Bersonal omputer
mzZ-c08

OWNER'S MANUAL

SHARP

The MZ-80B Personal Computer supplied in the U.K. and Republic of Ireland
have 64k of RAM and optional graphic RAM-1 (MZ-80GM) fitted as standard.

Page 7 of the Owner's Manual shows various peripherals which can be connected
to the MZ-80B. The Mark Card Reader, Hard Disk, Colour Intelligent Terminal and
Colour Display are planned for future development.

Personal Computer

MZ-80B

Owner’s Manual

January 1981

080211-150281

Printed in Japan

© SHARP CORPORATION

IMPORTANT

For users in the United Kingdom:

The wires in the power cable of this device are colored in accordance with the follow-

ing code:
BLUE : Neutral
BROWN : Live

As the, colors of the wires in the power cable of this device may not correspond with
the colored markings identifying the terminals in your plug, proceed as follows:
m The blue colored wire must be connected to the terminal which is marked with the
letter N or colored black.

m The brown colored wire must be connected to the terminal which is marked with the

letter L or colored red.

i

Preface

This manual describes the Sharp MZ-80B personal computer. Read this manual thoroughly to be-
come familiar with the operating procedures and precautions before operating your MZ-80B. This

manual is one of a series of publications describing the MZ-80B and associated software.

® Owner’s Manual . . . This publication
m BASIC Language Manual
® MONITOR SB-1510 Reference Manual

Chapters 1 and 2 describe the features of the MZ-80B and general operating procedures; read these
chapters first. Chapter 3 and 4 describe the hardware. This information will be helpful to you if you
intend to expand system.

All software is supplied in the form of files. A cassette tape which contains the SB-5510 BASIC
interpreter and MONITOR SB-1510 (which support the standard BASIC programming language) is
included with the MZ-80B.

Refer to the BASIC Language Manual for details on the BASIC language.

For details on MONITOR SB-1510, refer to the MONITOR SB-1510 Reference Manual.

Keep the warranty card and list of service centers as well as this manual and the other two man-

uals.

iii

Precautions

The MZ-80B is one of the finest personal computers in the world; its design incorporates all the
technical knowledge accumulated by Sharp in its many years of experience in the electronics field. All
units are thoroughly inspected prior to shipment so that each will operate normally when it is un-
packed. However, be sure to check visually for any damage caused during transportation. If any

damage is found or any parts are missing, contact your dealer immediately.

Observe the following guidelines to keep your set in optimum operating condition:

® Do not place the MZ-80B in locations where the temperature is extremely high or low or where it
varies to a great extent. Avoid exposing the unit to direct sunlight, vibration or dust.

m Handle the power cable carefully to prevent it from being damaged. When removing it from the
AC outlet, turn the power off first, then pull the plug (do not pull on the cable).

® If the power switch is turned off then immediately turned on again, initialization may not be per-

formed correctly. Allow a few moments after turning the power off before turning it on.

For more detailed information, see Appendix 4.

Contents

BHPOTHHTIL 51504 s o 5B 55 5 5 FMEDES T 56 M. T 6 5o b i @l § 5w ot thh o o, o0 w1 B msrim o o o i
Preface e et e iii
Precantions . . v s v somw s s $ 3mens i8 o s QuE e s PHSRNEE § 5 S EPEEE § 69 ¥ EBKEEY ¢ 3 v
Chapter 1 The World of the MZ-80B Personal Computer 1
Jod ToulOnos .. revusnsiivananis s dsaps IR ARENRRN LYY SRARSAE LTS DT 2
1.1.1 Memory configurationcoiiiiiurrnnnnnnn.
1.1.2 Superb operabilitycouiriiiiiii 4
1.2 EXpansion SquiDMeiits . covs s o a46emh8 25 aneids £ 25 6 a@hd &35 s@me 6
Chipter 2 Usingthe MZBOB . ~vcsucivnmvevncvswerg gunsnsnene sy vews 9
2.1 Initial program loadingottt e 11
2.1.1 Activating system software contained in a cassette tape file 11
2.1.2 Activating system software stored in a diskette file 12
2.1.3 Flow chart of Initial Program Loader 13
2.2 Keyboardii e e 15
221 M Keyboatl « . covesspsspras yvessnms e e ss s nEp ¢« 16
222 NUMEHEDAd <% vsspaas s 5y anees ¢85 s RESH 58T S SHBEFE 5% 55 21
2.2.3 Special function Ke€yscoi it 22
2.2.4 Cursor control KEYS . ..o vv ittt et i et e e 24
2.2.5 Cassette tape deck controlkeyscvouiiunnnnnn.. 25
DB TDISPLAT o o 255 @ amE 25 %0 E D8 5 g or et 7, a0 s s o i i 26
2.3.1 Character display control systemc.cou.... 26
2.3.2 Graphic display controlsystemcc0iiiinnn. 29
Chapter 3 Option Device Installation «»-«rescsssavsorsmrennsssnsssnns 31
3.1 Installation of optional devices in the main cabinet of MZ-80B 32
3.1.1 Ins llingthe Expansion RAM 34
3.1.2 Installing the Graphic Memory 1 Card 35
3.1.3 Installing the Expansion I/OPort 36

3.2 Setting option device interface cards in the expansion I/O port

3.2.1 Setting the GraphicMemory 2 Card
3,22 Other terfaces - : s svupmeiisnammas s pRanE 54§ REMET 5 88
Chapter 4 Hardware Configuration of the MZ-80Bccvunnt.
4.1 TheMZ-80Bsystem diagramuutiimunennnnnnnennn.
4.2 Memory configurations :::sesesisannossssowsasesss soamssss soni
4.2.1 Memory map for initial program loading state
4.2.2 Memory map fornormalstateciiiiii...
4.2.3 Memory map for V-RAM accessingstate
4.3 Signal system for the 8255 block, the 8253 block and the IPO block . ..
43,1 Signal system for the 8255 blogk covveveressssissnnnss
4.3.2 Signal system for the 8253 blockcciiiiiiiin.n..
4.3.3 Signal system for the Z80A-PIOblock
4.4 The MZ-80B circuit diagramsvriiimenrnneeeennnn
APPENDIX sisssansesrianmna ins i Rs @ e s s Rmas d 4ves 8@naens @ @ mn ey
A.l1 Z80A-CPUtechnicaldataccoureuieiienunennnn
A.2 Z8OA-PIO technical data . ..vcovussvvsnssnsesnssmssasssossssss
AS SPECIFICALIONS aucszceranp it sRa@EE s+ A9UCE L5+ ANEE RS & & HARERE »
A4 Caringforthesystem ittt it nnnnnnnn

SUPPLEMENT Complete MZ-80B IPL Assembly Listing

vi

Chapter 1
The World of the MZ-80B Personal Computer

What can computers do? You will see that computers are used for many different purposes in
many places. Computers carry out complicated scientific calculations, various business procedures,
simulations and statistical processing with the aid of high level languages such as BASIC, PASCAL,
FORTRAN and COBOL. Computers operate measuring systems and automatic control systems in a
variety of plants and networks. In laboratories engaged in software development, the computer is even
used to study itself.

What can your MZ-80B do? There is no definite answer to this question, since the MZ-80B can be
used in such a wide range of applications. You may apply it to any purpose you wish.

Chapter 1 of this manual describes the features of the MZ-80B, hardware expansion and the scope

of the software.

1.1 Features

The MZ-80B is a compact personal computer with superb operability which features a variety of
software and freely expandable hardware.

The CPU (Central Processing Unit) and the main memory form the nucleus of the computer. The
MZ-80B uses the Z80A microprocessor (equivalent to the LHOO80A produced by Sharp), one of the
best microprocessors currently available for central processing units. The main memory which can be
directly accessed by the CPU is constituted entirely of random access memory. It is expandable to
64K bytes. Consequently, no fixed programs or data reside in the main memory and any type of
system software can be loaded into it from an external file. This makes it possible to make the best
possible use of the main memory area.

The I/O devices, timer, initial program loader, etc., support the CPU and main memory. The initial
program loader is automatically started when the power switch of the MZ-80B is turned on. It loads
programs from a cassette tape or diskette file, then transfers control to the program loaded.

A typewriter keyboard, numeric pad, special function keys, cursor control keys and cassette tape
deck control keys are included on the control panel. A variety of control commands and data can be
entered with these keys.

Both character display and graphic display are possible, allowing various forms of data representa-

tion.

FIGURE 1.1 Personal Computer MZ-80B

1.1.1 Memory configuration

Random access memory (RAM) is the type of memory which is most naturally suited to comput-
ers. When this type of memory is employed, the user can select the programming language and the pro-
gram to be executed at will. The MZ-80B employs this method to allow you to select the programming
language which best suits your purpose. Further, if you want the computer to execute a machine
language program, you can code and execute it.

In the MZ-80B, the IPL (Initial Program Loader) automatically loads programs which are stored on
cassette tape or (if a disk drive is connected) diskette into the main memory when the power is turned
on, then transfers control to the program loaded. Initial program loading from cassette tape is com-
pleted in a few minutes; loading from a diskette is accomplished in seconds.

The IPL is stored in ROM (Read Only Memory). This ROM address space is different from that of

the main memory, and it is automatically activated when the power is turned on. See FIGURE 1.2.

Normal state Boot state

j [<::> IPL

ROM

crun

Main Memory

64k bytes

(32k bytes
: Optional)

FIGURE 1.2

1.1.2 Superb operability

The MZ-80B becomes a BASIC language computer after the SB-5510 BASIC interpreter has been

loaded and activated by the IPL. You can now perform a wide variety of operations with the MZ-80B,

such as data input and output, text file generation, debugging and file access.

The MZ-80B’s superb operability and expandability will help you to perform such operations with

ease.

Keys on the console are divided into groups according to their functions. The main typewriter
keyboard and the numeric pad are located at the front of the console. The special function keys,
cursor control keys and cassette tape deck control keys are located under the CRT display screen
and cassette tape deck.

All ordinary operations other than power on/off can be performed with these keys.

Alphabetic characters, numerics and symbols are all input from the typewriter keyboard. The
key allows input of reverse characters and the key enables input of graphic patterns from
the keyboard.

Small letters are normally input from the console of the MZ-80B by pressing thekey.
A command is provided, however, which makes it possible to reverse the shift function so that
capital letters are input when the key is pressed. Tabulation settings can also be made
by the program.

These functions improve the efficiency of message coding and table and graph editing. The cursor

control keys allow these tasks to be performed even more efficiently.

A separate numeric pad including @ oo [5 T " ,(-] and B keys is also provided. This

is convenient when input of large amounts of numeric data is required. The numeric keys are
scanned by a different scan signal than that which scans the numeric keys on the typewriter key-
board. This makes various applications possible. For example, keys on the numeric pad can be

easily operated with the right hand as real time operation interruption keys.

Functions of the 10 special function keys are all user definable. Therefore, by defining a special
function key as a frequently used command, the command can be executed just by pressing the

key once.

The MZ-80B uses the high speed Z80A-CPU which allows instructions to be executed in half the time required by
the Z80-CPU.

The cassette tape deck is controlled by software. All cassette tape operations, i.e., storing, loading
and verifying data and rewinding, fast-forwarding and stopping the tape, are performed by the pro-
gram.

The APSS (Automatic Program Search System) fast-forwards the tape until the specified file is
found.

Automatic functions allow the cassette tape deck to be operated much more efficiently than has
been possible in the past.

Manual operation keys, (rRew) ,(FF), (sTop) and EJecT), are provided on the console.

The MZ-80B has a superior display system with the following features; it displays all characters
and patterns input from the keyboard in any mode; it operates in either the 40 or 80 characters/
line mode; the scrolling area can be restricted to a part of the screen; and black and white can be
reversed.

Further, 2 optional graphic memories which enable graphic display of 320 x 200 dots per frame
can be added to the MZ-80B. With this high resolution, the range of possible applications for the
MZ-80B becomes very wide indeed.

1.2 Expansion equipments

A variety of peripheral devices is available for expanding the MZ-80B personal computer system.
FIGURE 1.3 shows a typical expanded system configuration. With the floppy disk drive, numerous
data and program files can be stored and accessed at high speed. With the printer, hard copies of list-
ings and printed graphic patterns can be obtained. This improved processing efficiency, resulting in
a wider range of applications.

The MZ-80B dual floppy disk drive uses a double density mini-floppy diskette (286K bytes/disket-
te) with a diameter of 5.25 inches, both sides of which are used for recording. It enables use of the
DISK BASIC interpreter, which is suitable for practical business applications of the double precision
DISK BASIC interpreter, which performs 16 digit BCD operations. Thus, the expanded system ex-
hibits an ability which is comparable with that of larger computers with the aid of a variety of the
floppy disk operating system software.

The compact MZ-80P5 line printer enables not only program listing, but also graphic pattern print-

ing in the image mode.

FIGURE 1.3 Typical expansion system

FIGURE 1.4 shows peripheral devices which can be connected to the MZ-80B. Devices which are
enclosed in a thick solid line are connected to the expansion I/O port via interface cards or connected

to the specified connectors in the main cabinet.

{— —————————————————————————————————— I
MZ-80B
| CRT I
| DISPLAY |
I 1 |
| V-RAM |
} ;Aé\;[g "l Graph 8KB |
I
: V-RAM V-RAM UNIVERSAL §| PTR.PTP
| RAM Charact. 2KB Graph 8KB I/0 etc.
| 32KB |
I | MODEM
| RS-232C TELETYPEWRITER
| 2BI(()}(3)T ROM <:: | etc
I |
| IEEE-488 | IEEE-488 standard
| — Ly INTERFACE devices
[
I Z80A < — i{ST}Ey BUS =~ PORT I
PRINTER | PRINTER
} INTERFACE [
» I
| :
| JL FD | FLOPPY
I INTERFACE f| DISK
I KEY BOARD |
| |
: . i
INTERFACE READER
| souNnD K CASSETTE !
| |
| HD
| INTERFACE [HARD DISK
| TIMER ~ [—— |
| COLOR DSPL.{ | ||COLOR o
{ INTERFACE_JT | TERMINAL
| | I
| | | coLor
l_ _ll DISPLAY

FIGURE 1.4 MZ-80B system extension

Chapter 2
Using the MZ-80B

This chapter describes the constituent units of the MZ-80B and their functions.
B [ocations of constituent units
®m Use and function of the Initial Program Loader
® Functions of keys on the keyboard

® Qutline of display control systems

o

10

B Top view of the MZ-80B

Cassette tape
compartment

Cassette tape counter

Name plate

Special function keys Cursor control keys

Cassette deck
control keys

Sl leRaln

Main keyboard ‘
i T'TLT'. ".':"h

Numeric pad

FIGURE 2.1

H Rear view of the MZ-80B

Brightness control IPL reset switch

Volume control

Reset switch

Power switch —ﬂ Frame ground

Frame ground L
Power receptacle I/0 module access

window No. 1~6

FIGURE 2.2

11

2.1 Initial program loading

All MZ-80B system software is supported by cassette tape or diskette files.

When the power switch of the MZ-80B is turned on, the Initial Program Loader (a file reading pro-
gram mandatory for activation of system software) starts. The loader reads the system software from
cassette tape or diskette files and, upon completion of loading, transfers system control to the loaded
program.

This action takes place automatically the instant the power switch of the MZ-80B is turned on.
Accordingly, in order to activate system software stored in a cassette tape file, you must load the
cassette tape recorder with the corresponding cassette before turning on the MZ-80B; to activate sys-
tem software stored in a diskette file, the corresponding diskette must be placed in drive No. 1 of the

floppy disk unit connected to the MZ-80B before the power is turned on.

2.1.1 Activating system software contained in a cassette tape file

Load the cassette tape into the cassette tape recorder and energize the MZ-80B. See FIGURE 2.3.

ty

Load the cassette tape into the MZ-80B
FIGURE 2.3

The MZ-80B searches and loads the system software automatically. In this state the following
messages are shown. See FIGURE 2 4.

IPL is looking for a program IFL 1s loading BASIC SB-5514a

This message indicates that the MZ-80B is searching for This message indicates that loading of the BASIC inter-
the system software on the tape. preter is in progress.

FIGURE 2.4

12

FIGURE 2.5 shows that the loaded BASIC interpreter SB-5510 has been started.

#% MONITOR SB—1518 %%

BASIC interpreter SB-5516
Copyright 1981 by SHARP Corpe.

400088 Bytes
%esdu

FIGURE 2.5 Message indicating that BASIC interpreter SB-5510 has been started
Subsequently, the cassette tape is automatically rewound.

2.1.2 Activating system software stored in a diskette file

Energize the floppy disk unit and place the master diskette in drive No. 1; energize the MZ-80B.
The MZ-80B loads the system software automatically.
After a few seconds, a message should appear indicating that DISK BASIC interpreter SB-6510

has been activated.

A special method of loading system programs from a ROM card connected to the expansion I/O port is possible. The
IPL of the MZ-80B enables system program loading in this manner; when the IPL is started with the ““/” (slash) key
depressed, it loads the program from the memory connected to the expansion I/O port.

13

2.1.3 General flow chart for Initial Program Loading

Initial Program Loading is normally accomplished by the above simple operation.

Individual operations needed to perform Initial Program Loading in special cases (for example,

when loading from a cassette tape file with the floppy disk unit connected to the MZ-80B; or when

loading from a drive other than drive No. 1) and measures to prevent errors are described later.

FIGURE 2.6 depicts the general flow chart for Initial Program Loading. Execution of Initial Pro-

gram Loading normally progresses as indicated by the solid line; however, manual operations may be

required depending upon conditions at the branchpoints.

Power-SW ON

IPL Reset-SW ON |

—<Yes “C” Key?)
‘ No
< FD Connection? >

No

|

@T READY FOR CMT}

FF
< FD Power-SW?)0—

JON

< Diskette setting? >NO———

Yes

-

SET READY FOR FD

-

B

No

Tape setting?

)

Yes

7

3

3

S

SELECT CMT OR FD

‘C” key: Cassette tape
‘F”’ key: Floppy diskette

=
Program search 1
& load / “C” Key? >
‘ ‘ No
" No No
< OBJECT Mode? > Program search { “F” Key?
Yesl & load ‘Yes
< Break 7@
Nol= [DRIVE NO? (1-4) j
1
< Error Yes
ol
Jump to the

loaded program

CMT : Cassette Magnetic Tape
FD : floppy disk Drive

FIGURE 2.6 General flow chart for IPL

14

To read system software from a cassette tape with the floppy disk unit connected to the MZ-80B
(or with the floppy disk interface card inserted in the I/O port of the MZ-80B), switch on the MZ-80B
while pressing the (cassette tape) key. (Loading control proceeds along flowline «.) Energizing
the MZ-80B without pressing the key drives the master diskette if it is contained in drive No. 1.
When drive No. 1 is inoperative, however, when branch point § is reached the MZ-80B asks whether
loading is to be made from cassette tape or a diskette. If the key is then pressed, the cassette tape

will undergo initial program loading.

If you intend to perform initial program loading from any drive other than drive No. 1, make drive
No. 1 inoperative before turning the power on. The drive can be made inoperative by not inserting a
diskette, by leaving its cover open or by switching it off.

Program loading will then proceed to branch point B, at which time the system asks whether
cassette tape or diskette is specified. Press the (floppy diskette) key. The system further asks

which drive number is desired. Input the desired number by pressing the corresponding key.

When you must rewind the cassette tape before initial program loading, first initiate cassette-based
loading, then press the ' key. This will cause loading control to move to branch point 8, causing
the tape to be rewound. When the tape is completely rewound, press the key.

Pressing the key before the tape is completely rewound causes the system to begin the file

search immediately.

When you must fast forward the tape, first initiate cassette-based loading, then press the
key. This will cause the tape to be rewound as descriEed above. Press the key of the cassette
recorder to stop tape travel and press the (FF] key to fast forward. Interrupt tape travel again by
pressing the key, then press the key to start the file search.

Initial program loading does not provide for discrimination between program texts according to
file name. When loading from cassette tape the system reads the first OBJECT mode file it encounters.
If the system encounters any file other than one in the OBJECT mode, it displays the error message
“FILE MODE MISMATCH ERROR”.

The memory map and other references for initial program loading are given in item 3 of the Ap-
pendix. The assembly listing for the initial program loader is shown in the SUPPLEMENT.

The MZ-80B system can, of course, read (through IPL) any system software you have worked
out on the MONITOR SB-1510 or other systems. The MONITOR SB-1510 Reference Manual des-
cribes procedures for creating system software with the aid of MONITOR.

15

2.2 Keyboard

The keyboard of the MZ-80B is arranged as shown in Figure 2.7, and is divided into 5 areas accord-

ing to function.

cassette tape deck
special function keys cursor control keys control keys

M m e e B8 E A e com
ME@EEE I FED ED) FED (I3 @) () 6o EE

FEEEEEEEEEEEEEREE) EEEE

o

—
=]
<
[%2]

i«.g_,
B ©
1

= R EREEEEEEE [EEEE

el G R [T

=] ;[_:J JEEEEEEEE] EEEE
L TAB Imw ‘) numeric pad

main keyboard

FIGURE 2.7 Locations of 5 areas of the keyboard

The main keyboard (typewriter keyboard) conforms to ASCII standards and includes character

keys and control keys (such as the carriage return key and the break key).

