is varied from 1 to 10 in increments of one. The initial value

of A is 1. The statement on line number 20 displays the value of A.

The statement on line number 30 increments the value of A by one

and returns program execution to the statement on line number

10. Thus, the loop is repeated until the value of A becomes 10.

(After the specified number of loops has been completed, the value

of A is 11.)

10 FOR B= 2 TO 8 STEP 3 The statement on line number 10 specifies that the value ofvaria-

20 PRINT B- 2 ble B is varied from 2 to 8 in increments of 3. The value of STEP

30 NEXT may be made negative to decrement the value of B.

10 FOR A= 1 TO 3 The FOR-NEXT loop for variable A includes the FOR-NEXT loop

20 FOR B= 10 TO 30 for variable B. As is shown in this example , FOR-NEXT loops can

30 PRINT A, B be enclosed in other FOR-NEXT loops at different levels . Lower

40 NEXT B level loops must be completed within higher level loops. The maxi-

50 NEXT A mum number of levels of FOR-NEXT loops is 16.

60 NEXT B, A In substitution for NEXT statement at line numbers 40 and 50, a

70 NEXT A, B statement at line number 60 shown at left can be used. However,

statement at line number 70 cannot be used , causing an error to

occur.

4.1.10 Branch statements

GOTO 100 GOTO 200

GOSUB 100 GOSUB 700

~RETURN ·· ····· ·········

800 RETURN

IF ~ THEN 1 0 IF A> 20 THEN 200

Jumps to the statement on line number 200.

Calls the subroutine starting on line number 700. At the end of

subroutine , program execution returns to the statement following

the corresponding GOSUB statement.

Jumps to the statement on line number 200 when the value of

variable A is more than 20; otherwise the next line is executed.

50 IF B< 3 THEN B= B+ 3 Substitutes B+3 into variable B when the' value of B is less than 3;

otherwise the next line is executed.

IF~GOTO 100 IF A>=B THEN 10 Jumps to the statement on line number 10 when the value of vari­

able A is equal to or greater than the value of B; otherwise the next

line is executed.

74

IF~GOSUB

ON~GOTO

30 IF A=B*2 GOSUB 90 Jumps to the subroutine starting on line number 700 when the

value of variable A is twice the value of B; otherwise the next state­

ment is executed .

(When other statements follow a conditional statement on the

same line and the conditions are not satisfied , those following an

ON statement are executed sequentially, but those following an IF

statement are ignored and the statement on the next line is exe­

cuted.)

50 ON A GOTO 70, 80, 90 Jumps to the statement on line number 70 when the value of varia-

. ble A is I , to the statement on line number 80 when it is 2 and to

the statement on line number 90 when it is 3. When the value of A

is 0 or more than 3, the next statement is executed. This statement

has the same function as the INT function, so that when the value

of A is 2.7 , program execution jumps to the statement on line

number 80 .

ON~ GOSUB 90 ON A GOSUB 700, 800 Jumps to the subroutine on line number 700 when the value of

variable A is I and jumps to the subroutine on line number 800

when it is 2.

4.1.11 Definition statements

DIM

DEF FN

DEF KEY

10 DIM A(20)

20 DIM B(79 , 79)

30 DIM C1$(10)

40 DIM K$(7 , 5)

When an array is used , the number of array elements must be de­

clared with a DIM statement . The number of elements ranges from

0 to 255.

Declares that 21 array elements, A(O) through A(20), are used for

one-dimensional numeric array A(n).

Declares that 6400 array elements, B(O, 0) through B(79, 79) , are

used for two-dimensional numeric array B(m, n) .

Declares that 11 array elements, C 1$ (0) through C 1$(1 0), are used

for one-dimensional string array C1$(n).

Declares that 48 array elements, K$(0, 0) through K$(7, 5), are

used for two-dimensional string array K$ (m, n) .

100 DEF FNA(X)=X' 2-X A DEF FN statement defines a function. The statement on line

110 DEF FNB(X)=LOG(X) number 100 defines FNA(X) as X2 -X. The statement on line

+ 1 number 110 defines FNB(X) as log10 X + 1 and the statement on

120 DEF FNZ(Y)=LN(Y) line number 120 defmes FNZ(Y) as loge Y. The number of varia­

bles included in the function must be 1.

15 DEF KEY(l)=LIST

25 DEF KEY(2)=LOAD!

RUN

A DEF KEY statement defines a function for any of the ten special

function keys. The statement on line number 15 defines special

function key 1 as LIST . The statement on line number 25

defmes special function key 2 as the multi-command LOAD: RUN

4.1.12 Comment and control statements

REM

STOP

END

CLR

CURSOR

CSRH

CSRV

CONSOLE

CHANGE

REW

FAST

SIZE

TI$

200 REM JOB-1

850 STOP

1999 END

300 CLR

50 CURSOR 25, 15

60 PRINT "ABC"

10 CONSOLE SlO, 20

20 CONSOLE C80

30 CONSOLE C40

40 CONSOLE R

50 CONSOLE N

10 CHANGE

710 REW

720 FAST

? SIZE

100 TI$ = "1 02030"

75

Comment statement (not executed).

Stops program execution and awaits a command entry. When a

CONT command is entered, program execution is continued .

Declares the end of a program. Although the program is stopped,

the following program is executed if a CONT command is entered.

Clears all variables and arrays, that is, fills all numeric variables and

arrays with zeros and all string variables and arrays with nulls.

The CURSOR command moves the cursor to any position on the

screen. The first operand represents the horizontal location of the

destination, and must be between 0 and 39 in 40-character mode,

and must be between 0 and 79 in SO-character mode. The second

operand represents the vertical location of the destination and

must be between 0 and 24. The left example displays "ABC" start­

ing at location (25, 15) (the 26th position from the left side and

the 16th position from the top).

System variable indicating the X-coordinate (horizontal location)

of the cursor.

System variable indicating the Y-coordinate (vertical location) of

the cursor.

Sets the scrolling area to lines 1 0 through 20.

Sets the display in the 80 characters/line mode .

Sets the display in the 40 characters/line mode.

Sets the display in the reverse mode.

Sets the display in the normal mode.

Reverses the function of the [SHIFT

alphabetic keys.

Rewinds the cassette tape.

Fast-forwards the cassette tape.

key concerned with

Displays the amount of unused memory area in bytes.

Sets the built-in clock to 10:20:30 AM. Data between the double

quotation marks must be numerals.

76

4.1.13

MUSIC

TEMPO

Music control statements

300 TEMPO 7

310 MUSIC "DE#FGA"

300 M1$ = "C3EG + C"

310 M2$ = "BGD- G"

The MUSIC statement generates a melody from the speaker accord­

ing to the melody string data enclosed in quotation marks or string

variables at the tempo specified by the TEMPO statement.

The TEMPO statement on line number 300 specifies tempo 7. The

MUSIC statement on line number 310 generates a melody consist­

ing of D, E, F sharp, G and A. Each note is a quarter note. When

the TEMPO statement is omitted, default tempo is set.

In this example, the melody is divided into 3 parts and substituted

in 3 string variables. The following melody is generated from the
320 M3$ = "C8R5" speaker at tempo 4.

330 MUSIC M1$,M2$,M3$

4.1.14 Graphic control statements

GRAPH 10 GRAPH I1

20 GRAPH 01

30 GRAPH 02

40 GRAPH 012

50 GRAPH 00

60 GRAPH C

70 GRAPH F

80 GRAPH I1, C, 01

SET

300 SET 160, 100

RESET

310 RESET 160, 100

Places graphic area 1 in the input mode. (That is, data are to be

transferred to graphic area 1.)

Places graphic area 1 in the output mode .

Places graphic area 2 in the output mode.