The numeric pad is for entering numeric data and is similar to that of an ordinary electronic

calculator.

The ten blue keys in the upper left are keys whose functions are defined by the user.

The four yellow keys in the upper center are cursor control keys, and the four green keys in the

upper right are cassette tape deck control keys.

The functions of each element of the keyboard are explained in the following pages.

16

2.2.1 Main keyboard

The main keyboard is operated in a manner similar to that of an ordinary typewriter. One differ-
ence is that the main keyboard has three operating modes; another is that several control keys are

provided (the stippled keys in Figure 2.8 are the control keys).

B [W

CURSOR KEYS - - L} A

(F1)(F2]) (Fs])(Fa])(Fs])(Fe](F7) (Fa) (Fo) (F1o) (Rew) (FF) (sToP) [EsECT

I EENEE] EHEEE
R]

HEE

|
s bl SIS/
sl P B 2|22 =

=
&
N\

7

FIGURE 2.8 Main keyboard and its control keys

Three operation modes are as follows:

[1] Normal mode
[2] Graphic mode

[3] Reverse mode

Some of these keys produce different characters according to operation mode, as shown in
Figure 2.9. Except under special circumstances, characters input from the main keyboard are dis-

played on the screen in the position where cursor is located.

reverse mode

normal mode

B : hold down

hold down : b

graphic mode

FIGURE 2.9 Different characters of a key

17

The functions of the control keys which are independent of operation mode are explained below.

SHIFT

INST
DEL

SFT LOCK

-
GRPH

RVS

BREAK

O
=y

Similar to the shift key of an ordinary typewriter; when this key is depressed, the char-

acter keys and some of the control keys are shifted.

Carriage return key. When pressed, the cursor moves to the beginning of the following
line.

CR: Abbreviation for carriage return.

: HOME returns the cursor to the upper left hand corner of the display screen. CLR

clears the display screen and also returns the cursor to the screen’s upper left hand
corner.
CLR: clear

DEL erases the character at the left of the cursor location, shifting all following charac-
ters of the string to the left one space. INST inserts a space where the cursor is located
by shifting all following characters of the string to the right one space.

DEL: delete, INST: insert

Shift lock key. When this key is pressed with the key depressed, the

key is locked. When the key is locked, lamp lights. Press-

ing this key again without pressing the key releases the shift lock.
SFT LOCK: shift lock

With this key depressed the character keys which have graphic characters produce these

graphic characters. If this key is pressed with the key depressed, the graphic
mode is entered and locked, and the key lamp lights.
GRPH: graphic

With this key depressed the character keys produce reversed characters. If this key
key is pressed with the key depressed, the reverse mode is entered and
locked, and the key lamp lights.

RVS: reverse

When this key is pressed, a break code is generated. Pressing this key halts execution of

BASIC programs.

Tabulation control key.
TAB: tabulation

18

[1] Normal mode

[) D RS
(F1)(r2) (F3) (Fa) (Fs) (CFe) (F7) (CF8) ((Fe) (F10) (rew) (FF] (sToP) [EJECT)

T EEEEE) |
= gsaEa JEEEE] (BRI

E

+
E
N
T

M]

——

@
SFT LOCK key)

lamp

-t
=

m| .
e

G HTE

2jginfalll ogie

, < 2,

<0
o<
K[wa
Qe

FIGURE 2.10 Locations of some keys

When the BASIC interpreter or another system program is started, keyboard operation is automat-
ically set in the normal mode. Alphanumeric characters and symbols are input in the normal mode.
For example, to input a B, press the key (See Figure 2.10)in the same manner as on an ordinary
typewriter. Note that the letter keys normally produce cépital letters. To enter lower case letters, hold
down the key then press the letter key - just the opposite of an ordinary typewriter.

The reason for this is that capital letters are generally easier to read on the screen, so most people
prefer to write their programs in capital letters. When a key has two non-alphabetic symbols on it,
such as (above the @ key. See Figure 2.10.), pressing the key alone enters “8”. If you hold

down the key while pressing , “(” will be entered. Only the 26 letter keys are shifted
in the opposite direction from a standard typewriter.}

The key locks the key so that it does not need to be held down. When the
key is locked, the lamp (See Figure 2.10) lights and pressing the key inputs

“b”. Characters and symbols which can be input in the normal mode correspond to ASCII codes 20H
to 7EH. (See Figure 2.22, ASCII code table.)

1 The BASIC interpreter SB-5510 and DISK BASIC interpreter SB-6510 are provided with the CHANGE statement.
With this statement, the shift direction of the 26 alphabetic characters, A to Z, entered from the keyboard can be
changed.

19

[2] Graphic mode

“—Ju[_]LJL_J(][][][}[]’ CURSOR KEYS - TA:IiCON':ROL \
CFr)(F2) ((F3) (CFa) (Fs) (CFe) (F7) (CF8) (F9) (F10) (rew) (FF_) (SToP) [EJECT)
= OEEE

2y Rne o/l

: \ | | CLR
- @ £)il {Home

L]

)\

iio|
JEC 1D

=
=

iz
I
(-] 1]

‘l l SHIFT
S =) S 2,
\(I]II
=l)
L— GRPH key
lamp

FIGURE 2.11 Locations of some keys

Graphic patterns produced by the stippled keys shown in Figure 2.11 may be input when the sys-

tem is in the graphic mode. Each graphic pattern is printed in white on the front of each of these 30

keys.

For example, pressing the key inputs the graphic pattern. When any key other than one
of these 30 keys is pressed, the character assigned to the key is input. Note that graphic patterns
cannot be input when the key is held down.

Included in the graphic patterns are ruled line patterns which are provided for generating tables.

Figure 2.12 shows an example of a table generated using ruled line patterns.

FIGURE 2.12 A table generated in the graphic mode

These graphic patterns correspond to ASCII code 80H to 9FH, (See Figure 2.22, ASCII code table.)

Graphic patterns can be processed as string data in the same manner as other characters and symbols.

20

[3] Reverse mode

L Jr J[]F][_—][_JLJDL_J[__J’ TAPE CONTROL

CURSOR KEYS - [[]

(e (F2) (Fs) (Fa) (Fs) (Fe) (F7) (8] (Fe) (Fro] (=) (2 (1) (1) --@E

'ﬁ*@@fHGWH@HWWM@¥B;BE\
P R EEE (R
@ﬂﬂ@gg@@:@hﬁ%%nﬂjgggﬁ
E w%swﬂmguhj =|pi2l212=)

lamp
FIGURE 2.13 Location of a key

In the reverse mode, all characters and symbols which can be input in the normal mode appear

on the screen in reverse highlighting.

For example, pressing the key in the reverse mode inputs the reverse upper case character

and pressing it with the key depressed inputs the reverse lower case character.

The reverse characters and symbols correspond to ASCII codes AOH to FEH. See Figure A.1,
ASCII code table.

As shown in Figure 2.21, the dot patterns constituting reverse characters are set/reset in the exact

opposite state of those comprising normal characters.

FIGURE 2.14 A title generated in the reverse mode

The entire display may be reversed by setting terminal PA, of programmable peripheral interface
8255 to high. For details, see Paragraph 4.3.1.

21

2.2.2 Numeric Pad

The group of keys on the right of the main keyboard is referred to as the numeric pad. It includes

the numeral keys (0 through 9), and the key, E] i , [3 and keys.

These keys are provided on the numeric pad for the convenience of users who frequently enter numer-
ic data.

)

CURSOR KEYS --a >

) (F2) (Fe) (ra) (Fs) (Fe) (F) (F8] (Fe) (Fe] (=) (=20 () (1) [W@W[_JE_CT]

EEEEEEEEEEE
2| 3 2
e e R R
= A A T

~

-
>
w

/

FIGURE 2.15 Location of number pad

When the key is pressed once, two zeros are entered, just as if the @ key were pressed

twice.

A small projection is provided on the face of the @ key so that the operator can enter numeric

data without constantly looking at the keyboard.

All of the keys on the numeric pad operate without relation to the main keyboard operation mode

orthe[sHFT Jkey.

[3 , and [—] keys are also provided on the main keyboard, along with the
key, which has the same function as the key on the numeric pad.’

t The key is scanned by a different strobe signal than that which scans the key. This enables the
machine language to differentiate between these keys. (See Paragraph 4.3.3)

22

2.2.3 Special Function Keys

The ten blue keys in the upper left of the keyboard, marked F1 through F10, are called special
function keys. See Figure 2.16.

[B | e e

D) (52 () (55) (780 F0) 680 (79) (@) (&) (30 () (W) (7)) (57op) ey
0
[\

FEEEERE) HE

ellTe N T " vy | v I ollfelf s L ene
&

)
e

2

o

+
“GRPH Q w b e 4 | ‘B M=
= || = || | | rE | = =) =) = ! E]
ser okl A s ML o I F I e B 009 I e I 3N ! CR 1 E
e o =) S Y)] N
SHIFT z I x M e T v T s I~ I m I ¢ Ea 1S SHIFT 0 ‘m T
) | U | L= | 7| (= [—

N\

=l —

FIGURE 2.16 Location of Special Function keys

These keys are undefined when the MZ-80B is activated. The user can define a function for each of
these keys by using the BASIC SB-5510 DEF KEY statement.
To define the function of special function key 1 as the BASIC command RUN, execute the follow-

ing statement:

DEF KEY (1) = RUN

Once this statement is executed, special function key 1 performs the function of the RUN com-
mand until it is redefined. Thus, when special function key 1 is pressed in the direct mode, the follow-
ing appears on the display. Then, by pressing key, the RUN command is executed.

The key can be defined together with the RUN command as the function of a special
function key, if desired.

Execute
DEF KEY (1) = RUN "}

The symbol ¢ —§ » represents the carriage return function, but there is no key on which this
symbol appears. To enter this symbol, press the and | GRPH | keys simultaneously. When
special function key 1 is defined in this manner, the command may be executed just by pressing the

key once.

23

It is convenient to define the functions of special function keys as direct mode commands and
statements. However, numerical data and string data can also be assigned to these keys. The following

statement assigns the character string “Personal Computer MZ-80B” to special function key 8.

DEF KEY (8) = Personal Computer MZ-80B
To obtain a listing of the definitions of the special function keys, execute the KLIST command.

When KLIST is executed, a list such as that shown in Figure 2.17 is displayed.

KLIST

1 LIST Y

2 RUNTY

3 RUN1007V
4 AUTO™V

S CONT™V

6 2.7182818
7 3.1415927
8 Personal Computer MZ-80B
9

10 KLIST 3
Ready

FIGURE 2.17 List of special function keys

This list shows that special function keys 1 through 5 are defined as commands plus the

key; special function keys 6 through 8 are defined as data; special function key 9 is undefined and
special function key 10 is defined as KLIST .

Labels are provided to enable the user to indicate the definition of each key under the transparent

cover above each key.

These labels are useful when the same functions are assigned to the special function keys every time
the MZ-80B is activated.

24

2.2.4 Cursor Control Keys

The tour yellow keys beside the special function keys are called cursor control keys. An arrow

appears on the face of each key. See Figure 2.18.

OO 0y “‘i’i o
@(m[m[F4](F5]LES_J[iJ[iJ L EJECT

gA
i

O [
TWQHM;E;H;;;%%%@ 2998
=58 8858555 82 === ‘@@j
SHIFT “; 5 SHZHQHQ i : ; ” SHIFT) | 0 4@ T |

S

IHI

S

FIGURE 2.18 Location of Cursor Control Keys

Each key moves the cursor in the direction indicated by the arrow.

The cursor moves one position every time a cursor control key is pressed. Therefore, to move the

cursor to the right 3 positions, the key must be pressed three times.

To move the cursor repetitively, hold down the key and press the appropriate cursor

control key. The cursor will then move continuously until either of these keys is released.

When the cursor is to be moved to a position nearer to the upper left corner of the screen than to
its current position, first press the key to move the cursor to the home position, then move it

with the cursor control keys to save time.

25

2.2.5 Cassette Tape Deck Control Keys

The four green keys above the number pad are called cassette tape deck control keys. See Figure
2.19.

[](](][——][][][][J[][] TAPE CONTROL

CURSOR KEYS -t [4 |} A

CF) (F2] (Fs] (Fa) (s) (ke (F7) (Fe] (Fe) (Fr0) () (> (] (3

FHEEEEEEHEEEEEE CEEE
:GB!; e R EE
= 2 o e @j
EHEREEMEEREEEEEEE) [BHEEE

] J

FIGURE 2.19 Location of Cassette Tape Deck Control Keys

These keys are connected directly to the cassette tape deck and perform a different role than the
other keys.¥

The functions of these keys are as follows:

Rewinds the cassette tape.

Fast forwards the cassette tape.
Stops the cassette tape.

Ejects the cassette.

These functions have no relation to the mode in which the computer is operating.

Recording and reading data to/from the cassette tape are controlled by the software.

With BASIC SB-5510, recording or reading of program text is performed by the SAVE and LOAD
commands, respectively. Recording or reading of data files is performed by the PRINT/T and INPUT/

T statements, respectively.

Instructions for recording and reading are provided with all system software.

+ All other keys are scanned by the Z80-PIO and processed by the software (See Paragraph 4.3.3), but the cassette
tape deck control keys directly control the motor and eject mechanisms of the tape deck.

26

2.3 Display

There are two display control system: character display control and graphic display control. The
character display control system displays character on the CRT screen using the character V-RAM and
character generator. The graphic display control system displays optional curves and dot patterns of

high resolution using the graphic V-RAM.

2.3.1 Character display control system

Characters generated by the character generator of the MZ-80B are shown in FIGURE 2.21 along
with their corresponding ASCII codes.

As shown in the figure, character from “g&” ($1F) through “n” ($FF) can be displayed on the
CRT screen.t Input of these characters from the keyboard was explained previously. Characters en-
tered are displayed at the position where the cursor is located. The cursor pointer is controlled by the
monitor program. The cursor position is changed by one of control codes $01~$06. See ASCII code.
table: FIGURE 2.22.

FIGURE 2.20 shows forms in which the character ‘““A” can be displayed control of the character

display control system.

Normal mode Reverse mode

40 characters/line ﬁ

80 characters/line

FIGURE 2.20 Character “A” displayed in various modes

t Some special characters, such as &, [H and © which indicate movement of cursor are displayed when a BASIC
program file generated by the Sharp MZ-80K personal computer is converted.’

27

L1l L1 [sewss_] ¥
° o o ° .
° oo o oo ° ° . o _eoe
e oo o e o oo | eocoe o0
o0 o oo . e o
° ° . . ° ece
ecoe 113 . °
°
¥ ¥ 1] L
. ° o o °
° L] ° ° . ° ° o0 o
. . eesecce . ° ° o oo
° ° ° o o ° 33
° ° ° e o o0 o
. eeoo . . o . H
T8 (117 [1111J 586 3
. ° ° °
° . ° * °
oo | | scecs | | ccces [
o ° . e o
° ° ° ° e o
eccoes sccce . e ece .
LY seee oo Iy
e o . o o .
oooooo . ° B ° sesee
° eeoe 00
es0ce ° ° o0
. . . .
. eee eee sece eoe | | seeee
3 3 10 6900 3
00 oo . e
o o o o e o e 00 o | | cocoe
(11) o o e o ® o ee ®
o o| | ecoose ° °
oo0e o ° g
. . oo . oo o oo
960008 sese! 3 0
e o e ° °
e o eooo . . (LTS ° °
. o060 ° ° ° ° ° °
e o | cecces .
o oo 3 . . o o
L (113 so0ce eeoo eeoe eco o
% 5% LI T ¥ L
e o e
. ° . .
) seoo: 1) e o | | escss ° .
e o ° . . °
°] .o . .
o o oo oo . (7]
Q 959988 1 3 L3
. . Chi] . .
0 ° . . eoe o .
. o0 ° o0 0 °
° 1 e o0 o °
. ° oo eee o .
. o0 . .. ° o0 oo
[YYY)
g L1113 3] T H °
. ° . e . ° .
. . ° ° o e _eee 3 °
. asee sescee o0 e o e o
. ° ° ° ° ° . oo
) . . ° . ° . ° o o
. 00, °

i w%ﬁﬁﬁ%
AL bl [B o B
ﬁiﬁﬁéﬁm E%Tg

°
B eee

3OO0
° o o
0 0 o o
OO

Note: U..... Upper 4 bits
Lases Lower 4 bits

8

BEUEORDEERERBEDNEEEHN
HERNNEOQNEEEEEBEEN

UPPER 4 BITS

7

AEEDEEEREHEREN® X RGN
l<jojolojujujolT—O]x] IIS]IZ]O|
of—lajolsjujol~jofol--J--f Il [~ Jo
BESOENCESSEGEEERNERN
X\« |® Ol £n 57 u e
2| [«][1][1][¢][®][@] o] HL ==
allo||e||n|+| 3] > || %[> N|~—||—|—~| Il
s || ®@||Ql| OO O 4|00 | L= [X||—|| E|| €|| O
a|(a]x||wn|[-|D][>][=]x][>]|IN]|/]m< |
Q||«|[m]|O]|0]|w||w|[w]|xZ|-]7]|x]|[1|=]|Z]|lo
O||—||N||M| <] [0 [©][IN]|00] |0 v A~ e
== | 13[4 (X |3 = | [~ 1~ 12 [L =L e N
L EEEEEE [L[

28

0
1
2
3
4
S
6
.
8
9
A
B
C
D
E
F

SLIE ¥ 43MOT

FIGURE 2.22 ASCII Codes of characters and control codes

29

2.3.2 Graphic display control system

FIGURE 2.23 shows an example of a projection of a three-dimensional object displayed using

BASIC graphic control statements. Refer to BASIC Language Manual.

FIGURE 2.23

Chapter 3

Option Device Installation

This chapter describes procedures for installing optional devices in the main cabinet of the MZ-
80B.

MZ-80RM Expansion Memory Module: 32K byte RAM card
MZ-80GM Graphic Memory I: 8K byte RAM card
MZ-80EU Expansion 1/O Port

These optional devices must be installed properly according to procedures explained in this

chapter.

Other optional devices are connected via the expansion /O port. General procedures and notes on

connecting optional devices via the expansion /O port are contained in the last part of this chapter.

32

3.1 Installation of optional devices in the main cabinet of MZ-80B

Optional devices which can be installed in the main cabinet of the MZ-80B are expansion memory
module MZ-80RM, graphic memory I MZ-80GM and expansion I/O port MZ-80EU.

FIGURE 3.1 shows the locations in which these devices are installed.

MZ-80RM

MZ-80EU
MZ-80GM

MZ-80GM

MZ-80RM

MZ-80EU

FIGURE 3.1

33

Before installing optional devices, the upper part of the MZ-80B, that is, the display and cassette
tape deck section must be removed.
First, turn the MZ-80B power switch off and pull the power plug out of the AC outlet. Remove

the two retaining screws on the rear side of the main cabinet. See FIGURE 3.2.

Retaining
screw
Retaining
screw

FIGURE 3.2

Gently lift the upper part of the main cabinet and support it with the supporting arm. See FIG-
URE 3.3.

Supporting arm

FIGURE 3.3

CAUTION: If the power is turned on with the upper part of the main cabinet lifted, electrical
parts may be damaged.
Metal articles remaining in the cabinet can cause serious trouble.

Ensure that no paper clips or other metallic articles fall into cabinet.

34

3.1.1 Installing the Expansion RAM

The 32K byte expansion RAM card, MZ-80RM, is inserted in the 20 pin connector on the CPU
board as shown in FIGURE 3.1. This connector is located on the right rear side of the CPU board as
viewed from the rear. The standard 32K byte RAM card is already installed beside the expansion RAM
connector. The connector pins on the bottom of the expansion RAM card can be inserted into the 20

pin connector on the CPU board.

The connector cannot be inserted backwards. Visually check orientation of the expansion RAM

card before inserting it. See FIGURE 3.4.

FIGURE 3.4

11

2.1 Initial program loading

All MZ-80B system software is supported by cassette tape or diskette files.

When the power switch of the MZ-80B is turned on, the Initial Program Loader (a file reading pro-
gram mandatory for activation of system software) starts. The loader reads the system software from
cassette tape or diskette files and, upon completion of loading, transfers system control to the loaded
program.

This action takes place automatically the instant the power switch of the MZ-80B is turned on.
Accordingly, in order to activate system software stored in a cassette tape file, you must load the
cassette tape recorder with the corresponding cassette before turning on the MZ-80B; to activate sys-
tem software stored in a diskette file, the corresponding diskette must be placed in drive No. 1 of the

floppy disk unit connected to the MZ-80B before the power is turned on.

2.1.1 Activating system software contained in a cassette tape file

Load the cassette tape into the cassette tape recorder and energize the MZ-80B. See FIGURE 2.3.

iy

Load the cassette tape into the MZ-80B
FIGURE 2.3

The MZ-80B searches and loads the system software automatically. In this state the following
messages are shown. See FIGURE 2 .4.