Places graphic areas 1 and 2 in the output mode.

Resets the graphic output.

Clears graphic area that is in the input mode.

Fills graphic area that is in the input mode.

Places graphic area 1 in the input mode , then clears it and places it

in the output mode.

Sets a dot in the specified position in a graphic area operating in

the input mode.

The first operand specifies the X-coordinates (0-319) and the

second operand specifies theY-coordinates (0-199).

Displays a dot in the center of the screen .

Resets a dot in the specified position in a graphic area operating in

the input mode.

Resets a dot from the center of the screen .

LINE

BLINE

POSITION

PATTERN

POINT

POSH

POSV

400 LINE 110, 50,210,

50,210, 150, 110,150,

110,50

20 GRAPH 12, C, 02

30 POSITION 0, 50

40 PATTERN 8, A$

10 C$ = "ABCDEF"

20 PATTERN 4, C$

30 PATTERN -4, C$

100 ON POINT (X, Y)

GOTO 10, 20, 30

77

Draws lines connecting positions specified by operands.

Draws a square the length of whose side is 100 in the center of the

display screen .

Draws black lines connecting positions specified by operands.

Sets the location of the position pointer in a graphic area. The

PATTERN statement (see below) is executed starting at the loca­

tion indicated by the position pointer. Each ~raphic area has an

individual position pointer.

Places graphic area 2 in the input mode, sets the position pointer to

the position corresponding to the position on the display screen

which is at (0, 50), then transfers data from variable A$ to graphic

area 2 so that the pattern corresponding to the contents of A$ is

drawn on the screen starting at (0, 50).

Draws the dot pattern specified by operands in a graphic area

which is in the input mode. Each dot pattern unit consists of 8

dots arranged horizontally and corresponds to 8 bits representing a

character. Elements are stacked in the number of layers specified

by the value of the first operand and the direction in which layers

are stacked is specified by the sign of the first operand.

Draws the dot pattern shown as follows.

4 by'" l
Draws the following dot pattern.

Ascertains the dot (X, Y) whether it is set or reset, and branches

according to the result .

Result of the
POINT function

0

2

3

Point information
Points in both graphic areas 1 and 2 are

reset.

Only point in graphic area 1 is set.

Only point in graphic area 2 is set.

Points in both graphic areas 1 and 2 are

set.

System variable indicating the X-coordinate (horizontal location)

of the position pointer .

System variable indicating the Y-coordinate (vertical location) of

the position pointer.

78

4.1.15 Machine language control statements

LIMIT

POKE

PEEK

USR

100 LIMIT 49151

100 LIMIT A

100 LIMIT $BFFF

300 LIMIT MAX

200 LIMIT $BFFF

210 LOAD FD2 "S-R1"

120 POKE 49450,175

130 POKE AD, DA

150 A=PEEK (49450)

160 B =PEEK (C)

500 USR (49152)

550 USR (AD)

570 USR ($COOO)

600 WOPEN #8, USR

($COOO)

610 PRINT #8, A$

620 CLOSE #8

Limits the area in which BASIC programs can be loaded to the area

up to address 49151 ($BFFF in hexadecimal) .

Limits the area in which BASIC programs can be loaded to the area

up to the address indicated by variable A.

Limits the area in which BASIC programs can be loaded to the area

up to $BFFF (hexadecimal). Hexadecimal numbers are indicated

by a dollar sign as shown at left.

Set the maximum address of the area in which BASIC programs

can be loaded to the maximum address of the memory installed.

Loads machine language program (object program) "S-R1" in the

machine language link area from the diskette in drive 2 when the

loading address of the program is $COOO or higher.

Stores 175 in address 49450.

Stores data (between 0 and 255) specified by variable DA into the

address indicated by variable AD.

Substitutes data stored in address 49450 into variable A.

Substitutes the contents of the address indicated by variable C into

variable B.

Transfers program control to address 49152. This function is the

same as that performed by the CALL instruction, which calls a ma­

chine language program. When a RET command is encountered in

the machine language program, program control is returned to the

BASIC program.

Calls the program starting at the address specified by variable AD.

Calls the program starting at address $COOO.

The statement on line 600 opens a file which is to be written by

the machine language program called by USR ($COOO) with logical

number 8 assigned. At this stage of program execution the USR

function is not executed. The statement on line 610 loads the be·

ginning address of the memory area set with variable A$ into the

DE register of the CPU and its length (max. 255 bytes) into the BC

register. This enables the program called by USR ($COOO) to obtain

data in A$. It then executes USR ($COOO).

700 ROPEN #9, USR

($Cl00)

710 INPUT #9, B$

720 CLOSE #9

4.1.16 Printer control statements

PRINT/P

10 PRINT/P A, A$

20 PRINT /P CHR$ (5)

79

The statement on line number 700 opens a file (which is to be read

by the machine language program called by USR($Cl00)) with

logical number 9 assigned. The statement on line number 710 exe·

cutes USR ($C100). The machine language program called loads

string data in the memory area starting at the address indicated by

the DE register and loads the length of the data string read in the

BC register. It then returns program control to the BASIC program.

The BASIC program refers to this memory area as B$.

Performs the nearly same operation as the PRINT statement on the

optional printer.

Prints the numeric value of A and the character string of variable

A$ on the line printer.

Executes paper home feed. (CHR$(5) is a control code.)

IMAGE/P 30 IMAGE/P CHR$(255), Draws a desired dot pattern (image) specified in the operand on the

"UU"

COPY/P 10 COPY/P

20 COPY/P 2

30 COPY/P 3

40 COPY/P 4

PAGE/P 100 PAGE/P 20

4.1.17 1/0 input/output statements

line printer according to the operating mode (image mode 1 or 2).

Causes the printer to copy the character display.

Causes the printer to copy the dot pattern set in graphic area 1.

Causes the printer to copy the dot pattern set in graphic area 2.

Causes the printer to copy the dot pattern set in both graphic area

1 and graphic area 2 .

Specifies 20 lines to be contained in one page of the MZ-80P5 line

printer.

INP Reads data on the specified I/0 port.

OUT

10 INP @12,A

20 PRINT A

30 B=A-2+.0.3

40 OUT @13, B

The statement on line number 10 reads data on 1/0 port 12.

Outputs data to the specified 1/0 port.

The statement on line 40 outputs the value of B to 1/0 port 13.

80

4.1.18 Arithmeticfunctions

ABS

INT

SGN

SQR

SIN

cos

TAN

ATN

100 A= ABS (X)

100 A = INT (X)

100 A= SGN (X)

100 A= SQR (X)

100 A = SIN (X)

110 A= SIN (30*7T/180)

· 200 A = COS (X)

Substitutes the absolute value of variable X into variable A. X may

be either a constant or an expression.

Ex) ABS (-3) = 3

ABS (12) = 12

Substitutes the greatest integer which is less than X into variable A.

X may be either a numeric constant or an expression.

Ex) INT (3.87) = 3

INT (0.6) = 0

INT (-3.87) = -4

Substitutes one of the following values into variable A: -1 when

X<O, 0 when X=O and I when X>O. X may be either a constant

or an expression.

Ex) SGN (0.4) = I

SGN (0) = 0

SGN (- 400) = -1

Substitutes the square root of variable X into variable A. X may

either a numeric constant or an expression; however, it must be

greater than or equal to 0.

Substitutes the sine of variable X in radians into variable A. X may

be either a numeric constant or an expression, The relationship be­

tween degrees and radians is as follows.

I degree =
1
;O radians

Therefore, when substituting the sine of 30° into A, the statement

is written as shown on line number 110 at left.

Substitutes the cosine of variable X in radians into variable A. X

may be either a numeric constant or an expression. The same rela­

tionship as shown in the explanation of the SIN function is used to

210 A= COS (200*7T/180) convert degrees into radians. The statement shown on line number

210 substitutes the cosine of 200° into variable A.