IPL is looking for a program IPL is loading

This message indicates that the MZ-80B is searching for This message indicates that loading of the BASIC inter-
the system software on the tape. preter is in progress.

FIGURE 2.4

12

FIGURE 2.5 shows that the loaded BASIC interpreter SB-5510 has been started.

#% MONITOR SB-1510 %x¥

BASIC interpreter SB-5518
Copyright 1981 by SHARP Corpe.

B —— N —

46088 Butes
gesdg

FIGURE 2.5 Message indicating that BASIC interpreter SB-5510 has been started
Subsequently, the cassette tape is automatically rewound.

2.1.2 Activating system software stored in a diskette file

Energize the floppy disk unit and place the master diskette in drive No. 1; energize the MZ-80B.
The MZ-80B loads the system software automatically.
After a few seconds, a message should appear indicating that DISK BASIC interpreter SB-6510

has been activated.

A special method of loading system programs from a ROM card connected to the expansion I/O port is possible. The
[PL of the MZ-80B enables system program loading in this manner; when the IPL is started with the ““/*’ (slash) key
depressed, it loads the program from the memory connected to the expansion I/O port.

13

2.1.3 General flow chart for Initial Program Loading

Initial Program Loading is normally accomplished by the above simple operation.

Individual operations needed to perform Initial Program Loading in special cases (for example,

when loading from a cassette tape file with the floppy disk unit connected to the MZ-80B; or when

loading from a drive other than drive No. 1) and measures to prevent errors are described later.

FIGURE 2.6 depicts the general flow chart for Initial Program Loading. Execution of Initial Pro-

gram Loading normally progresses as indicated by the solid line; however, manual operations may be

required depending upon conditions at the branchpoints.

Yes

| PowerSWON | IPL Reset-SW ON |
|
“C” Key?
* No
< FD Connection? >

No

LSET READY FOR CMT]

No

FF
FD Power-SW? 7 g
‘ON
< Diskette setting? >—NO—-—
Yes
SET READY FOR FD
L J
B
(/)

Tape setting? >
Yes

SELECT CMT OR FD
“C” key: Cassette tape
“F” key: Floppy diskette

.

=
Program search 1
& load “C” Key? >
‘ * No
) No No
< OBJECT Mode? > Program search “F” Key?
Yesl & load ‘ Yes
< Break }Y;ei
I DRIVE NO? (1-4)
No‘
Error Yes
No‘
Jump to the

loaded program

CMT : Cassette Magnetic Tape
FD : floppy disk Drive

FIGURE 2.6 General flow chart for IPL

14

To read system software from a cassette tape with the floppy disk unit connected to the MZ-80B
(or with the floppy disk interface card inserted in the I/O port of the MZ-80B), switch on the MZ-80B
while pressing the (cassette tape) key. (Loading control proceeds along flowline «.) Energizing
the MZ-80B without pressing the key drives the master diskette if it is contained in drive No. 1.
When drive No. 1 is inoperative, however, when branch point § is reached the MZ-80B asks whether
loading is to be made from cassette tape or a diskette. If the key is then pressed, the cassette tape

will undergo initial program loading.

If you intend to perform initial program loading from any drive other than drive No. 1, make drive
No. 1 inoperative before turning the power on. The drive can be made inoperative by not inserting a
diskette, by leaving its cover open or by switching it off.

Program loading will then proceed to branch point 8, at which time the system asks whether
cassette tape or diskette is specified. Press the [B (floppy diskette) key. The system further asks

which drive number is desired. Input the desired number by pressing the corresponding key.

When you must rewind the cassette tape before initial program loading, first initiate cassette-based
loading, then press the ' key. This will cause loading control to move to branch point §, causing
the tape to be rewound. When the tape is completely rewound, press the key.

Pressing the key before the tape is completely rewound causes the system to begin the file

search immediately.

When you must fast forward the tape, first initiate cassette-based loading, then press the
key. This will cause the tape to be rewound as described above. Press the key of the cassette
recorder to stop tape travel and press the (FF] key to fast forward. Interrupt tape travel again by
pressing the key, then press the key to start the file search.

Initial program loading does not provide for discrimination between program texts according to
file name. When loading from cassette tape the system reads the first OBJECT mode file it encounters.
If the system encounters any file other than one in the OBJECT mode, it displays the error message
“FILE MODE MISMATCH ERROR”.

The memory map and other references for initial program loading are given in item 3 of the Ap-
pendix. The assembly listing for the initial program loader is shown in the SUPPLEMENT.

The MZ-80B system can, of course, read (through IPL) any system software you have worked
out on the MONITOR SB-1510 or other systems. The MONITOR SB-1510 Reference Manual des-
cribes procedures for creating system software with the aid of MONITOR.

13

2.2 Keyboard

The keyboard of the MZ-80B is arranged as shown in Figure 2.7, and is divided into 5 areas accord-

ing to function.

cassette tape deck
special function keys cursor control keys control keys

EEEE R EE T ey
O EEEEEEIE D) (D)) @ () G0 @&
o

F HEEEEEEE= [EE
|3 2 2
HHEZ;UIHQQJ ;H JETEE] H
R SR (B

O
— :
&mu numeric pad

main keyboard

——

0~

H[[E
5 6
=

| <
o=

E4E S
Hv
B

FIGURE 2.7 Locations of 5 areas of the keyboard

The main keyboard (typewriter keyboard) conforms to ASCII standards and includes character

keys and control keys (such as the carriage return key and the break key).

The numeric pad is for entering numeric data and is similar to that of an ordinary electronic

calculator.

The ten blue keys in the upper left are keys whose functions are defined by the user.

The four yellow keys in the upper center are cursor control keys, and the four green keys in the

upper right are cassette tape deck control keys.

The functions of each element of the keyboard are explained in the following pages.

16

2.2.1 Main keyboard

The main keyboard is operated in a manner similar to that of an ordinary typewriter. One differ-
ence is that the main keyboard has three operating modes; another is that several control keys are

provided (the stippled keys in Figure 2.8 are the control keys).

|

| 2

- =
(e) (2] (k] (Fa) (Fs) (Fe) (F7) (k8] (F9] (Fro] (rew) (Fr) (sToP) [EsECT)

3= CEIEE]
: el
ojooj@

7

FIGURE 2.8 Main keyboard and its control keys

Three operation modes are as follows:

[1] Normal mode
[2] Graphic mode

[3] Reverse mode
Some of these keys produce different characters according to operation mode, as shown in
Figure 2.9. Except under special circumstances, characters input from the main keyboard are dis-

played on the screen in the position where cursor is located.

reverse mode

normal mode

B : hold down

hold down ; b

graphic mode

FIGURE 2.9 Different characters of a key

17

The functions of the control keys which are independent of operation mode are explained below.

SHIFT

C

INST
DEL

=
SFT LOCK

- I

Similar to the shift key of an ordinary typewriter; when this key is depressed, the char-

acter keys and some of the control keys are shifted.

: Carriage return key. When pressed, the cursor moves to the beginning of the following

line.

CR: Abbreviation for carriage return.

: HOME returns the cursor to the upper left hand corner of the display screen. CLR

clears the display screen and also returns the cursor to the screen’s upper left hand

corner.
CLR: clear

: DEL erases the character at the left of the cursor location, shifting all following charac-

ters of the string to the left one space. INST inserts a space where the cursor is located
by shifting all following characters of the string to the right one space.
DEL: delete, INST: insert

Shift lock key. When this key is pressed with the key depressed, the

key is locked. When the key is locked, lamp lights. Press-

ing this key again without pressing the key releases the shift lock.
SFT LOCK: shift lock

: With this key depressed the character keys which have graphic characters produce these

graphic characters. If this key is pressed with the key depressed, the graphic
mode is entered and locked, and the key lamp lights.
GRPH: graphic

With this key depressed the character keys produce reversed characters. If this key
key is pressed with the key depressed, the reverse mode is entered and
locked, and the [fvs| key lamp lights.

RVS: reverse

When this key is pressed, a break code is generated. Pressing this key halts execution of

BASIC programs.

: Tabulation control key.

TAB: tabulation

18

[1] Normal mode

e e s e | O
EEEEEEEEEE D) @ () 66 6

EREEEEEEEREEERE] [EEEE
2 2 e 2 2 2 21
IS5 3 1 A 3 3 | ESm I2 B
E FyXiHHi;EEWW |22
SFT LOCK key = W g

lamp
FIGURE 2.10 Locations of some keys

When the BASIC interpreter or another system program is started, keyboard operation is automat-
ically set in the normal mode. Alphanumeric characters and symbols are input in the normal mode.
For example, to input a B, press the key (See Figure 2.10)in the same manner as on an ordinary
typewriter. Note that the letter keys normally produce cépital letters. To enter lower case letters, hold
down the key then press the letter key - just the opposite of an ordinary typewriter.

The reason for this is that capital letters are generally easier to read on the screen, so most people
prefer to write their programs in capital letters. When a key has two non-alphabetic symbols on it,
such as (above the @ key. See Figure 2.10.), pressing the key alone enters “8”. If you hold

down the key while pressing , “(” will be entered. Only the 26 letter keys are shifted
in the opposite direction from a standard typewriter.¥

The key locks the key so that it does not need to be held down. When the
key is locked, the lamp (See Figure 2.10) lights and pressing the key inputs

“b”. Characters and symbols which can be input in the normal mode correspond to ASCII codes 20H
to 7EH. (See Figure 2.22, ASCII code table.)

1t The BASIC interpreter SB-5510 and DISK BASIC interpreter SB-6510 are provided with the CHANGE statement.
With this statement, the shift direction of the 26 alphabetic characters, A to Z, entered from the keyboard can be
changed.

43

4.2.2 Memory map for normal state

When the machine shifts from the IPL state to the normal state, the memory map becomes as
shown in FIGURE 4.3.

Address
$0000
RAM (1)
32k bytes
$7FFF
$8000
RAM (II)
32k bytes
(expansion area)
$FFFF

FIGURE 4.3 Memory map for normal state

In the case of the 32 k bytes standard RAM, the addresses range from $0000 to $7FFF;in the case
of RAM 64 k bytes full equipment, the address space will be full area of $0000 to $FFFF.
When addresses are changed from IPL state to normal state or vice versa, the execution is control-

led by C,, C; output terminal signals of port C of the 8255 as described later.

44

4.2.3 Memory map for V-RAM accessing state

The memory addresses are changed over also when accessing the V-RAM. The RAM addresses in
normal state are from $0000 to $7FFF for RAM (I), and from $8000 to $FFFF for RAM (II). In the
case of V-RAM access, addressing of $D000 to $FFFF in RAM (1) is disabled, so that the V-RAM will
be the object of access.

This changeover is effected by A, of PIO. When two pages of graphic V-RAM are used, selection
of graphic pages (I) and (II) will be done by OUT port $F4. This operation is shown in FIGURE 4.4.

Address
$0000
RAM I Adr.
$7FFF
$8000
RAM II
(Option) Adr
WEEEE k/ Switching by PIO A,
$D000 T ' V-RAM ‘
RAM I Adr. Adr.
$DFEF Character k /Switching by OUT port $F4
$E000 V-RAM V-RAM
RAM 1I Adr. Graphic I Adr. Graphic I | Adr.
$FFFF . (Option) f (Option)
Page 1 Page 2

FIGURE 4.4 Switching of main memory and V-RAM (1)

The address switching of V-RAM shown above is effected by the monitor subroutine PRINT or the
like.

45

On the other hand, when accessing the V-RAM with the program in main memory following
$D000, the V-RAM addresses may be changed to $5000 to $ 7FFF, which is realized by setting the A4

terminal of PIO to high state.
That is, the following instructions are executed. (At this time, the A, terminal of PIO may be

either high or low state.)

IN A, (E8H)
SET 6, A
OUT (E8H), A

This address switching is shown in FIGURE 4.5.

Address
$0000

RAM I Adr.

$4FFF /Switching by PIO Ag
$5000 T TR
$SFFF RAMI |Adr Character | Adr- o Switching by OUT port $F4
$6000 VRAM TP

RAM I Adr. Graphic I Adr. Graphic I Adr.
$7FFF (Option) | / (Option)

l l /v]
) Page 1 Page 2

$8000

RAM I

(Option) e
$FFFF

FIGURE 4.5 Switching of main memory and V-RAM (2)

46

The relation between the V-RAM output and CRT display is shown in FIGURE 4.6.

Address Address Address
$D000 V.RAM $E000 $E000
($$]§§)gg) i (86000) VRAM (36000) —
($57CF) Graphic I Graphic II
$FF3F $FF3F
(S7F3F) La ($7F3F) l,
(* Switching by OUT port $F4 (
CRI
Display

FIGURE 4.6 Relation between V-RAM and CRT display.

As shown in the figure, the V-RAM characters and graphic (I) or (I) can be displayed simultane-

ously.

The relation between the V-RAM addresses and corresponding positions on the CRT display is

shown in FIGURE 4.7.

m V-RAM characters

$D000 $D027 $D000 $DO4F
($5000) (85027) ($5000) ($504F)
25 lines 25 lines
$D3CO $D3E7 $D780 $D7CF
($53C0) ($53E7) ($5780) ($57CF)
40 characters 80 characters
m V-RAM graphic
NOTE
$E000 $E027 The addresses when V-RAM
($6000) (86027) addresses are set in $5000 ~
200 dots $7FFF mode are shown in
parentheses.
$FF18 $FF3F
($7F18) ($7F3F)

320 dots

FIGURE 4.7 V-RAM addresses and CRT display

47

The input and output of V-RAM for graphic can be controlled as follows by means of the data
delivered to the OUT port $F4.

Output data V-RAM GRPH I V-RAM GRPH 1II

to port $F4 Input Output Input Output
00 Q X X X
01 X X X
02 O O X X
03 X (®) O X
0oC O X X O
0D X X O O
OE @) @) X O
OF X O O 'e)

Note Input O: V-RAM transfer enabled
X': V-RAM transfer disabled
Output O: shown on CRT display
X : not shown on CRT display

Suppose 03H is delivered to $F4 port with 01H being stored in $E000, then O1H is transferred to
V-RAM G-II $E000, but not shown on CRT display because the display indicator is set at V-RAM G-I.

48

4.3 Signal system for the 8255 block, the 8253 block and the PIO
block

In this paragraph, the constitutions signal systems for the 8255 block, the 8253 block and the PIO
block — which are responsible for essential roles in the system control — are illustrated.
Before description of each section, below are shown the settings of the 8255, 8253 and PIO in the

input/output ports, and also summarized are the service modes of the port of each controller.

Table 4.2
CPU’s .
Controller Service mode of each port
Input/Output port
$EO Pa : output
$E1 Ps : input
8255
$E2 Pc : output
$E3 mode control
$E4 Co, : mode 2 (16 bit rate generator)
SES 8253 C, : mode 2 (16 bit rate generator)
SE6 C, : mode 2 (16 bit rate generator)
SE7 mode control
$ES8 A : output mode 3 (bit control)
E9 mode control A
5 Z80A-P1IO)
SEA B : input mode 3 (bit control)
$EB mode control B

49

4.3.1 Signal system for the 8255 block

The 8255 (Programmable peripheral interface) is responsible for control of automatic cassette
deck, reverse operation of CRT display, blank control, memory switching between IPL state and nor-
mal state, output control of source pulse for generating sound, and lighting control of keyboard LEDs.

FIGURE 4.8 summarizes the signal system for the 8255.

Keyboard
RVS
LED
GRPH
SFT LOCK =
PA,
Cassette control PA,
PA, D, 8
PA, e . -
STOP |« PA, D,
PLAY [« PA,
FF. REW ready [« PA,
MOTOR ON PA,
Al -
Afe—m—
Write data PC, 0
RD/WR PC,
FF. REW latch PC, s
EJECT I;((Z:4 g ——————
l——————————————
PC. WR
Read data PC, RESET[*—
Set ready PC, -y
Pawl provided/not csp
» PB,
PB,
Display /Sound s ;gs
Control id PB:
-+ PB,
REVERSE [« —1 PB,
Compulsory-BLANK PB,
V-BLANK +5V GND
SOUND GATE 1 T
SEL MEMORY [e —
BOOT/NORMAL | =

PIO B,

FIGURE 4.8 Signal system for the 8255 block

50

The control contents of each port are listed below:

Table 4.3
Port A
Port)
terminal Active Control function
PA, H Lights up LED for
PA, H Lights up LED for
PA, H Lights up LED for
PA, L Reverses B/W of entire display screen.
PA, H Stops cassette operation.
PA, H Plays cassette.
PA, H Makes ready for FF state (makes ready for REW with L).
PA, H Reel motor ON.
Port B
Port) .
terminal Active Control function
PB, H Detects break key while playing cassette.
PB¢ Cassette reading data.
PB; L Cassette being set.
PB, L Applies pawl for prohibiting writing of cassette tape.
PB;
PB, Reserve input ports.
PB,
PB, H Blanking period of display.
Port C
Port .
terminal Active Control function
PC, Data to be written into cassette.
PC, H Head amp setting to READ state (WRITE with L).
PC; H Latches ready state for FF and REW.
PC, L Eject operation.
PC, L IPL starts.
PC, Source pulse output for generating sound.
PC, H Sets memory in normal state, starting $0000.
PC, H Forces display to be blank.

51

4.3.2 Signal system for the 8253 block

The 8253 (programmable interval timer) works as built-in clock with its counters #0, #1 and #2.

These counters are used as mode 2: rate generators, and are all 16-bit binary counters.

Counter #0 counts input pulses of 31.25 kHz, and delivers a pulse to OUT 0 every one second;
counter #1 counts its output pulses, and delivers a pulse to OUT 1 every 12 hours; counter #2 counts

its output pulses, and repeats 0 and 1, thus working as AM/PM flag. See FIGURE 4.9.

8253
OUT 2
Counter GATE 2
#2
CLK 2
12 hours
OUT 1
8 D, COUteT GATE 1 f——
g D, CLK 1 |«
1 second
OuTO
Coq‘;gter GATE O fe———
CLK O f&——— 31.25kHz

FIGURE 4.9 Signal system for the 8253 block

52

4.3.3 Signal system for the Z80A-PIO block

The Z80A-PIO (Parallel Input/Output interface controller) is responsible for output of strobe

signal for keyboard scan, input of key data, operation to set key strobe to low level, address switching

for V-RAM, and output of 40/80 character mode selection control signal.
FIGURE 4.10 summarizes the signal system for the Z80OA-PIO.

Key data
input terminal
8 ports

Port B
handshake

Key strobe
output terminal
12 ports

Port A
handshake

SEL V-RAM ADR <+———-
SEL V-RAM ADR @<+———
SEL 40CHR/80CHR <-———————

IL

PIO
D7
B, ?
~ B, D,
= Bs
B4
BS
- B B/A SEL
_| B C/D SEL
B,
B RDY
B STB [ORQ
RD
A ——
X =
A, M1
A4
AS
154 A,
Al
AO
ARDY IEI
ASTB IEO
INT
®+5V GND

8
-~ Data bus
A N
< A,
- PIO control
P
—(=
—< RESET
H—AN\——0 +5V
> Interrupt
control
} m
EXINT

FIGURE 4.10 Signal system for the PIO

53

The control contents of each port are listed below :

Port A

Port
terminal

Active

Control function

&tz =2 =

Switches addresses $D000-$FFFF to V-RAM.
Set addresses of V-RAM apparently to $50000-$7FFF.
Changes screen to 80-character mode (L: 40-character mode).

Turn all key strobe signals to L.

Outputs of strobe signals for keyboard scan.

Port B

Port
terminal

Active

Control function

> Data inputs for keyboard scan.

54

The relation between the strobe signals and bit data in keyboard scan is shown in Table 4.5.

Strobe signals are delivered to four terminals (A3, A,, Aq, Ag), and are fed into the demultiplexer
154, then delivered to 12 terminals of strobe inputs of keyboard. Keys are discriminated by strobe
signals and key data.

For instance, when the strobe is ‘6H’ and key data ‘FFH’, then it is found that key ‘S’ is being

depressed.

Table 4.5 Key scanning strobe signals and bit data

E |[MODE| 0 1 2 3 4 5 6 v
STROB
F, F, F, F, F, F, F, F, 0
0
Fg Flo 8 9 OO - + —_— 1
1
0 1 2 3 4 3 6 7 ;)
1
TAB |(SP) 3
« a b c d e f g
/A B |c |p E Fl |G 4
)] e Y Y« = £
h i j k 1 m n o]
H I 1P |k L M® O IN o 5
3 —IT F — ;E q]: £ o Al
PP QY IREY s [Tl juld v [wi™ 6
3 - = H H H H | + q
o Y 2 -~ L] e [T Bd <
Xia |YH |2k SV TR = LB 7
ol 111" [2 13 [4|® |5/% |6|® |7| 8
4 () * ¥ - \
2 s 9 : _ @ Ak 9
=B |CLR INST
1| 3 § A
5 e
SPCL |GRPH IsFT Lock|SHIFT |RVS B

55

= For key interruption

In the MZ-80B, as stated above, key interrupt can be received by the PIO control. Illustrated

below are examples of setting of simple key interrupt and response.

Try to program the machine so that the interrupt process routine $5080 is called the moment the

key is pressed. In this programming the address table of this interrupt process routine is set to

$3370 and the vector interrupt of interrupt mode 2 is used. Also, the PIO is set to mode 3 and no

handshake bus is used.
As shown in Table 4.5, the key is, in key scanning, detected by strobe signal 3H and bit
data 7 (7FH). Therefore, the strobe signal must be set at 3H, and the interrupt mask must be program-

med in 7FH. It is also necessary to set the interrupt vector lower 8-bit (LSB being ‘0’) data 70H.

The setting codes used so far are as follows:

LD
LD
IM
LD
LD
LD
ouT
LD
ouT
LD
ouT
LD
ouT
LD
ouT
IN
AND
OR
ouT

A, 33H

Setting of vector register
I, A
2 }Setting of interrupt mode 2
HL, 5080H }Setting the address of interrupt process routine in the interrupt address
(3370H), HL)table
A, 70H

Setting of interrupt vector (lower 8 bits)
(EBH), A
A, CFH

Setting port B to mode 3
(EBH), A
A, FFH

}Handling all port B as input

(EBH), A
A, 97H)

Setting of interrupt control words, or enabling interrupt
(EBH), A
A, 7FH }Setting of mask words; bit data 7 (MSB being ‘L’) is masked by writing
(EBH), A 7FH
A, (E8H)
EOH Of the data delivered to port A, key strobe is set to 3H. The strobe gate
13H is opened with A4 set at ‘H’
(ESH), A

After the mode setting above, when the key is pushed at an arbitrary point, the $3370 is

referenced by vector interrupt, and the interrupt process routine $5080 is called.

The instruction to return, after terminating the interrupt process routine, to the program being

executed before interruption is RETI.

56

4.4 The MZ-80B circuit diagrams

This section includes all MZ-80B circuit diagrams for reference. These diagrams are arranged as

follows;

(1) CPU board, block 1 : CPU signal system
(2) CPU board, block 2
(3) CPU board, block 3 : 8255 and PIO signal system
(4) CPU board, block 4 : RAM signal system
(5) CPU board, block 5
6) CRT display control
(7) Cassette tape deck control
(8) Power supply
(9) Graphic Memory 1 card (optional)

(10) Expansion I/O port (optional)

(11) Graphic Memory 2 card (optional)

T 39019 ‘pIeoq NdD Iy TANDIA

wsAs 1eusIs NgD

R7 RO RN R3 Q
i ar
o [ic3 1S 11
szszszm LHOOBOA (2-804) | Us2as
27 s _— T77 77 DIR
DSPA —_—
“Hoseao BUFG [EXWAIT 2 5Uska o7 —a Bl — w07
DsP Als [NMi 17 | 10 s 15
21cSED A _ ol Es s 4 e wge
=
244 50D Al - INT < 1 >z 2 I8 P
BLNK =——21BLNK Hie EXINT L] i 04 [~ : e o
-
[} ~—22romes warT |2 ic17 2] e, g3 N m D3
= 2 jcsw ExwarT - (sR8! DZ ||s o i bz
= St b
i T: RASO RFSA[= o; P 2 o
’ 5 Fr=r=al £ Do
= ol ires pasn :
Ic 32 ic 32 P sy = [}
L604 e D o ~—1rAs3 RD
16 —_ 2
—_— i ” . . ” s 21BUFGM i
(Ic 23) K e 9 MRAM ¢
(c23)]
ic34
RES Ls74
BST ——
(ic23)
Ic7
ice
Lsane Ls244
CN3 Ic26 Ic32 e RESET P 18 2
L aw & e | Ls1a Lsoa 1c33 1c33 RESEN z__:sE: " 4——2‘:“@4 A [P— A
IPL Lsoo S00) 13] e
BOOT RESET| () i3 i2 5 i ioRa 4 s N P 2 il
J_ - s 2 e iORQ Ans L S
®_ cse c55 . RESER B < - L R_D Az 2 £ (3
o
(RESET) .wI &5 R 3 I 22 o = Arz
RESET e Ic5 A 7 : WR An = Ap
Lso4 M L kad e Ao J 2 18 -
AALT s 13] ey As P17 3 A"’
BUSO L] I ne P15 s A’
R
i 26 ic 26
1 19|
EXRESET m——"y Ic 32 g
ic5 Ic5
= Lsoa LS04 i
M1 o — Ssoo
RAMWR =———=0< I——o< I»—
4 &
ics i€ 10
ics Ls04 Ls244
PIO ¢ o<} LE0%
12 3 37 17]
[A7 = = P a7
5
AB 35 2| 18 o
am i 10 As —™As
Aq P2 L E—
S o A4
Ics Az > e A3
LS04 s |
- G 31 13 7 els
26| sEsET ok 30 1" 5 Al
Ao P———— Ao
26

I

MZ-80B (I)

LS

58

(2) 808-ZIN

R oy ey ey W) sy P oA o gyeyiyoy
of o o o 4 ool o ff o[uda ol of ¢ o 4
ﬁ. ar v al v Gl v
s17 2501 =1° 5187 BED! .F.e 25187 6821
s x s A s x
W_ T M T _ EEEE
aas>
80871
Seol aNo ¢
8| 45187
YL .9[. East] L \
e
ERCTS i
H
AS + L)
I Fl
yml 3
Qa3so a
1n09 2
s
fino v
ol o elsdel {ddododdd
30 OND Oy oy 1y 0 5y vy Y 2V 19 OF 2881 SIND
9102 191
SE21 3m)
son og 1070 sq +050 50 40 |
vz | of DEEEK J
svzs
zzol
oaspoe s w oty
2o
2v ol o] 2| o] | ¢ 5| 2| I|s2fze] 6 oz |
Vo & 5 4 VIV 2Y SV Yy SV 9V LV BV 6V OV WOd §O
=] o i n_ By X oLz wvol
= E o
3 T T ! G 10200 ¥0 0 90 40
ANg —{ve - - CEEEEEEE
#18A S{ANIEA - o =
W = Wy
0sn
ool
P 3uv W[- ; ={ e
Ws
= 7 g o
$21 HI8H
e of— 11 & i ssis1
: g aozz so5s a0l i
555 b B
[i I
v 9| < R
T g 7 3 w07
o El 0081 093 0087 0S1
bIND ovdl ovol ordl
ps " g el g2 =
By wz Welv0sT +0S7
Az + \I._.|A L) S—— e Sl o a5
avo| @1) pird
ans | & o " g Daloe e, w<Jm
A g
.Munz 21 & wos wo T
Ncids 1 Nuuzz 3. o 1nos 1noo .mm o5
9E ! 3] 03914 HSZTIE 7 xy 0BHO [- AN—
cxo P
ol EH

FIGURE 4.12 CPU board, block 2

59

(¢)g08-ZW

2| 131 Ell i 'z
- b g
2 BN A
orno i
3
27
o 2| ik O
Yy =8 M
Ol 3 i i
udor 2191 | N v =])
ol
5081 v081
8201 8201 szl
1353y -
] W
"W =
8051
o5
: 8 I N S I I
ay oy | EREIELREEEE
ool = owol |
$old = § _
oge s0s1[* eos[* 60s7|" 6087[° 60871(® 60571[° s081[" 6081[* 6087(® €087 087!
w L 2221 2221 £201 2201 0821 021 021 0£21. 6221 620 8221
As+ .
ay oo als _\III_ © 0 @ © © [0) _
v 3 | 1nNo
2 o |
B2 i
6ND |
|
|
B =] %9 @z
a = 10 03
«a T %9 &
a] 0 3
¥g &5 A 3
=Q Wi ad &3
sa P E
#a; z| 4 @
x] 32
G L s
T omvimoom
b20l I EEF T FE T
wonor
Svu

vivam
vivo ¥
Nado

ETTETS
AQv3Y M
AQu3y L
218
e
WNd
dols

2wvon
158
wee
o
awnos
158
5081 ,
5201 PG Cpe— .
Id e s s21E
24 | Y
£d i
o ovf ov
) v v
= I1r = 0
-] i ol
sy W
As+
5 w8 B o
i PO p— iofe——e 12 —
20f———e
2ol i ol w 529
7Y T o
7'v 5 i
® v = <a
0 Jew 2 sa
o B
ELE) [—
0! ™Y
ot sty
® i
sy
Jiis e = 4 -3 0 v
% 5
& Vi v
s
A
@.‘.ﬂ i ssze z051
€201 et

|-
z
3

8255 and PIO signal system

FIGURE 4.13 CPU board, block 3

60

WY /() 808 -ZIN

® —

W sve sw % w8 S 2 EXgEH p s s —
L 1) Wy (1) wyy) woy (Al Wy
5 =
. 20 sa 1 [sa sa
(1 wvy ") wey _ _ wWod
3 B L

[T T TTIIIT] __:______” of T T T ITTTIT]
JA 1) wey () Wy *
[T T JTTTTTTT [T T TTTTTTI [T T TTTITT]

+]] va
(1 Wvy i) Wy Wry

[T [TTTITTI L LT TTIIIIT

E

) Wy L1 wyy
7

[I TTTTTIT

[
1

[T ITTITTT

(A1) Wy

[

[T TTTTIT] [T T TTII1T]

[{IBT) (A Wy

[T [TIIIIT] [T [ITIIIT]

[T T TTTIIT] [[T [ITIIIT

a
i
T
= za
hwWvy)y wey

[T T ITTTTT] [T [TTTITT] [T [[TITTTT [T T TTTTTTT
10 ia o 1o
Wy (nywva (A Wy
[T T TTITTIT [T T [TITTT] [T T [TTTT1T [T T JTTITTT
oa 0a oa 0a
"o sl (DWvH " sy (NWvY sity z,“ Siy (A Wy
| 2w sva svo T am svy swo m sws swo 3 SYd SyD vy ey ey ivoy

I EEEEEE [BEEEEEEE

EREEN

©OOOO000 —

(zon
Wo4ng

—Gseos oo soo
il

|
A
4
>
o

5 s EpEpEgn
4
B L % A2l AS- AS+ ONO
a E v
sa g
va N_ T
€ m
2 gl
'a o
g _
E £ SV
vvzsT z sy
191 e
o sy
= umwvy
21
>0
5081
2101
2 o ol s wf sf o] of
N 35 1090 5073 £ 2q 1G °q v
siez/oz 8l = $2 WOy
O\ ddA OV IV 2V £V »Y SV SV LV BV eVaY 1| 6| 2| 21| v s 2 2] v ne o
] [EEEEEEEEEE 3 Iy AT
L8518 121 SI1o1
AS+ [v |
7] T

1

L]

YAy Iy oy ey BY v S SV WY £V 2y 1V OV

RAM signal system

FIGURE 4.14 CPU board, block 4

61

CN5 —=—MZ -80GM

CN4,5 40P
I Al5 2 Al4
3 Al3 4 Al2
5 All 6 Al0
7 A9 5 A8
9 GND 10 A7
Il A6 12 A5
13 A4 14 A3
15 A2 16 Al
g Ao 18| GND
19 D7 20 D6
21 DS 22 D4
23| D3 24 D2
25| DI 26 DO
27| GND 28| NMT
29 |EX WAIT | 30| EX INT
3|1 |EX RESET | 32| RESET
33| IEO 34| HALT
35| MREQ 36| TOREQ
37| RD 38| WR
39| M™MT 40| BUS®
;5v O|-sv
tiav 0 +i2v O
_*5v ~|#5V L =
+ |+ |+]
z =z =2 =,
,GND 'e GND o) D

FIGURE 4.15 CPU board, block 5

To MZ-80EU

[o11u00 AR[dSIp [¥D 91y AUNOIA

Sound
input

Sync

Video

GND

+l2v

80B DISPLAY SECTION _ _ -
R205! - c2052
12
Jvl'A C2051
Q2002 +c2045 47)/18V
R2003Z 25CI514 1000716V F2053 i
R2007 = C2047 -
500K (B) oo ki ﬁiggg
RVR-MOO36|PA R2052< I 330/
100K = & vs|Poosop-i6YA
R2008 R2050 320hm
Lzsox(s) |0K(A) J) @ @ ©® 6 O
= -
R20|06 < t €205
Q2|ool 1.2K BRI[GHTNESS|TA - W @ 2 @ 2 a7 op/resv
2s|Cc1213© {aw) 12002
b Hl P
P c2046 c2048 RH-1X0243PA
y p203 ¥ = < 220 /16|01 Y
R20(05 151555 =
120 Q2003 2SA673© R2/009 c2054
R2013 or 2SA495(Y) R2017 22/0K lopr]2:
3.3(1/2W) 1.5(1/2W)
¢ S "";";'56 @j oup/soov
i+ .033 c2008 < < R
R2014 c2007 > = -—
62005 27K R2016 4.7/25v 220pi0v 3 = feg
1000/ 2K H
1ev e L R2018
1.5 :>
(172w) = ,///
DOOOEEVEOO | | | ol ot
<. 390 c2017 (©F ooao
Sok() ¢ - Ty oprsy v @ 000 272883
tioth ‘ €2009 12001 M70|04|TA = ooao
Rl O PP RH-IX00I5T)
it -l " ®]| @ N\
5] RCILH4070TA XX
R2020 R2022 C2013 +,°p2,3'2\, @__ E200rIs, ::RZO e L|200I
15K 12K 47/28V Br ot ceoi4 czo =>'K RC|ILZ|005 p
—H- 22p/16V @22% 6v([m) T =(H -_— 2 D, —
2004 r I
a|700p/| ca0T 232 R2024 S |
o _00331. R202 = RC-EZ0029|TA
R2025 R2055 C2086 R2026 i
& 20K(B) 2.2K(2W) olu/zoov 330 @ -
R2021 Hooks V-SIZE c20[42
330 o003 68K N7052TA '°°P .ow/|soov
IN34A I €2040
R2041 y A{rpesy
czo18 >c2023 56 (1/2W) Dzora
015 "ol RH-DX0[043
—lf c2031 7
Srz03i I 033 Q2008 Q " ozon 1380
Ses RH-DXO00|
R2026 neped N | (202SCe8IA|R
.047 G o S |
czo-e]rozoos) Q2004 l l = =D2006 |
.015 IN34A g ! 2SA6730 o - Vst llc,zz%%ﬂ’, R2046
ERGE R203002021<,R2033 SR2039 ¢ 25A495Y '06&,200\,1 RH-DX0039TA g
vosc 8.2 3.9k
»le C2034 C2035 -
4B oY 92534 ;38?7‘11\ .022/200V 0I8/200V o0~ - _j ook N
33 ﬁ)zg/zlgv §§042 = 220/16V T2002 RH—-DX0062CE 22|op/100V|
= >R2043
IK RCILBOO3ITA (172W) 33(1/2W) RTRNF20ISTA D2008 i
€2020 RH-0X0043TA
220)/16V R2044 i
47K
(KU)
QPWBF 0324PAZZ
- - —

4%

63

+5v
= CASSETTE CONTROL
RY1 (42,9
_“%9""‘-_2‘2‘6’_ F==n J3006-1
—o e NS.+ 2V
| csoo:s
| LOAD oft +5v 100,
R] | S| (snve ON) D3i04 R31I6
“ 151555 I0KG T
ot AN J3006-2
A + GND
+5v % C3105
R3105
220K 03102 ary
Rk R3121 = ZR3IS R3109 R3I08 J3006-3
ERASE (> R3113 566 = ZI0KG 10k = +5v
HEAD X© c3106 150K IC3102 €3025!
o i csior LM324 3/4 100y
X
R3N2 12 L W
Ic3102 15K L raus 30064
- 10K
REC/PB o oy CMS28 178 ic3102 Frana ic3i01 S.+iav
HEAD 22 LM324 2/4 m2.2K 75452 2/2
A‘.'.I Vv
+ R318 R3UT
icsloa R3120 = 10KG 2MG
22p 5.6KGS
™
ic3io1
RDATA 75452 172
cN3003-1
NS.+12V0
HoL.
S
e Q3012 cN3003-2
13001 Q3014 25c2562Y
1€3008 06 clesoy
Lsi2i Stla2v Gav- FF_oft
IC3004 RY3 REV ON
LS32 1c3002 g G
o LS08 +-20
8 10 D3003
K .RAlUO] 8 151586
=IoK ij > 9
3
13 " o U) (S
2 s o Ic3007 c3024
IC3004 T LsH
532 12| d
A 5
Wy Tk ¢ 0 R3029
L 5 . P
€3007,
1000P
J3005-9
1IC3005 J3005-8
LS08 Q3007
2 5 5 C3736T™M
6
| : e
3 ale
CK c Q
' ic3o11
sia Ic3001 |
+5v 06
s e
Ic3009 R3934 |
R3ais 2o 06 ‘Mz
J3003-8 e 11 P sle i 10
BLK2 o
c3or7 i E +5v a3
wor T Gsra #3001 cigssy
39K
NS.+ 12V W b3004
- 151885
i3 (c3006 1c3009
Lsi23 06 R3030 =
+5v 4 3{ > ol J3005-3
Q3 BRKL
I RaoRe ci9seY |
3005-4
4.
IC3009 R3045,
R3012 2f, P o5 06 aKZ Q3020
J3003-1 JE2Oi 3 s . 3 2587610
PNL W K ‘i ~>o
e it €300 £S5y Q3022
R3019 '°°°PI Ls74 caoie 303008 CI959Y
J3003-6 o a7y Negav 03005 !
WREAUY; 15V o] 4]z Yo
J3004-3 4 &
A 1C3006 1IC3009 R3042L R304|
J3004-2 R3[002: LSI23 06 82K 2.2K Q3o0i9
J3004-4 LS 25B762P
e ol alz 13 12 Jsoos-sw
J3003-11 focen 2 |
P [rsc0s P 13005 Qz02| s.+i2v BhGL
300: I Lsos J cissoy 43005-6
Ic3004 Ic300I g 1C3009 R3031 |
Ls32 06 06 10K S Q301
4 1 2sB760Q
+5v 163005 —'.Do_z__ J3005-1]
1K
o RA3004 oM
sToP RA3012 cosgggm 270x6 15V
—t e leso02 RA3003 b 430052)
S il Lsos . 8.2Kx4 |
,L J3001-2 s
sToP SR icaoor PV = J3002-1
R TS0 —
J3003-7, 3 s L
1
5| J3002-2
e IC3003 Q3003 FF
LS08 C373GTM
J3002-3
"
5
I CN300I-|
IC3003 Q3002 SAVE
12 2 I1C3001 Lsos C373GT™
06 LED
13010 Ic3010 | 3
LSI23 ri007S LSI23 CN3001-2
L___ L] C3003 Q3001
SRRBET +5V +5v LSo8 C3736TM CN300I-3,

FIGURE 4.17 Cassette tape deck control

J3003-5 WHITE

Addns 1amog g1'H AANDIA

r9

POWER
FILTER PWB TRANSFORMER POWER PWB o
ar 7
| I TioL ! |
1 I 3 |c20l 2
FS-7905
L] 3 3 R201
c20 > R20
Liol l I 2200p/16v |+ T C202 100710+ J 470
O.lp
:&KEJ | | ¢12V)
AC220V | L asol Q302 L301
== —_—— €301~C302 o
P 7'660‘\ cloz| | | |_ 1 3300p/35Vx2 F301 2887770 asa-e7ac zooor
0.1047y | T
(F250v| | c303
| l D302,0303 0.0014 + L
‘ °€* - i K Tonl =
& J| T -)|I| 2 3300/16V | T paog
__________ | (2 > 15K
') L] —
| l | s2VBI0 o T
|] | 12w 16 I5 14 13 12 11 10 9 YR30l
| } | s 1C301 SG-3524N =
R30I
I | 4.7K I 2 3 4 5 6 7 8)
[,J
\ | I i [< :E
=2 <
| I < c3loe <" R304 R307
R302 R3032 T=00|i8 56K 33K
| |1 %4.7»(2.7K g TF-SO L
| l:
| l | 20 A
| | 040| 25A—770 haoE caoe/ 3
| 4 cail %
O 00|
: ; | Clao6
001 .
' l " cao 2
| . 2 S _6800p/10V | R40D
' 27kY q|402
[T L] C40I~C404 c407 - b
| 47001725V x4 sy TEAE *¢ zsa-e73c |psoz
b | OO0 1 u < R405 ESACB2-004
| 0].0033u 2 2.7K or S|0SC4M
c408
| o0.1p/12V
| "—"—T_I 1»—1 T ’—q
: ‘L 16 15 14 13 12 () 10 9
<
R40|<> - < vRralol
| Raol< (C40l SG-3524N =z
| I 2 3 4 5 6 7 8
, o L. | |)
| < calos < 56K ‘7?409
| Towe | ok i = 3.9K
|
[