300 A= TAN (X)

310 A= TAN (Y*7T/180)

400 X= ATN (A)

410 Y = I80/1r*ATN (A)

Substitutes the tangent of variable X in radians into variable A. X

may be either a numeric constant or an expression. The statement

on line number 310 is used to substitute the tangent of numeric

variable Y in degrees into variable A.

Substitutes the arctangent of variable A into variable X in radians.

A may be either a numeric constant or an expression. Only the

result between -7T/2 and 7T/2 is obtained. The statement on line

number 410 is used to substitute the arctangent in degrees.

EXP

LOG

LN

100 A= EXP (X)

100 A= LOG (X)

100 A= LN (X)

81

Substitutes the value of exponential function ex into variable A. X

may either a numeric constant or an expression.

Substitutes the value of the common logarithm of variable X into

variable A. X may be either a numeric constant or an expression;

however, it must be positive.

Substitutes the natural logarithm of variable X into variable A. X

may be either a numeric constant or an expression; however, it

must be positive.

110 A= LOG (X)/LOG (Y) To obtain the logarithm of X with the base Y, the statement on

120 A= LN (X)/LN (Y) line number 110 or line number 120 is used.

RND This function generates random numbers which take any value be­

tween 0 .00000001 and 0.99999999, and works in two manners

depending upon the value in parentheses.

100 A= RND (1)
110 B=RND(lO)

100 A =RND (0)

110 B=RND(-3)

4.1.19 String control functions

LEFT$

MID$

RIGHT$

SPACE$

STRING$

CHR$

10 A$= LEFT$ (X$, N)

20 B$ =MID$ (X$, M, N)

30 C$ =RIGHT$ (X$, N)

40 D$ =SPACE$ (N)

50 E$ =STRING$("*" ,

10)

60 F$ = CHR $ (A)

When the value in parentheses is positive, the function gives the

random number following the one previously given in the random

number group generated. The value obtained is independent of the

value in parentheses .

When the value in parentheses is less than or equal to 0, the func­

tion gives the initial value of the random number group generated.

Therefore, statements on line numbers 100 and 110 both give the

same value to variables A and B.

Substitutes the first N characters of string variable X$ into string

variable A$. N may be either a constant , a variable or an expres­

sion.

Substitutes the N characters following the Mth character from the

beginning of string variable X$ into string variable B$.

Substitutes the last N characters of string variable X$ into string

variable C$.

Substitutes theN spaces into string variable D$.

Substitutes the ten repetitions of"*" into string varialble E$.

Substitutes the character corresponding to the ASCII code in

numeric variable A into string variable F$. A may be either a con­

stant, a variable or an expression.

82

ASC 70 A = ASC (X$)

STR$ 80 N$ = STR$ (I)

VAL 90 I = VAL (N$)

LEN 100 LX= LEN (X$)

110 LS =LEN (X$+ Y$)

4.1.20 Tabulation function

TAB 10 PRINT TAB (X); A

Substitutes the ASCII code (in decimal) corresponding to the first

character of string variable X$ into numeric variable A.

Converts the numeric value of numeric variable I into string of

numerals and substitutes it into string variable N$.

Converts string of numerals contained in string variable N$ into the

numeric data as is and substitutes it into numeric variable I.

Substitutes the length (number of bytes) of string variable X$ into

numeric variable LX.

Substitutes the length (number of bytes) of string variable X$ and

Y$ into numeric variable LX.

Displays the value of variable A at the Xth position from the left

side.

83

4.1.21 Arithmetic operators

The number to the left of each operator indicates its operational priority. Any group of operations enclosed in
parentheses has first priority.

0 -

f)-

0*

o I

0 +

10 A= x-y (power)

10 A= -B (negative sign)

Substitutes xY into variable A. (If X is negative and Y is not an

integer, an error results.)