65

To CPU aomo) Ics Ic7 Ic6 ics Ico
CN5 40P LS |57 LSI57 LS157 LSI57 LS 42
CNI SOP s
| 2 Gl
o — 13]
Ge >
3| — [a] A 3
5| A |6] A a8
Ga e
7| As [8]| as
9| enD |IOf A7
11| Aas |12] as la - sl I
13] a4 [1a] a3 iz 1 12
1 As O] 1
HEYE O 7 2 4
As O—=——
17| Ao |i8| &nD s i s
As O—=—
19| b7z |20 pse s 6
21| ps |22| D4 e
23| D3 |24 D2
25| b1 [26] Do
27| — |28] —
29[— 30| —
31 — [32] —
33| — [3¢] —
35| — [38] —
37| RD |38 WR
39| — [40] —
(To cPU BOARD)
CNI3 10
41| Gout [42| CSED
43| WR [44|Fa~Fr
95| SV |46] BW Icis icle
47| VBLK |48 IM LSI75 LS04 (9 221231 12 |3 (4 |5 |6 |7 8
49| 6ND |50 HBLK s
Ai0As As A7 As As As A3 Az Al A =
sID Q] 10 A9 As A7 As 4 A3 A2 Al Ao ashe
P 7 | - Ica 2016 s
30 20 WE osj
=0 &I
ic18 3qf2 0 GO
Ls32 -
W o Ic3 2016
| c% 21 20
4 ici8
Ls32
]
+5V
CSED O— u
IIG
WR © Ic2 2016
21 20
RD O
18
4 ICI 2KRAM 2016 [
D7 De D5 D4 D3 D2 DI Do h‘
17 [16 |15 14 i3 11 IO |9
Icai
LS00 ic2) Icls
LS00 LS04
GouT
QH U
Do O = Sy ¢ W— 0 +5V
DI o 2 = L— = oGouT2
Dz o : i Icl4
£
D3 o e Lsles
D4 O £ “lo
Ds O T 13 13 s
De O- 8 12 2l
D7 O— s] uly sife
icle ek e
,Ls32 2 |1 (FROM MZ-80GMK
CN 10K
am cN2 0P
|t] &1 |2| CSED
3| 6o |4 |GouT2
Rr2 i‘ GND |6 8m
7| VBLK |8 ™
9| enD [10]| RBLK
M -1

ic17
Lsio7

G

G Gz G3 Gs
9| 8| 12} I

Gs Ge

]

G7 Gs

Gs G

o
[
A B

Ic21 L 2 | 8| e
LS00 Q Q8 Qc
6 L1 PN ici2 Qo 14 icl n 14 IC 10
HBLK o - Ls93 LS93 : Ls93
R
1484 23 T ?
VBLK © |

FIGURE 4.19 Graphic Memory 1 card (optional)

MZ-80GM

To CPU BOARD)

(reuondo) 1od @/ uotsuedxg 0T v TANOIA

CN4 40P
CN7 8 40p
AlS 2 Al4
Al3 4 Al2
All 6 AlO0
A9 8| A8
GND o| A7
A6 12| AS
A4 14| A3
A2 16| Al
AO 18| GND
D7 20| De
D5 22| D4
D3 24| D2
DI 26| DO
GND 28| NMI
EX WAIT |30| EX INT
EX RESET | 32 | RESET
1IEO 34| HALT
MREQ 36| IOREQ
RD 38| WR
M 40| BUS@

IEO

EX INT

99

+5v +5V
RA2 o o RAI
1KQ x5 IKQ x4 CNI~ CN6
A B
= = < = s = = = = +5v | 1 +5Vv
T = T = T T T T D2 | 2 D3
, DI | 3 D4
4 .) po | 4 D5
e GND | 5 D6
" Lso8 " AlI5S | 6 D7
is I Al4 | 7| BUS®
Ic2 IC 1 Al3 | 8 MI
Lso8 Lsos8 o | 2 —
IEl2 |IEO2 IEIs |EO3 IEls |EO4 IEIs |EOs léls |EOs All 10 Q_D
AlO | 11| [OREQ
A9 |12 | MREQ
A8 |13 GND
A7 |14 | HALT
CN2 CN3 CN4 CNS5 CN6 A6 |15 |El
A5 |16 IEO
A4 |17 | RESET
A3 |18 |EX RESET
. A2 [I9 | EXINT
NT iNT2 INT3 B4 INTS NTS Al |20| EXWAIT
AO |21 NMI
GND [22| GND

A: PARTS SIDE

MZ-80EU

67

ic Ic2 1Ic3 Ic9 IcI7
LSI57 LSIS57 LSIS7 LSI57 Ls42
[6 >—218 en >—L=18 G2 g 2o
Gz > 6s —9 6o >—] &
G — Gs = 6o >
3
G0 Gs >3 68
A3 o=—Ya Yuz— AT o=—1YA VL Ano—=—4a sz Azo—=—2a v Llg 3
Az o= El As o—=—1U LI . Ao o113 L 2
Al © 2 L As o2 z As O—=—3] |z {
2 4 2 4 A 2 4 15 A
Ao O=— G As O—=— G 8 O—=— s s &
| J;s] J:s | ,.1‘.5 Jl J;ﬁ
19 |22 23 I |2 |3 s |6 |7 |8
Ao As As AT A6 As A4 A3 Az Al Ao |18
C
__ Ici9 2016 =3
2UWE OE|2
18
Icl6 2016
21 20
IIB
< ici2 2016 5
18
o IC 8 2KRAM 2016 s
D7 Ds D5 D4 D3 D2 DI Do
17 16 |Is 14 |13 | |io |9
Ic7
LSI65 i
1
5}, £l 13|
2 €13
a LS00
3
sl
13 c cL 15
ul® !
Ha s
CK_C/L
2 1
(To MZ—BOGM)
CN2 IoP
CN 10P
1| 61 2 | CSED
3| 6o |a[GouT2
5[eno [6] &M
7| VBLK | 8 M
9| GND | 10| HBLK
G G2 G3 Ga Gs Ge G7 Gs Gs Gio G Gz
+5V
cl
9 s 2|1 9 |8 12 s e e LS107
Qs Qc 8l
Qo Ju 14 ce u {1 Ic 10 {1 ek o
Lso3 LS93 LS93 il
€
icla
LS04 e

FIGURE 4.21

Graphic Memory 2 card (optional)

MZ-80GMK

GO

GouT2

APPENDIX

The Appendix includes technical data on the Z80OA-CPU and Z80A-PIO for reference. This infor-

mation will be helpful to you in expanding the system.

70

A.1 Technical Data of Z80A-CPU

1.0 ARCHITECTURE

A block diagram of the internal architecture of the Z-80A CPU is shown in Figure 1.0-1. The diagram shows all of
the major elements in the CPU and it should be referred to throughout the following description.

8-BIT
DATA BUS

-

DATA BUS
CONTROL

>

INST.
K bt < INTERNAL DATA BUS > ALY

INSTRUCTION
DECODE
&
CPU
13 CONTROL CPU
CPU AND REGISTERS
SONTROL —
SIGNALS CONTROL

R

ADDRESS
CONTROL

+5V GND ¢

16-BIT
ADDRESS BUS

i

Z-80A CPU BLOCK DIAGRAM
FIGURE 1.0-1

1.1 CPU REGISTERS

The Z-80A CPU contains 208 bits of R/W memory that are accessible to the programmer. Figure 1.0-2 illustrates
how this memory is configured into eighteen 8-bit registers and four 16-bit registers. All Z-80A registers are imple-
mented using static RAM. The registers include two sets of six general purpose registers that may be used individually
as 8-bit registers or in pairs as 16-bit registers. There are also two sets of accumulator and flag registers.

Special Purpose Registers

1. Program counter (PC). The program counter holds the 16-bit address of the current instruction being fetched
from memory. The PC is automatically incremented after its contents have been transferred to the address lines.
When a program jump occurs the new value is automatically placed in the PC, overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of a stack located anywhere in
external system RAM memory. The external stack memory is organized as a last-in first-out (LIFO) file. Data can
be pushed onto the stack from specific CPU registers or popped off of the stack into specific CPU registers
through the execution of PUSH and POP instructions. The data popped from the stack is always the last data
pushed onto it. The stack allows simple implementation of multiple level interrupts, unlimited subroutine nesting
and simplification of many types of data manipulation.

71

MAIN REG SET ALTERNATE REG SET
ACCUMULATOR FLAGS |ACCUMULATOR| FLAGS
A F A F
B c B c
GENERAL
, : PURPOSE
D E D E REGISTERS
H L H L
INTERRUPT MEMORY
VECTOR REFRESH
| R

INDEX REGISTER IX

SPECIAL
INDEX REGISTER 1Y PURPOSE
REGISTERS

STACK POINTER SP

PROGRAM COUNTER PC

Z-80A CPU REGISTER CONFIGURATION
FIGURE 1.0-2

3. Two Index Registers (IX & IY). The two independent index registers hold a 16-bit base address that is used in
indexed addressing modes. In this mode, an index register is used as a base to point to a region in memory from
which data is to be stored or retrieved. An additional byte is included in indexed instructions to specify a dis-
placement from this base. This displacement is specified as a two’s complement signed integer. This mode of
addressing greatly simplifies many types of programs, especially where tables of data are used.

4. Interrupt Page Address Register (I). The Z-80A CPU can be operated in a mode where an indirect call to any
memory location can be achieved in response to an interrupt. The I Register is used for this purpose to store the
high order 8-bits of the indirect address while the interrupting device provides the lower 8-bits of the address.
This feature allows interrupt routines to be dynamically located anywhere in memory with absolute minimal
access time to the routine.

5. Memory Refresh Register (R). The Z-80A CPU contains a memory refresh counter to enable dynamic memories
to be used with the same ease as static memories. Seven bits of this 8-bit register are automatically incremented
after each instruction fetch. The eighth bit will remain as programmed as the result of an LD R, A instruction.
The data in the refresh counter is sent out on the lower portion of the address but along with a refresh control
signal while the CPU is decoding and executing the fetched instruction. This mode of refresh is totally transparent
to the programmer and does not slow down the CPU operation. The programmer can load the R register for test-
ing purposes, but this register is normally not used by the programmer. During refresh, the contents of the I
register are placed on the upper 8 bits of the address bus.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers. The accumulator holds
the results of 8-bit arithmetic or logical operations while the flag register indicates specific conditions for 8 or 16-bit
operations, such as indicating whether or not the result of an operation is equal to zero. The programmer selects the
accumulator and flag pair that he wishes to work with a single exchange instruction so that he may easily work with
either pair.

72

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six 8-bit registers that may be used
individually as 8-bit registers or as 16-bit register pairs by the programmer. One set is called BC, DE and HL while the
complementary set is called BC’, DE’ and HL'. At any one time the programmer can select either set of registers to
work with through a single exchange command for the entire set. In systems where fast interrupt response is required,
one set of general purpose registers and an accumulator/flag register may be reserved for handling this very fast routine.
Only a simple exchange commands need be executed to go between the routines. This greatly reduces interrupt service
time by eliminating the requirement for saving and retrieving register contents in the external stack during interrupt or
subroutine processing. These general purpose registers are used for a wide range of applications by the programmer.
They also simplify programming, especially in ROM based systems where little external read/write memory is available.

1.2 ARITHMETIC AND LOGIC UNIT (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally the ALU communi-
cates with the registers and the external data bus on the internal data bus. The type of functions performed by the ALU
include:

Add Left or right shifts or rotates (arithmetic and logical)
Subtract Increment

Logical AND Decrement

Logical OR Set bit

Logical Exclusive OR Reset bit

Compare Test bit

1.3 INSTRUCTION REGISTER AND CPU CONTROL

As each instruction is fetched from memory, it is placed in the instruction register and decoded. The control sec-
tion performs this function and then generates and supplies all of the control signals necessary to read or write data
from or to the registers, control the ALU and provide all required external control signals.

73

2.0 PIN DESCRIPTION

The Z-80A CPU is packaged in an industry standard 40 pin Dual In-Line Package. The I/O pins are shown in Figure
2.0-1 and the function of each is described below.

7Y 27 ————30 Ao
1 31
= - A
19 32 &
MREQ —=——— T
_i ————=— A3
SYSTEM) 10RQ 2 34
CONTROL 3 RD —_— E
wrR =22 — = fis
36
l———=— Agp
37
< 28 A7 ADDRESS
RF. ——— =
A3 BUS
e 18 39/
HALT = Ag
——— A0
. 24 I "
WAIT ——— —2’ "
CPU ————=— A2
ConTroL § WNF @ —'6.| |2 A
INT Z-80A-CPU 4
A 17 .
NM[——— 5
= = Aj5
_ 26
RESET
__ 25
gl'jg BUSRQ —23—
CONTROL [BUSAK —=—— 14
5 Do
2 D
6 |
.,] S
+BV ———— —— D3 DATA
GND _Q,. ——9-— D, BUS
et D 5
10
s DS
13
b D7

AO'AIS
(Address Bus)

Dy-D;
(Data Bus)

M,
(Machine Cycle one)

MREQ
(Memory Request)

Z-80A PIN CONFIGURATION
FIGURE 2.0-1

Tri-state output, active high. Ay-A;s constitute a 16-bit address bus. The address bus pro-
vides the address for memory (up to 64K bytes) data exchanger and for I/O device data
exchanges. I/O addressing uses the 8 lower address bits to allow the user to directly select
up to 256 input or 256 output ports. A, is the least significant address bit. During refresh
time, the lower 7 bits contain a valid refresh address.

Tri-state input/output, active high. Dy-D, constitute an 8-bit bidirectional data bus. The
data bus is used for data exchanges with memory and I/O devices.

Output, active low. M; indicates that the current machine cycle is the OP code fetch cycle
of an instruction execution. Note that during execution of 2-byte op-codes, M; is generated
as each op code byte is fetched. These two byte op-codes always begin with CBH, DDH,
EDH or FDH. M, also occurs with IORQ to indicate an interrupt acknowledge cycle.

Tri-state output, active low. The memory request signal indicates that the address bus holds
a valid address for a memory read or memory write operation.

74

IORQ

(Input/Output Request)

RD
(Memory Read)

WR
(Memory Write)

RFSH
(Refresh)

HALT
(Halt state)

WAIT
(Wait)

INT
(Interrupt Request)

NMI
(Non Maskable
Interrupt)

Tri-state output, active low. The IORQ signal indicates that the lower half of the address bus
holds a valid I/O address for a I/O read or write operation. An IORQ signal is also generated
with an M, signal when an interrupt is being acknowledged to indicate that an interrupt
response vector can be placed on the data bus. Interrupt Acknowledge operations occur
during M; time while I/O operations never occur during M; time.

Tri-state output, active low. RD indicates that the CPU wants to read data from memory or
an I/O device. The addressed I/O device or memory should use this signal to gate data onto
the CPU data bus.

Tri-state output, active low. WR indicates that the CPU data bus holds valid data to be
stored in the addressed memory or I/O device.

Output, active low. RESH indicates that the lower 7 bits of the address bus contain a refresh
address for dynamic memories and the current MREQ signal should be used to do a refresh
read to all dynamic memories.

Output, active low. HALT indicates that the CPU has executed a HALT software instruction
and is awaiting either a non maskable or a maskable interrupt (with the mask enabled)
before operation can resume. While halted, the CPU executes NOP’s to maintain memory
refresh activity.

Input, active low. WAIT indicates to the Z-80A CPU that the addressed memory or I/O
devices are not ready for a data transfer. The CPU continues to enter wait states for as long
as this signal is active. This signal allows memory or I/O devices of any speed to be synchron-
ized to the CPU.

Input, active low. The Interrupt Request signal is generated by I/O devices. A request will be
honored at the end of the current instruction if the internal software controlled interrupt
enable flip-flop (IFF) is enabled and if the BUSRQ signal is not active. When the CPU
accepts the interrupt, an acknowledge signal (IORQ during M, time) is sent out at the begin-
ning of the next instruction cycle. The CPU can respond to an interrupt in three different
modes.

Input, negative edge triggered. The non maskable interrupt request line has a higher priority
than INT and is always recognized at the end of the current instruction, independent of the
status of the interrupt enable flip-flop. NMI automatically forces the Z-80A CPU to restart
to location 0066y . The program counter is automatically saved in the external stack so that
the user can return to the program that was interrupted. Note that continuous WAIT cycles
can prevent the current instruction from ending, and that a BUSRQ will override a NMI.

75

RESET

BUSRQ
(Bus Request)

BUSAK
(Bus Acknowledge)

Input, active low, RESET forces the program counter to zero and initializes the CPU. The
CPU initialization includes:

1) Disable the interrupt enable flip-flop
2) Set Register I = 00y

3) Set Register R = 00y

4) Set Interrupt Mode 0

During reset time, the address bus and data bus go to a high impedance state and all control
output signals go to the inactive state.

Input, active low. The bus request signal is used to request the CPU address bus, data bus
and tri-state output control signals to go to a high impedance state so that other devices can
control these buses. When BUSRQ is activated, the CPU will set these buses to a high imped-
ance state as soon as the current CPU machine cycle is terminated.

Output, active low. Bus acknowledge is used to indicate to the requesting device that the
CPU address bus, data bus and tri-state control bus signals have been set to their high imped-
ance state and the external device can now control these signals.

Single phase TTL level clock which requires only a 330 ohm pull-up resistor to +5 volts to
meet all clock requirements. (4 MHz)

76

3.0 TIMING

The Z-80A CPU executes instructions by stepping through a very precise set of a few basic operations. These
include:

Memory read or write
I/O device read or write

Interrupt acknowledge

All instructions are merely a series of these basic operations. Each of these basic operations can take from three to
six clock periods to complete or they can be lengthened to synchronize the CPU to the speed of external devices. The
basic clock periods are referred to as T cycles and the basic operations are referred to as M (for machine) cycles. Figure
3.0-0 illustrates how a typical instruction will be merely a series of specific M and T cycles. Notice that this instruction
consists of three machine cycles (M1, M2 and M3). The first machine cycle of any instruction is a fetch cycle which is
four, five or six T cycles long (unless lengthened by the wait signal which will be fully described in the next section).
The fetch cycle (M1) is used to fetch the OP code of the next instruction to be executed. Subsequent machine cycles
move data between the CPU and memory or I/O devices and they may have anywhere from three to five T cycles (again
they may be lengthened by wait states to synchronize the external devices to the CPU). The following paragraphs des-
cribe the timing which occurs within any of the basic machine cycles.

Machine Cycle

mI | M2 | M3
(OP Code Fetch) (Memory Read) (Memory Write)

Instruction Cycle

BASIC CPU TIMING EXAMPLE
FIGURE 3.0-0

All CPU timing can be broken down into a few very simple timing diagrams as shown in Figure 3.0-1 through 3.0-7.
These diagrams show the following basic operations with and without wait states (wait states are added to synchronize
the CPU to slow memory or I/O devices).

3.0-1. Instruction OP code fetch (M1 cycle)

3.0-2. Memory data read or write cycles

3.0-3. I/O read or write cycles

3.0-4. Bus Request/Acknowledge Cycle

3.0-5. Interrupt Request/Acknowledge Cycle

3.0-6. Non maskable Interrupt Request/Acknowledge Cycle
3.0-7. Exit from a HALT instruction

77

INSTRUCTION FETCH

Figure 3.0-1 shows the timing during an M1 cycle (OP code fetch). Notice that the PC is placed on the address bus
at the beginning of the M1 cycle. One half clock time later the MREQ signal goes active. At this time the address to the
memory has had time to stabilize so that the falling edge of MREQ can be used directly as a chip enable clock to
dynamic memories. The RF line also goes active to indicate that the memory read data should be enabled onto the CPU
data bus. The CPU samples the data from the memory on the data bus with the rising edge of the clock of state T3 and
this same edge is used by the CPU to turn off the RD and MRQ signals. Thus the data has already been sampled by the
CPU before the RD signal becomes inactive. Clock state T3 and T4 of a fetch cycle are used to refresh dynamic memo-
ries. (The CPU uses this time to decode and execute the fetched instruction so that no other operation could be per-
formed at this time). During T3 and T4 the lower 7 bits of the address bus contain a memory refresh address and the
RFSH signal becomes active to indicate that a refresh read of all dynamic memories should be accomplished. Notice
that a RD sgianl is not generated during refresh time to prevent data from different memory segments from being gated
onto the data bus. The MREQ signal during refresh time should be used to perform a refresh read of all memory ele-
ments. The refresh signal can not be used by itself since the refresh address is only guaranteed to be stable during
MREQ time.

M1 Cycle
Ty Ty Ty Ty T

% 4 L \ \ | Y (R W
m~ats | {___PC Y REFRESH ADDR. __|]
L \ U
RO T /
L N I AN 0 RO A S SN
woL / -
DB0 - DB7 {nN]}
RFSH \ [|

INSTRUCTION OP CODE FETCH
FIGURE 3.0-1

Figure 3.0-1A illustrates how the fetch cycle is delayed if the memory activates the WAIT line. During T2 and
every subsequent Tw, the CPU samples the WAIT line with the falling edge of ®. If the WAIT line is active at this time,
another wait state will be entered during the following cycle. Using this technique the read cycle can be lengthened to
match the access time of any type of memory device.

78

M1 Cycle

T, T T Ty T,

\ I B \ i
PC Y REFRESH ADDR. ¥

RD /

DB0~ DB7 {in])

i B /

LCZ2YL ISR I S A S SN AN N A N S A
RFSH [

INSTRUCTION OP CODE FETCH WITH WAIT STATES
FIGURE 3.0-1A

MEMORY READ OR WRITE

Figure 3.0-2 illustrates the timing of memory read or write cycles other than an OP code fetch (M1 cycle). These
cycles are generally three clock periods long unless wait states are requested by the memory via the WAIT signal. The
MREQ signal and the RD signal are used the same as in the fetch cycle. In the case of a memory write cycle, the MREQ
also becomes active when the address bus is stable so that it can be used directly as a chip enable for dynamic memo-
ries. The WR line is active when data on the data bus is stable so that it can be used directly as a R/W pulse to virtually
any type of semiconductor memory. Furthermore the 'WR signal goes inactive one half T state before the address and
data bus contents are changed so that the overlap requirements for virtually any type of semiconductor memory type
will be met.

e Memory Read Cycle Memory Write Cycle ——————mmt

T T2 T3 T T Ts
® I N \ \ \ \ [
A0~A15 X MEMORY ADDR. X MEMORY ADDR. -l

| i —]

WR | E A

?&Tf(%L)Js [N { DATAOUT —

war 1L e T T

MEMORY READ OR WRITE CYCLES
FIGURE 3.0-2

79

Figure 3.0-2A illustrates how a WAIT request signal will lengthen any memory read or write operation. This opera-
tion is identical to that previously described for a fetch cycle. Notice in this figure that a separate read and a separate
write cycle are shown in the same figure although read and write cycles can never occur simultaneously.

T Ty Tow Tw Ts T
@ I &)\ \ \)
a~ais [MEMORY ADDR)
MREQ \ /
RD \ J READ
DATA BUS BT e
(D0~07) LS
WR \ / WRITE
DATA BUS SR
oo —T— DATA OUT —
War 1 L[:% B Y AN Y U S A R

MEMORY READ OR WRITE CYCLES WITH WAIT STATES
FIGURE 3.0-2A

INPUT OR OUTPUT CYCLES

Figure 3.0-3 illustrates an I/O read or I/O write operation. Notice that during I/O operations a single wait state is
automatically inserted. The reason for this is that during I/O operations, the time from when the IORQ signal goes
active until the CPU must sample the WAIT line is very short and without this extra state sufficient time does not exist
for an I/O port to decode its address and activate the WAIT line if a wait is required. Also, without this wait state it is
difficult to design MOS I/O devices that can operate at full CPU speed. During this wait state time the WAIT request
signal is sampled. During a read I/O operation, the RD line is used to enable the addressed port onto the data bus just
as in the case of a memory read. For I/O write operations, the WR line is used as a clock to the I/O port, again with
sufficient overlap timing automatically provided so that the rising edge may be used as a data clock.

Figure 3.0-3A illustrates how additional wait states may be added with the WAIT line. The operation is identical to
that previously described.

BUS REQUEST/ACKNOWLEDGE CYCLE

Figure 3.0-4 illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ signal is sampled by the CPU
with the rising edge of the last clock period of any machine cycle. If the BUSRQ signal is active, the CPU will set its
address, data and tri-state control signals to the high impedance state with the rising edge of the next clock pulse. At
that time any external device can control the buses to transfer data between memory and I/O devices. (This is generally
known as Direct Memory Access [DMA] using cycle stealing). The maximum time for the CPU to respond to a bus
request is the length of a machine cycle and the external controller can maintain control of the bus for as many clock
cycles as is desired. Note, however, that if very long DMA cycles are used, and dynamic memories are being used, the
external controller must also perform the refresh function. This situation only occurs if very large blocks of data are
transferred under DMA control. Also note that during a bus request cycle, the CPU cannot be interrupted by either
a NMI or an INT signal.

T Ta T’ Ts T

¢ _ \ \ \ \ |

ao~a7 [PORT ADDRESS Y

I0RQ \ /

RD \ / Read

Cycle

DATA BUS Ny

war 1 o e

WR \ J }>Wﬁw

Cycle
DATA BUS ———{ ouT | —
INPUT OR OUTPUT CYCLES
FIGURE 3.0-3
*
T T, Tiw Ty s

A0~ A7) PORT ADDRESS)4
I0RQ /
DATA BUS {in})
RD /
war - T[T
DATA BUS——— ouT S
WR /

* Automatically inserted WAIT state

INPUT OR OUTPUT CYCLES WITH WAIT STATES

FIGURE 3.0-3A

READ
CYCLE

WRITE
CYCLE

81

Any M Cycl Bus Available States —————se=|
Last T State Ty Tx Tx T,
= 4 1L - L |- \ \ _
BUSRQ \ J
B Sample —=—) Sample/

BUSAK \ N
A0~ Al15 NSRS | SR (NS _<
D0~D7)_ | | S T ______ _<
HREQ O s B e —
WR.IORQ. BUSRQ Floating
RFSH

BUS REQUEST/ACKNOWLEDGE CYCLE
FIGURE 3.0-4

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE

Figure 3.0-5 illustrates the timing associated with an interrupt cycle. The interrupt signal (INT) is sampled by the
CPU with the rising edge of the last clock at the end of any instruction. The signal will not be accepted if the internal
CPU software controlled interrupt enable flip-flop is not set or if the BUSRQ signal is active. When the signal is
accepted a special M1 cycle is generated. During this special M1 cycle the IORQ signal becomes active (instead of the
normal MREQ) to indicate that the interrupting device can place an 8-bit vector on the data bus. Notice that two wait
states are automatically added to this cycle. These states are added so that a ripple priority interrupt scheme can be
easily implemented. The two wait states allow sufficient time for the ripple signals to stabilize and identify which I/O
device must insert the response vector. Refer to section 5.0 for details on how the interrupt response vector is utilized
by the CPU.

e

Last T State T T, Tw* Tw* T,
0 _ \ \ | - \ \ \ \
W o 1\ T T T T T T T T T
A0~AI5 X PC REFRESH
i \ —
MREQ |
ioRQ E
DATA BUS @3
7) Y A AN D A A W
RD

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE
FIGURE 3.05

82

Figures 3.0-5A and 3.0-5B illustrate how a programmable counter can be used to extend interrupt acknowledge

time. (Configured as shown to add one wait state)
* e IORQ
7432 oO——
. (To
PERIPHERAL)

e WAIT
7432 |JO——M8M—
) (TO CPU)
74504

ORQ 4—I>o——o LOAD DN/UP G
74Ls191 Op——0 74504
o — 0o Kl A B ¢ b VHEE
M1 —0

74s04

+8V — A ——

EXTENDING INTERRUPT ACKNOWLEDGE TIME WITH WAIT STATE
FIGURE 3.0-5A

LAST T STATE OF AUTOMATIC WAIT
LAST M CYCLE OF Y \ USER WAIT
T

INSTRUCTION | T, | Ty * | T ‘ Tw ’ T |
® 7 \ / ___/ N A 7 / N |
NT 4! A
Ao-Ays X X
M1 \ /

IORQ \ /
IORQ J—
DATA BUS T\
WAIT TS R . T 5 D i T T
NORMAL ACKNOWLEDGE
- TIME
ACKNOWLEDGE TIME WITH ONE
=~ ADDITIONAL WAIT STATE

REQUEST/ACKNOWLEDGE CYCLE WITH ONE ADDITIONAL WAIT STATE
FIGURE 3.0-5B

83

NON MASKABLE INTERRUPT RESPONSE

Figure 3.0-6 illustrates the request/acknowledge cycle for the non maskable interrupt. This signal is sampled at the
same time as the interrupt line, but this line has priority over the normal interrupt and it can not be disabled under soft-
ware control. Its usual function is to provide immediate response to important signals such as an impending power
failure. The CPU response to a non maskable interrupt is similar to a normal memory read operation. The only differ-
ence being that the content of the data bus is ignored while the processor automatically stores the PC in the external
stack and jumps to location 0066y . The service routine for the non maskable interrupt must begin at this location if
this interrupt is used.

HALT EXIT

Whenever a software halt instruction is executed the CPU begins executing NOP’s until an interrupt is received
(either a non maskable or a maskable interrupt while the interrupt flip flop is enabled). The two interrupt lines are sam-
pled with the rising clock edge during each T4 state as shown in Figure 3.0-7. If a non maskable interrupt has been
received or a maskable interrupt has been received and the interrupt enable flip-flop is set, then the halt state will be
exited on the next rising clock edge. The following cycle will then be an interrupt acknowledge cycle corresponding to
the type of interrupt that was received. If both are received at this time, then the non maskable one will be acknowl-
edged since it has highest priority. The purpose of executing NOP instructions while in the halt state is to keep the
memory refresh signals active. Each cycle in the halt state is a normal M1 (fetch) cycle except that the data received
from the memory is ignored and a NOP instruction is forced internally to the CPU. The halt acknowledge signal is
active during this time to indicate that the processor is in the halt state.

Last M Cycle M1
Last T Time T T, T3 Ty T

@ — \ \ | \ \ | W

w At

PURAT X

m \ J

MREQ "\ [l

RD \ /

NON MASKABLE INTERRUPT REQUEST OPERATION

FIGURE 3.0-6
M1 M1 M1
T or T T T T T,
R s W o S 3l D W e O
FALT | /
ﬁor__—[___- ——————————— ——__! il e
[T A I R R R hat

HALT INSTRUCTION

IS RECEIVED
DURING THIS HALT EXIT

MEMORY CYCLE FIGURE 3.0-7

84

4.0 INSTRUCTION SET

The Z-80A CPU can execute 158 different instruction types including all 78 of the 8080A CPU. The instructions
can be broken down into the following major groups:

® [oad and Exchange

® Block Transfer and Search

® Arithmetic and Logical

® Rotate and Shift

e Bit Manipulation (set, reset, test)
® Jump, Call and Return

® Input/Output

® Basic CPU Control

4.1 INTRODUCTION TO INSTRUCTION TYPES

The load instructions move data internally between CPU registers or between CPU registers and external memory.
All of these instructions must specify a source location from which the data is to be moved and a destination location.
The source location is not altered by a load instruction. Examples of load group instructions include moves between
any of the general purpose registers such as move the data to Register B from Register C. This group also includes load
immediate to any CPU register or to any to Register B from Register C. This group also includes load immediate to any
CPU register or to any external memory location. Other types of load instructions allow transfer between CPU registers
and memory locations. The exchange instructions can trade the contents of two registers.

A unique set of block transfer instructions is provided in the Z-80A. With a single instruction a block of memory of
any size can be moved to any other location in memory. This set of block moves is extremely valuable when large
strings of data must be processed. The Z-80A block search instructions are also valuable for this type of processing.
With a single instruction, a block of external memory of any desired length can be searched for any 8-bit character.
Once the character is found or the end of the block is reached, the instruction automatically terminates. Both the block
transfer and the block search instructions can be interrupted during their execution so as to not occupy the CPU for
long periods of time.

The arithmetic and logical instructions operate on data stored in the accumulator and other general purpose CPU
registers or external memory locations. The results of the operations are placed in the accumulator and the appropriate
flags are set according to the result of the operation. An example of an arithmetic operation is adding the accumulator
to the contents of an external memory location. The results of the addition are placed in the accumulator. This group
also includes 16-bit addition and subtraction between 16-bit CPU registers.

The rotate and shift group allows any register or any memory location to be rotated right or left with or without
carry either arithmetic or logical. Also, a digit in the accumulator can be rotated right or left with two digits in any
memory location.

The bit manipulation instructions allow any bit in the accumulator, any general purpose register or any external
memory location to be set, reset or tested with a single instruction. For example, the most significant bit of register H
can be reset. This group is especially useful in control applications and for controlling software flags in general purpose
programming.

The jump, call and return instructions are used to transfer between various locations in the user’s program. This
group uses several different techniques for obtaining the new program counter address from specific external memory
locations. A unique type of call is the restart instruction. This instruction actually contains the new address as a part of
the 8-bit OP code. This is possible since only 8 separate addresses located in page zero of the external memory may be
specified. Program jumps may also be achieved by loading register HL, IX or IY directly into the PC, thus allowing the
jump address to be a complex function of the routine being executed.

85

The input/output group of instructions in the Z-80A allow for a wide range of transfers between external memory
locations or the general purpose CPU registers, and the external I/O devices. In each case, the port number is provided
on the lower 8 bits of the address bus during any I/O transaction. One instruction allows this port number to be speci-
fied by the second byte of the instruction while other Z-80A instructions allow it to be specified as the content of the
C register. One major advantage of using the C register as a pointer to the I/O device is that it allows different I/O ports
to share common software driver routines. This is not possible when the address is part of the OP code if the routines
are stored in ROM. Another feature of these input instructions is that they set the flag register automatically so that
additional operations are not required to determine the state of the input data (for example its parity). The Z-80A CPU
includes single instructions that can move blocks of data (up to 256 bytes) automatically to or from any I/O port
directly to any memory location. In conjunction with the dual set of general purpose registers, these instructions pro-
vide for fast I/O block transfer rates. The value of this I/O instruction set is demonstrated by the fact that the Z-80A
CPU can provide all required floppy disk formatting (i.e., the CPU provides the preamble, address, data and enables the
CRC codes) on double density floppy disk drives on an interrupt driven basis.

Finally, the basic CPU control instructions allow various options and modes. This group includes instructions such
as setting or resetting the interrupt enable flip flop or setting the mode of interrupt response.

4.2 ADDRESSING MODES

Most of the Z-80A instructions operate on data stored in internal CPU registers, external memory or in the I/O
ports. Addressing refers to how the address of this data is generated in each instruction. This section gives a brief sum-
mary of the types of addressing used in the Z-80A while subsequent sections detail the type of addressing available for
each instruction group.

Immediate. In this mode of addressing the byte following the OP code in memory contains the actual operand.

OP Code } one or 2 bytes

Operand
d, do

Examples of this type of instruction would be to load the accumulator with a constant, where the constant is the byte
immediately following the OP code.

Immediate Extended. This mode is merely an extension of immediate addressing in that the two bytes following the
OP codes are the operand.

OP code one or 2 bytes

Operand low order

Operand high order

Examples of this type of instruction would be to load the HL register pair (16-bit register) with 16 bits (2 bytes)
of data.

86

Modified Page Zero Addressing. The Z-80A has a special single byte CALL instruction to any of 8 locations in page
zero of memory. This instruction (which is referred to as a restart) sets the PC to an effective address in page zero. The
value of this instruction is that it allows a single byte to specify a complete 16-bit address where commonly called sub-
routines are located, thus saving memory space.

OP Code one byte
b, bo

Effective address is (bs bg bz 000),

Relative Addressing. Relative addressing uses one byte of data following the OP code to specify a displacement from
the existing program to which a program jump can occur. This displacement is a signed two’s complement number that
is added to the address of the OP code of the following instruction.

OP Code Jump relative (one byte OP code)

Operand 8-bit two’s complement displacement added to Address (A+2)

The value of relative addressing is that it allows jumps to nearby locations while only requiring two bytes of memory
space. For most programs, relative jumps are by far the most prevalent type of jump due to the proximity of related
program segments. Thus, these instructions can significantly reduce memory space requirements. The signal displace-
ment can range between +127 and —128 from A+2. This allows for a total displacement of +129 to —126 from the
jump relative OP code address. Another major advantage is that it allows for relocatable code.

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to be included in the instruc-
tion. This data can be an address to which a program can jump or it can be an address where an operand is located.

OP Code } one or two bytes

Low Order Address or Low order operand

High Order Address or High order operand

Extended addressing is required for a program to jump from any location in memory to any other location, or load and
store data in any memory location.

When extended addressing is used to specify the source or destination address of an operand, the notation (nn) will
be used to indicate the content of memory at nn, where nn is the 16-bit address specified in the instruction. This means
that the two bytes of address nn are used as a pointer to a memory location. The use of the parentheses always means
that the value enclosed within them is used as a pointer to a memory location. For example, (1200) refers to the
contents of memory at location 1200.

Indexed Addressing. In this type of addressing, the byte of data following the OP code contains a displacement which
is added to one of the two index registers (the OP code specifies which index register is used) to form a pointer to mem-
ory. The contents of the index register are not altered by this operation.

OP Code

two byte OP code
OP Code

Displacement Operand added to index register to form a pointer to memory

87

An example of an indexed instruction would be to load the contents of the memory location (Index Register + Dis-
placement) into the accumulator. The displacement is a signed two’s complement number. Indexed addressing greatly
simplifies programs using tables of data since the index register can point to the start of any table. Two index registers
are provided since very often operations require two or more tables. Indexed addressing also allows for relocatable
code.

The two index registers in the Z-80A are referred to as IX and I'Y. To indicate indexed addressing the notation:
(IX+d)or(IY +d)

is used. Here d is the displacement specified after the OP code. The parentheses indicate that this value is used as a
pointer to external memory.

Register Addressing. Many of the Z-80A OP codes contain bits of information that specify which CPU register is to be
used for an operation. An example of register addressing would be to load the data in register B into register C.

Implied Addressing. Implied addressing refers to operations where the OP code automatically implies one or more CPU
registers as containing the operands. An example is the set of arithmetic operations where the accumulator is always
implied to be the destination of the results.

Register Indirect Addressing. This type of addressing specifies a 16-bit CPU register pair (such as HL) to be used as a
pointer to any location in memory. This type of instruction is very powerful and it is used in a wide range of applica-
tions.

OP Code } one or two bytes

An example of this type of instruction would be to load the accumulator with the data in the memory location
pointed to by the HL register contents. Indexed addressing is actually a form of register indirect addressing except that
a displacement is added with indexed addressing. Register indirect addressing allows for very powerful but simple to
implement memory accesses. The block move and search commands in the Z-80A are extensions of this type of address-
ing where automatic register incrementing, decrementing and comparing has been added. The notation for indicating
register indirect addressing is to put parentheses around the name of the register that is to be used as the pointer. For
example, the symbol

(HL)

specifies that the contents of the HL register are to be used as a pointer to a memory location. Often register indirect
addressing is used to specify 16-bit operands. In this case, the register contents point to the lower order portion of the
operand while the register contents are automatically incremented to obtain the upper portion of the operand.

Bit Addressing. The Z-80A contains a large number of bit set, reset and test instructions. These instructions allow any
memory location or CPU register to be specified for a bit operation through one of three previous addressing modes
(register, register indirect and indexed) while three bits in the OP code specify which of the eight bits is to be manipul-
ated.

ADDRESSING MODE COMBINATIONS

Many instructions include more than one operand (such as arithmetic instructions or loads). In these cases, two
types of addressing may be employed. For example, load can use immediate addressing to specify the source and
register indirect or indexed addressing to specify the destination.

88

4.3 INSTRUCTION OF OP CODES AND EXECUTION TIMES

The following section gives a summary of the Z-80A instructions set. The instructions are logically arranged into
groups as shown on tables 4.3-1 through 4.3-11. Each table shows the assembly language mnemonic OP code, the actual
OP code, the symbolic operation, the content of the flag register following the execution of each instruction, the num-
ber of bytes required for each instruction as well as the number of memory cycles and the total number of T states
(external clock periods) required for the fetching and execution of each instruction. Care has been taken to make each
table self-explanatory without requiring any cross reference with the test or other tables.

89

Symbolic Flags OP-Code | No. | No. | No.

Mnemonic . of |of M | of T Comments
Operation C|Z|P/V|S|N|H| 76 543 210 | Bytes|Cycles|States
LD r,r rer’ e oe|o e e o 0l r r] 1 4 r,r’ Reg.
LD r,n r<n e (o | e|o® @ @ 00 r 110 2 2 7 000 B
= i = 001 C
LD r,(HL) r—(HL) e|o|o|o|e®|e®]| 01 r 110 1 2 7 010 D
011 E
LD r,(IX+d) r<—(IX+d) e oo 0|0 o 11 011 101 3 5 19 100 H
01 r 110 101 L
=g = 111 A
LD r,(IY+d) r<(IY +d) e eo|e® o |0 e 11111101 3 5 19
01 r 110
e g -
LD (HL),r (HL)<r | o o 0o o | o (1110 r 1 2 7
LD (IX+d),r (IX+d)<r e o|e o |0 o 11011101 8 5 19
01 110 r
— g =
LD (IY +d),r (IY +d)«<r e o|e o @ o 11111 101 3 5 19
01 110 r
— 4 -
LD (HL),n (HL)<n e|eo e o |@® @ (0110110 2 3 10
— W =
LD (IX+d),n (IX+d)<n o o 0o 0 0|0 11 011 101 4 5 19
00 110 110
- d -
— n —
LD (IY+d),n (IY +d)<n e o o o e e 11111101 4 5 19
00 110 110
— d —
— n —
LD A,(BC) A< (BC) e |00 0 @ o (0001010 1 2 7
LD A,(DE) A<(DE) e| e e 0| o (0011010 1 2 7
LD A,(nn) A<(nn) e (e o |0 @ @ (0111010 3 4 13
— n —
— n -
LD (BC),A (BC)<A ® o|e e o @ (0000010 1 2 7
LD (DE),A (DE)«<A e|o e eo|e@ @ (0010010 1 2 7
LD (nn),A (nn)<A e e o 0@ |0 @ (00110 010 3 4 13
«— n —
«— n —
LD A,I A<l e | LIFF2{ 1[0 |0 11 101 101 2 2 9
01 010 111
LD AR A<R e | L |IFF2l $ |0 | 0| 11 101 101 2 2 9
01 011 111
LD LA I<A L I B) 11 101 101 2 2 9
01 000 111
LD R,A R<A e e |e e o e 11101 101 2 2 9
01 001 111

Notes: r, 1’ means any of the registers A, B,C, D, E, H, L
IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
¢ = flag is affected according to the result of the operation.