Note that " - " in -B is the negative sign and"-" in 0-B represents

subtraction.

10 A= X*Y (multiplica- Multiplies X by Y and substitutes the result into variable A.
tion)

10 A= X/Y (division) Divides X by Y and substitutes the result into variable A.

10 A= X+ Y (addition) Adds X andY and substitutes the result into variable A.

10 A= X- Y (subtraction) Subtracts X from Y and substitutes the result into variable A.

4.1.22 Logical operators

=

<>or><

>=or= >

<=or= <

*
+

10 IF A=X THEN . ..

20 IF A$ = "XYZ"

THEN ...

If the value of variable A is equal to X, the statement following

THEN is executed.

If the content of variable A$ is "XYZ", the statement following

THEN is executed.

10 IF A<> X THEN . . . If the value of variable A is not equal to X, the statement follow­

ing THEN is executed .

10 IF A>= X THEN . . . If the value of variable A is greater than or equal to X, the state­

ment following THEN is executed.

10 IF A < = X THEN . . . If the value of variable A is less than or equal to X, the statement

following THEN is executed.

40 IF (A >X)* (B > Y) If the value of variable A is greater than X and the value of variable

THEN . ..

50 IF (A> X)+ (B > Y)
THEN .. .

B is greater than Y, the statement following THEN is executed.

If the value of variable A is greater than X or the value of variable

B is greater than the value of Y, the statement following to THEN

is executed .

84

4 .1.23 Other symbols

? 200? "A+B=";A+B Can be used instead of PRINT. Therefore, the statement on line

210 PRINT "A+ B =";A+ B number 200 is identical in function to that on line number 210.

220 A= X: B=X'2:? A, B Separates two statements from each other. This separator is used

when multiple statements are written on the same line . Three state­

ments are written on line number 220.

230 PRINT "AB" ;"CD";
"EF"

240 INPUT "X =" ; X$

250 PRINT "AB", "CD",

"E"

Displays characters to the right of separators following characters

on the left. The statement on line 230 displays "ABCDEF" on the

screen with no spaces between characters.

Displays "X=" on the screen and awaits entry of data for X$ from

the keyboard.

Displays character strings in a tabulated format; i.e. AB first ap­

pears, then CD appears in the position corresponding to the start­

ing position of A plus 10 spaces and E appears in the position cor­

responding to the starting position of C plus 10 spaces.

300 DIM A(20), B$(3, 6) A comma is used to separate two variables.

320 A$ = "SHARP BASIC" Indicates that characters between double quotation marks form

330 B$ = "MZ-80B" a string constant.

$ 340 C$ = "ABC"+CHR$(3) Indicates that the variable followed by a dollar sign is a string varia-

500 LIMIT $BFFF

550 S =SIN (X*7T/180)

ble.

Indicates that numeric data following a dollar sign is represented in

hexadecimal notation.

7T represents 3.1415927 (ratio of the circumference of a circle to its

diameter).

APPENDIX

The Appendix includes the following;

• ASCII Code Table Table A. 7

• DISK BASIC interpreter SB-6570 Error Message Table Table A.2

This table lists all the possible errors which may occur during program execution. The interpreter

notifies the operator of occurrence of an error during program execution or operation in the direct

mode with the corresponding error number.

• Memory Map

• Handling diskettes

85

86

A.l ASCII Code Table

A table of hexadecimal ASCII codes is shown in Figure 2.22 of the Owner's Manual.