8-BIT LOAD GROUP
TABLE 4.31

90

i Symbolic Flags OP-Code '\;3 \f(;l N;O,i C
Mitepsste Operation P/V| S 76 543 210 Bgtes (?ycAles S(t):.\tcs Omments
LD dd,nn dd<nn LR 00 ddo 001 3 3 10 dd Pair
i 00 BC
— g s
01 DE
LD IX,nn IX<nn oo 11 011 101 4 4 14
10 HL
00 100 001
— o - 11 SP
& F =3
LD IY,nn IY<nn L 11 111 101 4 4 14
00 100 001
= §
& 4 %
LD HL,(nn) H<(nn+1) |0 00 101 010 3 5 16
L<(nn) — n —
«— n -
LD dd,(nn) ddi<(nn+1) o|e 11 101 101 | 4 6 | 20
dd,(nn) 01 dd1 011
«— n -
«— n —
LD IX,(nn) | IXg<(nn+1) oo 1momior | 4 [6 | 20
IX,, (nn) 00 101 010
=
e i =5
LD IY,(nn) Yy <(nn+1) oo murw | 4 [6 | 20
1Y), <(nn) 00 101 010
<~ n —>
— aqi =
LD (nn),HL | (nn+1)<H oo 00100010 | 3 | 5 | 16
(nn)<L < n -
— n —
LD (nn),dd (nn+1)<ddy o|e 1m0 | 4 | 6 | 20
(nn)<ddy, 01 ddo 011
«— n —
«— n —
LD (nn),IX (nn+1)<IXy L 11 011 101 4 6 20
(nn)<IX,, 00 100 010
= n —
— n —
LD (nn),IY (nn+1)<IYy L 11 111 101 4 6 20
(nn)<1Yy, 00 100 010
= n —_
« n —_
LD SP,HL SP<HL e 11 111 001 1 1 6
LD SP,IX SP<IX el e 11 011 101 2 2 10
11 111 001
LD SP,IY SP<1Y e| e 11 111 101 2 2 10
11 111 001

91

! ; . No. | No. | No.
Mnemonic Sy mbo.hc Flags Pie Dl 0? of(l)\l ofql‘ Comments
Operation 2| Z |P/V| S H | 76 543 210 | Bytes |[Cycles|States
PUSH qq (SP—2)<qq,, o|e e @ |@®| 11qq0101 | 1 3 | 11 aq Pair
(SP=D—qqy 00 BC
PUSH IX (8P=2)~1X;, e (o | o |o® @@ | 11011 101 2 4 15 01 DE
(SP—1)<IXy 11 100 101
10 HL
PUSH 1Y (SP-2)<1Y, |o|e®|e|e|@|@| 11111101 | 2 4 | 15)
(SP—1)—IY 11 100 101 1 AF
POP qq qq"F(SPJrl) e|oe|o| o @@ 11qq0 001 1 3 10
qq, < (SP)
POP IX IXy<(SP+1) e o0 0 e e 11011101 2 4 14
IX |, <(SP) 11 100 001
POP 1Y [Yy<(SP+1) oo | e |0 (0|0 11 111 101 2 4 14
1Y, —(SP) 11 100 001
Notes: dd is any of the register pairs BC, DE, HL, SP
qq is any of the register pairs AF, BC, DE, HL
(PAIR)yg, (PAIR)y, refer to high order and low order eight bits of the register pair respectively.
E.g. BCL = C, AFH =A
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

¢ flag is affected according to the result of the operation.

16-BIT LOAD GROUP
TABLE 4.3-2

92

o Fl K No. | No. | No.
Mnemonic gymbo'hc i OF -Codle of of M of T Comments
peration C|Z|P/V| S| N|H| 76543 210 |Bytes|Cycles|States
EX DE,HL DE<~ HL e(eoe|eo|o| o e | 11 101 011 1 1 4
EX AFAF AF <AF e|(oe|e o o e (00001000 1 1 4
EXX BC BC\|eo| /o | o | e| e e 11011 001 1 1 4 | Register bank and auxiliary
DE [<|DE register bank exchange
HL HL’
EX (SP),HL H<(SP+1) e|eo | eo|o (e | @ | 11100 011 1 5 19
L<{SP)
EX (SP),IX IXy<~(SP+1)| e | e (@ | ®| ® | ® 11 011 101 2 6 23
IX [, <{(SP) 11 100 011
EX (SP),IY IYg<(SP+1)| @ | ®e | e (e | @ | @ 11 111 101 2 6 23
1Y |, <(SP) 11 100 011
)
LDI (DE)—(HL) |[o|®|3|@|[0|o0| 11101101 | 2 | 4 | 16 | Load (HL) into (DE),
DE<DE+1 10 100 000 increment the pointers and
HL<HL+1 decrement the byte counter
BC<BC—1 (BC)
LDIR (DE)<(HL) oo (0(® (00 11 101 101 2 5 21 If BC+0
DE<~DE+1 10 110 000 2 4 16 | If BC=0
HL<HL+1
BC <—BC—1
Repeat until
BC=0
@)
LDD (DE)<(HL) e o | @00 11101 101 2 4 16
DE<DE-1 10 101 000
HL<HL-1
BC<—BC—-1
LDDR (DE)<(HL) e|e|0|® |0 |0 11101101 2 5 21 | If BC*0
DE<DE-1 10 111 000 2 4 16 | If BC=0
HL<HL-1
BC <BC-1
Repeat until
BC=0
@0
CPI A—(HL) o |t (4[|l 1m10o1101 | 2 | 4 | 16
HL<HL+1 10 100 001
BC<BC—1

93

Mnemonic Symbo.lic Flags OP-Code No?‘ (;‘}141)“ (1:;‘01‘ Comments
Operation C|Z|P/V|S|N|H/| 76 543 210 | Bytes |Cycles| States
@O
CPIR A—(HL) o |ttt 1]4] 1110 101 2 5 21 | If BC+0 and A=+(HL)
HL<HL+1 10 110 001 2 4 16 | If BC=0 or A=(HL)
BC<BC—1 '
Repeat until
A=(HL) or
BC=0
Ol @)
CPD A—(HL) ottt 1]t | 11101 101 2 4 16
HL<—HL-1 10 101 001
BC—BC-1
@0
CPDR A—(HL) o | [t t[1]t] 11101 101 2 5 21 | If BC+0 and A+(HL)
HL<—HL-1 10 111 001 2 4 16 | If BC=0 or A=(HL)
BC<—BC—1
Repeat until
A=(HL) or
BC=0

Notes: 'L, P/V flag is 0 if the result of BC-1 = 0, otherwise P/V = 1
® Z flag is 1 if A = (HL), otherwise Z = 0.

Flag Notation: e = flag not affected, O = flag reset, 1 = flag set, X = flag is unknown,
$ = flag is affected according to the result of the operation.

3

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP
TABLE 4.3-3

94

. i Flags OP- No. | No. | No.
AL Sg;‘,‘g;’i‘;i, clz P/vgs N[H| 76 54C30(2!fo Bytes | Cyeles| states Comments
ADD A,r A<A+r tlt|v]e $ | 100000 r 1 1 4 r Reg.
ADD A,n A<A+n v $ | 11000/ 120 | 2 2 7 000 B
— n - 001 C
ADD A,(HL) A—A+(HL) t1t|v]it|o]s] oo | 1| 2| 7 010 D
ADD A,(IX+d) | A<A+(X+d) [+ [$[Vv]t]o]|¢| oo | 3 | 5 |19 - E
10 [000] 110 100 H
e A = 101 L
111 A
ADD A,(IY+d) | A—A+(IY+d) [¢ | ¢ |V |s|0|¢| 11111101 [3 5 | 19
10 '000] 110
— d —
ADC A,s A—A+s+CY s vit)o]t 001 s is any of r,n, (HL), (IX+
SUB s KA glalvl Elols [@ d), (IY +d) as shown for
SBC A,s A—A—s—CY $ tlvt]a 4 I@ ?:)D idnstruction
e indicated bits replace
2. 8 el M NS] the [000]in the ADDpset
OR s A—AVs o|t|P[t]o]o [110] v
XOR s A—AVs o|t|P[t]o]o 101
CP s A—s o I I (O O 111
INC r rer+1 et |V|t]o|t| o0 r [00 | 1 4
INC (HL) (HL)<(HL)+1 | e[$|Vv | ¢] 0| t] 00110100 | 1 11
INC (IX+d) (IX+d) < e t|v|4t|o]|t| 11011101 3 23
(IX+d)+1 00 110 [100]
— d —
INC (IY +d) (IY +d) < e |t |Vv|t]o|¢| 1m0l | 3 6 | 23
(IY +d) +1 00 110 100]
— d -
DEC m T el tlvI|t]1]t 101 m is any of r, (HL), (IX +d),
(IY +d) as shown for INC.
Same format and states as
INC.
Replace with in
OP-code.

Notes; The V symbol in the P/V flag column indicates that the P/V flag contains the overflow of the result of the
operation Similarly the P symbol indicates parity. V =1 means overflow, V = 0 means not overflow, P =1
means parity of the result is even, P = 0 means panty of the result is odd.

e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
¢ = flag is affected according to the result of the operation.

Flag Notation:

8-BIT ARITHMETIC AND LOGICAL GROUP
TABLE 4.3-4

95

; i Fl 7 No. | No. | No.
Mnemonic S)mbo_hc <R ap4ids 0? of%l ofu’l‘ Comments
Operation C|Z |[P/V|S|N|H| 76 543 210 |Bytes |Cycles|States
DAA Convertsacccon- [§ [$ | P| ¢ |@] ¢ 00 100 111 1 1 4 |Decimal adjust accumulator
tent into packed
BCD following add
or subtract with
packed BCD ope-
rands
CPL A<A eo|o|e|e@® |1 | 1] 00101111 1 1 4 Complement accumulator
(one’s complement) N
NEG A<A+1 1t lv|t 1]]| 11101 101 2 2 8 | Negate acc. (two’s
01 000 100 complement)
CCF CY<CY {|le|e|@®|0|X| 00111 111 i 1 4 Complement carry flag
SCF CY«<1 l|eo|e|® |00 00 110 111 1 1 4 Set carry flag
NOP No operation e|e|e|e|@®| @ 00000 000 1 1 4
PC—PC+1
HALT CPU halted ® | o|o (@ |0 |® | (1 110 110 1 1 4
DI IFF+<0 o o o o |0 &] 110011 1 1 4
El IFF<1 ® oo (o o o 11 111 011 1 1 4
IM 0 Sst interrupt e e oo | @ 11101101 2 2 8
mode 0 01 000 110
IM 1 Set interrupt e|o/o|o e|@ 11101101 | 2 | 2 8
mode 1 01 010 110
IM 2 Set interrupt ® eoe|e (o | @ | @ 11101101 2 2 8
mode 2 01 011 110

Notes: IFF indicates the interrupt enable flip-flop
CY indicates the carry flip-flop.

Flag Notation: ® = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
¢ = flag is affected according to the result of the operation.

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS
TABLE 4.35

96

. Symbolic Flags OP-Code No. | No. [No.
A f fM | of T C t:
Muentonic Operation clzlenv[s H | 76 543 210 | Bytes | Celes| States omments
ADD HL,ss |HL—HL+ss t|o|o|e X|o00ss1o001 | 1] 3|11 ss Reg.
ADC HL,ss |HL<HL+ss+CY |1 |1 |V |1 X111 | 2| 4|15 00 BC
01 ssl 010 01 DE
SBC HL,ss HL<HL-ss—CY | t | 3|V]} X|1wtw1 | 2| 4| 15 10 HL
01 ss0 010 11 SP
ADD IX,pp |IX<IX+pp tle|lo]|e X| 1ot | 2| 4| 15 pp Reg.
06 ppl 001 - >
01 DE
10 1X
11 SP
ADD IY,rr IY —IY +rr t|e|e|e X| w1 | 2| 4| 15 rr Res.
00 rrl 001 00 BC
01 DE
10 1Y
1 SP
INC ss ssss+1 e|le|e|e o | 00ss0011 | 1 | 1| 6
INC IX IX—IX+1 elo|ole o| 1mot1101 | 2| 2| 10
00 100 011
INC IY IY 1Y +1 o|le|ole e| o | 2| 2 | 10
00 100 011
DEC ss ss<ss—1 o o0 |0 ® | 00 ssl 011 1 1 6
DEC IX IX—IX—1 e|lo|o|e o 11011101 | 2 | 2| 10
00 101 011
DEC 1Y IY—IY -1 e|le|efe el mn1mii | 2| 2 | 10
00 101 011
Notes: ss is any of the register pairs BC, DE, HL, SP

Flag Notation:

pp is any of the register pairs BC, DE, IX, SP
rr is any of the register pairs BC, DE, IY, SP.

16-BIT ARITHMETIC GROUP
TABLE 4.3-6

e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
¢ = flag is affected according to the result of the operation.

. . Symbolic Flags OP-Code | No. | No. | No.
M : f fM| of T Comments
nemonie Operation ¢ [Z [P/V[S | N| H| 76 543 210 | Bytes | Cyeles| States
RLC A A {|le|e@|@®|[0]| 0| 00000111 1 1 q Rotate left circular
CYFH7 <0 accumulator
RL A 7 i 3 {|e|e®|@®|[0]| 0| 00010 111 1 1 4 Rotate left accumulator
RRC A Ly {|e|e|e®f0 0| 00001111 | 1 1 4 | Rotate right circular
— accumulator
RR A t|e|e|e@|0|0]| 00011111 | 1 | 1 | 4 | Rotate right accumulator
RLC r t1tPltfo]o 11 001 011 2 2 8 Rotate left circular
00(000] r register r
RLC (HL) P3Pl E|0O]o0O 11 001 011 2 4 15 r Reg.
00 [000]110 000 B
RLC (IX+d) CcY Ol IO O S I I (I 11 011 101 4 6 23 001 C
: 11 001 011 010 D
_ 011 E
00 [000]110 100 H
101 L
RLC (IY+d) 1y Pltflofo| 11111101 | 4 6 | 23 _— &
11 001 011
— d -
00 [000]110
Bl ¥ .. 7 -—-0. t1t | pPltjofo Instruction format and states
: are as shown for RLC, m.
RRC s t1tlpltlo]o 0011 To form new OP-code replace
3 000] of RLC, m with shown
code.
RR s =y | [Pt |o]o 011
SLA s ofltltlPlslOo]O 100
SRA s 0= t1tlplt]o]o 101
SRL s 0 7“50 cy P3Pt O]oO 111
A Rotate digit left and right
RLD et |P|t]ofo| 11100101 | 2 | 5 | 18 | between the accumulator and
(HL) 01 101 111 location (HL).
A Th f th half
RRD e t|P|¢t|o]o0o| 11101101 | 2 [5 | 18 € CONtENt o1 the Hpper na
) 01 100 111 of the accumulator is
unaffected.

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
¢ = flag is affected according to the result of the operation.

ROTATE AND SHIFT GROUP
TABLE 4.3-7

98

. Symbolic Flags OP-Code N?- No. | No.
. f M fT
SRR Operation "G T7 [P/V[S | N| H| 76 543 210_| Bytes | Cycles|States Comments
BIT b,r — et (X |X|o|1| 1mo01011 | 2| 2| 8 r Reg.
01 b r 000 B
BIT b, (HL) Z+(H0), e t|x|x|o|1| 1mooromr | 2| 3 | 12 001 C
01 b 110 010 D
BIT b,(IX+d) | Z<(IX+d), |®| ¢ |xX|[X|o|1| 1mommt01 | 4 | 5 | 2 011 - E
11 001 011 100 H
= 101 L
01 b 110 11 A
BIT b,(IY+d) | Z<(IY+d), o |t x|x|o|1| 1m0 | 4 | 5 | 2 b Bit Tested
11 001 011 e 0
- d - 001 1
01 b 110 e 2
SET b,r ry, <1 e|o|o|o e | 11001011 [2 | 2 | 8 011 3
b r 100 4
101 5
SET b,(HL) (HL), <1 oo |o|o|e|e| 11001011 | 2| 4 |15 - ;
B LN 111 7
SET b,(IX+d) | (IX+d), <1 o(o o o|e e 11011101 | 4 | 6 | 23
11 001 011
— d —
b 110
SET b,(IY+d) | (IY+d),«1 o|o|o o 0|0 11111101 | 4 | 6 | 23
11 001 011
— d —
b 110
RES b,s sp<0 To form new OP-code
s=r,(HL), replace [11] of SET b, m
(IX+d), with . Flags and time
(IY +d) states for SET instruction.

Notes: The notation s, indicates bit b (0 to 7) or location s.

Flag Notation:

e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

¢ = flag is affected according to the result of the operation.

BIT SET, RESET AND TEST GROUP

TABLE 4.3-8

99

Symbolic Flags OP-Code No. | No. | No.

Mnemonic P f fM &
Operation clzTe/vIsINIH| 76 543 210 B;)'tes &'cles S(t’zftrgs omments
JP nn PC<nn e o|e o o e 11000011 3 3 10
— n -
<« n —
JP cc,nn If conditionccistrue | ® |® | ® (@ [@ | ® | 11 cc 010 | 3 3 | 10 cc Condition
PC« nn, otherwi — —
. g oierwise n 000 NZnon zero
continue «~— n —
001 Z zero
010 NCnon carry
011 C carry
100 PO parity odd
101 PE parity even
110 P sign positive
111 M sign negative
JR e PC—PC+e e|leo| o |o® o o (00011 000 2 3 12
— e-2 —
JR C,e If C=0 continue |® |® | ® | ® | ® | ®| 00111 000 2 2 i If condition not met
— e-2 —
If C=1 2 3 12 If condition is met
PC—PC+e
JR NC,e If C=1 continue e|eo|e |0 |0 | e (0110 000 2 2 7 If condition not met
— e-2 —
If C=0 2 3 12 If condition is met
PC—PC+e
JR Z,e If Z=0 continue (@ | ® | ® | ® | ® ® | 00101 000 2 2 7 If condition not met
— e-2 —
If Z=1 2 3 12 If condition is met
PC—PC+e
JR NZe If Z=1 continue | ® | ® | ® | ® ®| ®| 00100 000 2 2 7 If condition not met
— e-2 —
If Z=0 2 a 12 If condition is met
PC—PC+e
JP (HL) PC—HL e (o o 0|e e 11101 001 1 1 4
JP (IX) PC—IX e o|eo e | @ | @ 11 011 101 2 2 8
11 101 001
JP (1Y) PC—IY e eo|e (o |e® | e 11111 101 2 2 8
11 101 001
DINZ,e B<B-1 e|eo|o o |e® | o (0010000 2 2 8 If B=0
If B=0 continue =~ g2 —
If B+0 2 3 13 | If B+0
PC—PC+te

Notes: e represents the extension in the relative addressing mode.
e is a signed two’s complement number in the range <—126, 129>
e-2 in the op-code provides an effective address of pc +e as PC is
incremented by 2 prior to the addition of e.

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
$ = flag is affected according to the result of the operation.

JUMP GROUP
TABLE 4.39

100

. Symbolic Flags OP-Code | No- | No. | No. .
. ! C
Mnemonic Operation [C 7 [P/V] S | N | H| 76 543 210 | Bytes | Cyeles|states emments
CALL nn (SP—1)<PCy e e|e | o e e 11001101 3 5 17
(SP—2)<PCy, «— n —
PC<nn ' = n ==
CALL cc,nn If conditionccisfalse | ® | @ | @ | @ [@ | ® | 11 cc 100 3 3 10 | If cc is false
continue, otherwise — n -
same as CALL nn — n — 3 5 17 | If cc is true
RET PC, <(SP) o o (o0 0|0 11 001 001 1 3 10
PCy<(SP+1)
RET cc If conditionccisfalse | ® | ® | @ | @ | ® | ® [11 cc 000 1 1 5 | If cc is false
continue, otherwise 1 3 11 | If cc is true
same as RET cc Condition
RETI Return from e (e o |0 o o 11101101 2 4 14 000 NZ non zero
interrupt 01 001 101 001 7 zero
RETN Return from non e oo |0 o | @ 11101101 2 4 14 010 NC non carry
maskable interrupt 01 000 101 . L iy
100 PO parity odd
101 PE parity even
110 P sign positive
111 M sign negative|
RST p (SP—1)«PCy; |o|o|o|o|ofl@| 11 ¢t 11| 1| 3 |1 t p
(SP—2)—PCL 000 00H
PCy <0 001 08H
PCL—P 010 10H
011 18H
100 20H
101 28H
110 30H
111 38H

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown
¢ = flag is affected according to the result of the operation.