0 INULLI 26 52 @] 78 ~ 104 [5]
IT] 27 TAB 53 ~ 79 [QJ 105 OJ

2 [!] 28 54 [§] 80 [EJ 106 OJ
3 G 29 55 [7] 81 [9] 107 [kJ
4 G 30 56 [§] 82 [BJ 108 OJ
5 I HOM£1 31 m 57 ~ 83 ~ 109 [iii]
6 [ill] 32 D 58 [] 84 ITJ 110 [OJ
7 [ill] 33 [!] 59 [IJ 85 [QJ Ill [QJ
8 IINSTI 34 B 60 m 86 [YJ 112 [£]
9 lsRPHj 35 [i] 61 EJ 87 ~ 113 @]

10 [][] l 36 ~ 62 [I] 88 00 114 0
II BRFJtk 37 [%] 63 rn 89 [YJ 115 ~
12 ~ 38 ~ 64 ~ 90 [%] 116 w
13 CR 39 ~ 65 . ~ 91 [] 117 ~
14 llcRIPTI 40 rn 66 ~ 92 [S] 118 [YJ
IS ~ l 41 rn 67 [g 93 [JJ 119 ~
16 Fr 42 ~ 68 [QJ 94 ~ 120 ~
17 FL 43 [±] 69 [gJ 95 EJ 121 [Y]
18 FJ 44 GJ 70 ~ 96 [j 122 ~
19 F4 45 EJ 71 [ill 97 @] 123 []]
20 F5 46 GJ 72 [8] 98 ~ 124 OJ
21 F' 47 [Z] 73 OJ 99 ~ 125 rn
22 Ft 48 [QJ 74 QJ 100 ~ 126 EJ
23 Fi 49 [I] 75 [RJ 101 ~ 127 [j]
24 F9 50 [gJ 76 [g 102 rn
25 Flo 51 ~ 77 [MJ 103 [ID

87

128 []]] 154 rn 180 II 206 m 232 Gl
129 [!] 155 B 181 m 207 m 233 n
130 [!] 156 E:g 182 m 208 Iii 234 n
131 8 157 Ea 183 6 209 m 235 II
132 [B 158 ED 184 m 210 m 236 D
133 [j] 159 rn 185 m 211 m 237 lrll
134 [t] 160 II 186 II 212 D 238 m
135 ~ 161 D 187 B 213 1!1 239 m
136 [I] 162 II 188 B 214 m 240 m
137 [§ 163 rn 189 II 215 Ll 241 m
138 [] 164 D 190 IJ 216 13 242 II
139 tii3 165 ~ 191 II 217 a 243 n
140 ~ 166 [;) 192 m 218 fA 244 II
141 ~ 167 II 193 fJ 219 Iii 245 m
142 ~ 168 II 194 m 220 - 246 m
143 tiE 169 IJ 195 [!I 221 ~ 247 ll
144 § 170 E3 196 I!] 222 li1 248 1!1
145 ~ 171 n 197 II 223 Iii 249 I'J
146 [&] 172 II 198 Iii 224 11 250 FJ
147 [j] 173 = 199 &I 225 m 251 D
148 [Q] 174 II 200 Ill 226 m 252 D
149 5J 175 - 201 D 227 m 253 D
150 ~ 176 m 202 II 228 m 254 = 151 [ij 177 D 203 13 229 m 255 [zr]
152 [g 178 m 204 1!1 230 D
153 EB 179 1!1 205 1m 231 19

88

A.2 Error Message Table

I

2

3

4

5

6

7

8

9

10

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Syntax error

Operation result overflow

Illegal data

Data type mismatch

String length exceeded 255 characters

Insufficient memory capacity

The size of an array defined was larger than that defined previously.

The length of a BASIC text line was too long.

The number of levels of GOSUB nests exceeded 16.

The number of levels of FOR-NEXT nests exceeded 16.

The number of levels of functions exceeded 6.

NEXT was used without a corresponding FOR.

RETURN was used without a corresponding GOSUB.

Undefined function was used.

Unused reference line number was specified in a statement.

CONT command cannot be executed.

A writing statement was issued to the BASIC control area.

Direct mode commands and statements are mixed together.

RESUME statement cannot be executed.

A RESUME statement was used without a corresponding error process.

A READ statement was used without a corresponding DATA statement.

The number of SWAP levels exceeded 1.

Error No.

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

89

File was not found .

Disk drive hardware error.

A file name already used was defined again.

OPEN, DELETE, RENAME statements were issued to an open file.

An unopened file was referenced or a CLOSE or KILL statement was issued to it.

A protected file was accessed for writing.

The disk drive is not ready.

The total number of files on a volume exceeded 94.

Volume number error

File space on the diskette is insufficient.

A diskette which has not been initialized was loaded.

The number of data of a BSD file exceeded 64K bytes.

Data error occurred on an FDC routine call.

The diskette cannot be used.

Illegal file name was specified.

Illegal file mode was specified.

Out of file

Illegal logical number was specified .

The printer is not ready.

Printer hardware error

Out of paper

Check sum error

90

A.3 Memory Map

$FFFFL_ __________________ ~

$1220 : Cold start address

$1280 : Hot start address

91

A.4 Handling diskettes

The master diskette must be handled especially carefully. Make a submaster diskette by means of

the diskette-copy program in the OBJ file "Utility" on the master diskette. Be sure to keep the master

diskette in a safe place.

All optional blank diskettes supplied by the Sharp Co. are not initialized. Be sure. to initialize them

before use.

Notes on handling of diskettes

• Fingerprints on a diskette may permanently render it unusable. Never touch the diskette surface

through the head window.

• Insert the diskette straight into the drive until it stops, then close the front door gently. Rough

handling may damage the diskette.

• Do not fold or bend the diskette, or it may be rendered unusable.

• Write the index label before it is affixed to the jacket. If it is written after it is affixed to the

jacket, use a felt marker or other soft tip pen.

• Ashes and drinks are the most common contaminants to guard against .

• Ambient temperature: 4~S0°C

When the ambient temperature is more than 50°C the jacket may be deformed. Do not place the

diskette in a place where it is exposed to direct sun light or where the temperature may exceed

50°C.

Notes on storing diskettes

• Keep the diskettes away from magnets. Even a magnet ring or magnet necklace may damage data

on the diskette. Electrical equipment such as the display unit of the computer, a cassette tape

recorder, or a TV set generates magnetic flux, so keep diskettes away from such equipment.

• Keep the diskette in the envelope supplied. Make it a habit to put the diskette in the envelope im­

mediately after it has been taken out of the drive. This will prevents almost all problems which

result from careless handling of diskettes. The master diskette must be handled especially carefully.

The envelopes supplied are made of special materials and guard against static electricity and mois­

ture.

• When storing diskettes for a long time, keep the envelopes in the storage case. Be sure the envel­

opes are stored vertically in the storage case. Do not incline or bend the envelope. The master

diskette is not supplied with a storage case.

• Do not clip diskettes with paper clips or the like.

• Do not place any heavy objects on diskettes.

	Sharp_MZ-80B_DISK_BASIC_Manual_front
	152859
	152909
	152916
	152919
	152925
	152929
	152935
	152938
	152944
	152948
	152954
	152958
	153006
	153009
	153017
	153020
	153026
	153030
	153036
	153039
	153046
	153047
	153048
	153050
	153056
	153059
	153105
	153109
	153115
	153118
	153124
	153128
	153134
	153135
	153136
	153137
	153138
	153139
	153159
	153203
	153209
	153212
	153219
	153222
	154903
	154913
	154920
	154923
	154929
	154933
	154939
	154942
	154949
	154952
	154958
	155002
	155008
	155012
	155018
	155021
	155030
	155033
	155041
	155044
	155050
	155054
	155102
	155106
	155112
	155115
	155121
	155125
	155131
	155134
	155140
	155144
	155150
	155154
	155200
	155203
	155209
	155213
	155219
	155222
	155228
	155232
	155238
	155242
	155248
	155251
	155257
	155300
	155307
	155310
	155316
	155319
	155325
	155329
	155335
	155342
	Sharp_MZ-80B_DISK_BASIC_Manual_back