CALL AND RETURN GROUP
TABLE 4.3-10

101

: Fl . No. | No. | No.
Mnemonic Symbo.llc EED DI -Code u? of%/l ofoT Comments
Operation Z [P/V] S| N| H| 76 543 210 | Bytes|Cycles|States
IN A,(n) A<(n) e| o | oo e e 11011011 2 3 10 | n to Ao—~AT7
— n — Acc to As—~Ais
IN r,(C) r<(C) e (!t |P|$]|0]|0]| 11101101 2 3 11 [C to Ao—~A7
If r=110 only 01 r 000 B to As—~Ais
the flags will
be affected @)
INI (HL) —(C) e | (X |X|1]|X| 11101101 2 4 15 [C to Ao—~A7
B—B—-1 10 100 010 B to As~Ais
HL<HL+1
INIR (HL) —(C) e 1 |X|X|1]|X]| 11101 101 2 5 20 | C to Av~A7
B<B-1 10 110 010 IEB+0) B to As—~A15
HL<HL+1 2 4 15
Repeat until B=0) 1 B=0
IND (HL) —(C) o (X |X|1]|X]| 11101 101 2 4 15 [C to Ao—~A-~
B<B-1 10 101 010 B to As—~Ais
HL<HL-1
INDR (HL) —(C) e 1 |X|X|1]|X| 11101 101 2 5 20 | C to Ao~A7
B<B-1 10 111 010 1 B=0) B to As~A15
HL<HL-1 2 4 15
Repeat until B=0 If B=01
OUT (n),A (n)«<A e e e o e e 11010011 2 3 11 | n to Av—~A7
Acc to As~A1s
OUT (C),r (C)y+=x e oe|eo|e|@| e 11101 101 2 8 12 | C to An—Ar7
01 r 001 B to As—~Ais
)
OUTI (C) < (HL) e |X|X|[1|X]| 11101101 2 4 15 [C to Ao~A7
B+“B—1 10 100 011 B to As~Ais
HL<HL+1 '
OTIR (C) < (HL) e 1 |X|X|1]|X]| 11101 101 2 b 20 | C to An—~Ar7
B<B—1 10 110 011 IfB=0I B to As—~Ais
HL<HL+1 2 4 15
Repeat until B=0 IfB=0!
®
OUTD (C) < (HL) e | ! [X|X|1|X]| 11101101 2 4 15 | C to Ao~A7
B<B-1 10 101 011 B to As—~Ais
HL<HL—-1
OTDR (C) «—(HL) e 1 |X|X|1|[X]| 11101101 2 5 20 [C to Ao~Ar
B—B-1 10 111 011 1f B0 B to As—~Ars
HL<HL-1 2 4 15
Repeat until B=0 I B=0!

Notes: @ If the result of B-1 is zero the Z flag is set, otherwise it is reset.

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
¢ = flag is affected according to the result of the operation.

INPUT AND OUTPUT GROUP
TABLE 4.3-11

102

44 FLAGS

Each of the two Z-80A CPU Flag registers contains six bits of information which are set or reset by various CPU
operations. Four of these bits are testable; that is, they are used as conditions for jump, call or return instructions. For
example a jump may be desired only if a specific bit in the flag register is set. The four testable flag bits are:

1

2)

3)

4)

Carry Flag (C) — This flag is the carry from the highest order bit of the accumulator. For example, the carry
flag will be set during an add instruction where a carry from the highest bit of the accumulator is generated.
This flag is also set if a borrow is generated during a subtraction instruction. The shift and rotate instructions
also affect this bit.

Zero Flag (Z) — This flag is set if the result of the operation loaded a zero into the accumulator. Otherwise it is
reset.

Sign Flag (S) — This flag is intended to be used with signed numbers and it is set if the result of the operation
was negative. Since bit 7 (MSB) represents the sign of the number (A negative number has a 1 in bit 7), this
flag stores the state of bit 7 in the accumulator.

Parity /Overflow Flag (P/V) — This dual purpose flag indicates the parity of the result in the accumulator when
logical operations are performed (such as AND A, B) and it represents overflow when signed two’s comple-
ment arithmetic operations are performed. The Z-80A overflow flag indicates that the two’s complement num-
ber in the accumulator is in error since it has exceeded the maximum possible (+127) or is less than the mini-
mum possible (—128) number than can be represented in two’s complement notation. For example consider
adding:

+120 = 0111 1000
+105 = 0110 1001
C = 0 11100001 = —95 (wrong) Overflow has occurred

Here the result is incorrect. Overflow has occurred and yet there is no carry to indicate an error. For this case
the overflow flag would be set. Also consider the addition of two negative numbers:

-5 11111011
—16

) = 1111 0000
C =1 11101011 = —21 correct

Notice that the answer is correct but the carry is set so that this flag can not be used as an overflow indicator.
In this case the overflow would not be set.

For logical operations (AND, OR, XOR) this flag is set if the parity of the result is even and it is reset if it is
odd.

There are also two non-testable bits in the flag register. Both of these are used for BCD arithmetic. They are:

1

2)

Half carry (H) — This is the BCD carry or borrow result from the least significant four bits of operation. When
using the DAA (Decimal Adjust Instruction) this flag is used to correct the result of a previous packed decimal
add or subtract.

Subtract Flag (N) — Since the algorithm for correcting BCD operations is different for addition or subtraction,
this flag is used to specify what type of instruction was executed last so that the DAA operation will be cor-
rect for either addition or subtraction.

The Flag register can be accessed by the programmer and its format is as follows:

S|Z|X|H|X|PV|N|C

X means flag is indeterminate.

103

Table 4.4-1 lists how each flag bit is affected by various CPU instructions. In this table a ‘®’ indicates that the
instruction does not change the flag, an “X’ means that the flag goes to an indeterminate state, a ‘0’ means that it is
reset, a ‘1’ means that it is set and the symbol ‘4’ indicates that it is set or reset according to the previous discussion.
Note that any instruction not appearing in this table does not affect any of the flags.

Table 4.4-1 includes a few special cases that must be described for clarity. Notice that the block search instruction
sets the Z flag if the last compare operation indicated a match between the source and the accumulator data. Also, the
parity flag is set if the byte counter (register pair BC) is not equal to zero. This same use of the parity flag is made with
the block move instructions. Another special case is during block input or output instructions, here the Z flag is used to
indicate the state of register B which is used as a byte counter. Notice that when the I/O block transfer is complete, the
zero flag will be reset to a zero (i.e. B = 0) while in the case of a block move command the parity flag is reset when the
operation is complete. A final case is when the refresh or 1 register is loaded into the accumulator, the interrupt enable
flip flop is loaded into the parity flag so that the complete state of the CPU can be saved at any time.

104

!

Instruction C|Z \/’ S|N|H Comments

ADD A, s; ADCA, s $ (P IVI]IEL0]Y 8-bit add or add with carry

SUB s; SBC A, s, CP s, NEG P14 V¢33 8-bit subtract, subtract with carry, compare and negate accumulator

AND s 0|¢|P|s |01 } Logical operations

OR s; XOR s O(¢|P|¢s|]O]|O And set’s different flags

INCs e |t |V I[E |0]2 8-bit increment

DECm e (¢ (V¢ |1]¢ 8-bit decrement

ADD DD, ss t|e|e|e |0 X 16-bit add

ADC HL, ss ¢ e V]|t |0o X 16-bit add with carry

SBC HL, ss PlE |V (¢l (X 16-bit subtract with carry

RLA; RLCA, RRA, RRCA t|e|e e 0|0 Rotate accumulator

RL m; RLCm; RR m; RRCm ¢ |P|s|O]O Rotate and shift location s

SLA m; SRA m; SRL m
RLD, RRD e |t |P|E|O(O Rotate digit left and right
DAA ¢t |P S || Decimal adjust accumulator
CPL e (o (o |0 |1 |1 Complement accumulator
SCF l|e|e e |0 |0 Set carry
CCF t |e|e e |0 X Complement carry
IN 1, (C) e |t |P|E|O]O Input register indirect
INI; IND; OUTI; OUTD e (P X [|X |1 |X Block input and output
INIR; INDR; OTIR; OTDR e |1 (X X |1 (X } Z=0if B# 0 otherwise Z =1
LDI, LDD e [X |t |X]|0]|O } Block transfer instructions
LDIR, LDDR e [X|O0([X]|O0]O P/V =1 if BC # 0, otherwise P/V =0
CPI, CPIR, CPD, CPDR e (3 1% |X]|1 |X Block search instructions
Z=1if A= (HL), otherwise Z =0
P/V=1if BC # 0, otherwise P/V =0

LD A,I;LDA,R e [$ IFF|¢ |0 |O The content of the interrupt enable flip-flop (IFF) is copied into the
P/V flag

BIT b, s e ($ X [|X |01 The state of bit b of location s is copied into the Z flag

NEG 2 IV 3 [1]3 Negative accumulator
The following notation is used in this table:

Symbol Operation

C Carry/link flag. C = 1 if the operation produced a carry from the MSB of the operand or result.

Z Zero flag. Z = 1 if the result of the operation is zero.

s Sign flag. S = 1 if the MSB of the result is one.

P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag with the parity
of the result while arithmetic operations affect this flag with the overflow of the result. If P/V holds parity, P/V = 1 if the
result of the operation is even, P/V = 0 if result is odd. If P/V holds overflow, P/V = 1 if the result of the operation produced
an overflow.

H Half-carry flag. H = 1 if the add or subtract operation produced a carry into or borrow from into bit 4 of the accumulator.

N Add/Subtract flag. N = 1 if the previous operation was a subtract.

H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the result into packed
BCD format following addition or subtraction using operands with packed BCD format.

$ The flag is affected according to the result of the operation.

° The flag is unchanged by the operation.

0 The flag is reset by the operation.

1 The flag is set by the operation.

X The flag is a “don’t care.”

\"% P/V flag affected according to the overflow result of the operation.

P P/V flag affected according to the parity result of the operation.

r Any one of the CPU registers A, B, C, D, E, H, L.

s Any 8-bit location for all the addressing modes allowed for the particular instruction.

s§ Any 16-bit location for all the addressing modes allowed for that instruction.

ii Any one of the two index registers IX or IY.

R Refresh counter.

n 8-bit value in range <0, 255>

nn 16-bit value in range <0, 65535>

m Any 8-bit location for all the addressing modes allowed for the particular instruction.

SUMMARY OF FLAG OPERATION
TABLE 4.41

105

5.0 INTERRUPT RESPONSE

The purpose of an interrupt is to allow peripheral devices to suspend CPU operation in an orderly manner and
force the CPU to start a peripheral service routine. Usually this service routine is involved with the exchange of data, or
status and control information, between the CPU and the peripheral. Once the service routine is completed, the CPU
returns to the operation from which it was interrupted.

INTERRUPT ENABLE — DISABLE

The Z-80A CPU has two interrupt inputs, a software maskable interrupt and a non maskable interrupt. The non
maskable interrupt (NMI) can not be disabled by the programmer and it will be accepted whenever a peripheral device
requests it. This interrupt is generally reserved for very important functions that must be serviced whenever they occur,
such as an impending power failure. The maskable interrupt (INT) can be selectively enable or disabled by the program-
mer. This allows the programmer to disable the interrupt during periods where his program has timing constraints that
do not allow it to be interrupted. In the Z-80A CPU there is an enable flip flop (called IFF) that is set or reset by the
programmer using the Enable Interrupt (EI) and Disable Interrupt (DI) instructions. When the IFF is reset, an interrupt
can not be accepted by the CPU.

Actually, for purposes that will be subsequently explained, there are two enable flip flops, called IFF; and IFF,.

IFF, IFF,
Actually disables interrupts Temporary storage location
from being accepted. for IFF;.

The state of IFF,; is used to actually inhibit interrupts while IFF, is used as a temporary storage location for IFF;.
The purpose of storing the IFF; will be subsequently explained.

A reset to the CPU will force both IFF,; and IFF, to the reset state so that interrupts are disabled. They can then
be enabled by an El instruction at any time by the programmer. When an EI instruction is executed, any pending inter-
rupt request will not be accepted until after the instruction following EI has been executed. This single instruction
delay is necessary for cases when the following instruction is a return instruction and interrupts must not be allowed
until the return has been completed. The EI instruction sets both IFF; and IFF, to the enable state. When an interrupt
is accepted by the CPU, both IFF; and IFF, are automatically reset, inhibiting further interrupts until the programmer
wishes to issue a new EI instruction. Note that for all of the previous cases, IFF; and IFF, are always equal.

The purpose of IFF, is to save the status of IFF; when a non maskable interrupt occurs. When a non maskable
interrupt is accepted, IFF; is reset to prevent further interrupts until reenabled by the programmer. Thus, after a non
maskable interrupt has been accepted, maskable interrupts are disabled but the previous state of IFF; has been saved so
that the complete state of the CPU just prior to the non maskable interrupt can be restored at any time. When a Load
Register A with Register I (LD A, I) instruction or a Load Register A with Register R (LD A, R) instruction is exe-
cuted, the state of IFF, is copied into the parity flag where it can be tested or stored.

A second method of restoring the status of IFF; is thru the execution of a Return From Non Maskable Interrupt
(RETN) instruction. Since this instruction indicates that the non maskable interrupt service routine is complete, the
contents of IFF, are now copied back into IFF,, so that the status of IFF; just prior to the acceptance of the non
maskable interrupt will be restored automatically.

106

Figure 5.0-1 is a summary of the effect of different instructions on the two enable flip flops.

Action IFF; IFF,

CPU Reset 0 0

DI 0 0

EI 1 1

LD A,I L] o IFF, — Parity flag
LDA,R] ° IFF, — Parity flag
Accept NMI 0 °

RETN IFF,] IFF, — IFF,

“®” indicates no change

FIGURE 5.0-1
INTERRUPT ENABLE/DISABLE FLIP FLOPS

CPU RESPONSE
Non Maskable

A nonmaskable interrupt will be accepted at all times by the CPU. When this occurs, the CPU ignores the next
instruction that it fetches and instead does a restart to location 0066H. Thus, it behaves exactly as if it had received a
restart instruction but, it is to a location that is not one of the 8 software restart locations. A restart is merely a call to
a specific address in page O of memory.

Maskable
The CPU can be programmed to respond to the maskable interrupt in any one of three possible modes.
Mode 0

This mode is identical to the 8080A interrupt response mode. With this mode, the interrupting device can place
any instruction on the data bus and the CPU will execute it. Thus, the interrupting device provides the next instruction
to be executed instead of the memory. Often this will be a restart instruction since the interrupting device only need
supply a single byte instruction. Alternatively, any other instruction such as a 3 byte call to any location in memory
could be executed.

The number of clock cycles necessary to execute this instruction is 2 more than the normal number for the instruc-
tion. This occurs since the CPU automatically adds 2 wait states to an interrupt response cycle to allow sufficient time
to implement an external daisy chain for priority control. Section 3.0 illustrates the detailed timing for an interrupt
response. After the application of RESET the CPU will automatically enter interrupt Mode 0.

Mode 1

When this mode has been selected by the programmer, the CPU will respond to an interrupt by executing a restart
to location 0038H. Thus the response is identical to that for a non maskable interrupt except that the call location is
0338H instead of 0066H. Another difference is that the number of cycles required to complete the restart instruction
is 2 more than normal due to the two added wait states.

107

Mode 2

This mode is the most powerful interrupt response mode. With a single 8 bit byte from the user an indirect call can
be made to any memory location.

With this mode the programmer maintains a table of 16 bit starting addresses for every interrupt service routine.
This table may be located anywhere in memory. When an interrupt is accepted, a 16 bit pointer must be formed to
obtain the desired interrupt service routine starting address from the table. The upper 8 bits of this pointer is formed
from the contents of the I register. The I register must have been previously loaded with the desired value by the pro-
grammer, i.e. LDI, A. Note that a CPU reset clears the I register so that it is initialized to zero. The lower eight bits of
the pointer must be supplied by the interrupting device. Actually, only 7 bits are required from the interrupting device
as the least significant bit must be a zero. This is required since the pointer is used to get two adjacent bytes to form a
complete 16 bit service routine starting address and the addresses must always start in even locations.

desired starting address
Interrupt ; ;
S pointed to by:
Routine low order } I REG 7 BITS FROM 0
Starting high order CONTENTS | PERIPHERAL
Address
Table

The first byte in the table is the least significant (low order) portion of the address. The programmer must obviously
fill this table in with the desired addresses before any interrupts are to be accepted.

Note that this table can be changed at any time by the programmer (if it is stored in Read/Write Memory) to allow
different peripherals to be serviced by different service routines.

Once the interrupting devices supplies the lower portion of the pointer, the CPU automatically pushes the program
counter onto the stack, obtains the starting address from the table and does a jump to this address. This mode of res-
ponse requires 19 clock periods to complete (7 to fetch the lower 8 bits from the interrupting device, 6 to save the
program counter, and 6 to obtain the jump address.)

Note that the Z-80A peripheral devices all include a daisy chain priority interrupt structure that automatically
supplies the programmed vector to the CPU during interrupt acknowledge. Refer to the Z-80A-PIO, manual for details.

108

A.2 Technical Data of Z80A-PIO

1.0 INTRODUCTION

The Z-80A Parallel I/O (PIO) Circuit is a programmable, two port device which provides a TTL compatible inter-
face between peripheral devices and the Z-80A-CPU. The CPU can configure the Z-80A-PIO to interface with a wide
range of peripheral devices with no other external logic required. Typical peripheral devices that are fully compatible
with the Z-80A-PIO include most keyboards, paper tape readers and punches, printers, PROM programmers, etc. The
Z-80A-PIO utilizes N channel silicon gate depletion load technology and is packaged in a 40 pin DIP. Major features of
the Z-80A-PIO include:

e Two independent 8 bit bidirectional peripheral interface ports with ‘handshake’ data transfer control
® Interrupt driven ‘handshake’ for fast response
® Any one of four distinct modes of operation may be selected for a port including:
Byte output
Byte input
Byte bidirectional bus (Available on Port A only)
Bit control mode
All with interrupt controlled handshake
Daisy chain priority interrupt logic included to provide for automatic interrupt vectoring without external logic
Eight outputs are capable of driving Darlington transistors

All inputs and outputs fully TTL compatible

Single 5 volt supply and single phase clock are required.

One of the unique features of the Z-80A-PIO that separates it from other interface controllers is that all data
transfer between the peripheral device and the CPU is accomplished under total interrupt control. The interrupt logic of
the PIO permits full usage of the efficient interrupt capabilities of the Z-80A-CPU during I/O transfers. All logic neces-
sary to implement a fully nested interrupt structure is included in the PIO so that additional circuits are not required.
Another unique feature of the PIO is that it can be programmed to interrupt the CPU on the occurrence of specified
status conditions in the peripheral device. For example, the PIO can be programmed to interrupt if any specified peri-
pheral alarm conditions should occur. This interrupt capability reduces the amount of time that the processor must
spend in polling peripheral status.

109

2.0 ARCHITECTURE

A block diagram of the Z-80A-PIO is shown in Figure 2.0-1. The internal structure of the Z-80A-PIO consists of
a Z-80A-CPU bus interface, internal control logic, Port A I/O logic, Port B I/O logic, and interrupt control logic. The
CPU bus interface logic allows the PIO to interface directly to the Z-80A-CPU with no other external logic. However,
address decoders and/or line buffers may be required for large systems. The internal control logic synchronizes the CPU
data bus to the peripheral device interfaces (Port A and Port B). The two I/O ports (A and B) are virtually identical and
are used to interface directly to peripheral devices.

+5V GND &
8

Ki—#—1> DATA OR CONTROL

INTERNAL PORT DA

CONTROL __> A

LOGIC Vo K———

HANDSHAKE
EE—
8
CPU PERIPHERAL
EBU DATA !ZUS B/US < INTERNAL BUS INTERFACE
INTERFACE 1o
PIO CONTROL
LINES 8

K—#—1> DATA OR CONTROL

INTERRUPT —_> EORT

CONTROL Vo K—

HANDSHAKE
—
3

INTERRUPT CONTROL LINES

FIGURE 2.0-1
P10 BLOCK DIAGRAM

The Port I/O logic is composed of 6 registers with “handshake” control logic as shown in Figure 1.0-2. The

registers include: an 8 bit data input register, an 8 bit data output register, a 2 bit mode control register, an 8 bit mask
register, an 8 bit input/output select register, and a 2 bit mask control register.

INPUT/OUTPUT
__> SELECT REG

(8 BITS)
MODE
CONTROL OUTPUT
REG ENABLE
(2 BITS)
DATA
:'\l/ OUTPUT
INTERNAL BUS REG
(8 BITS)

8 BIT

PERIPHERAL
DATA OR
CONTROL BUS

MASK k K DATA
gggTROL:‘> '&"QS INPUT
REG
(8 BITS) F INPUT DATA | (8 BITS)

(2 BITS)

—

READY

HANDSHAKE HANDSHAKE
LaNETCAEuRERsUTPSTQ CONTROL STROBE [LINES
LOGIC Dl
FIGURE 2.0-2

PORT 1/0 BLOCK DIAGRAM

110

The 2-bit mode control register is loaded by the CPU to select the desired operating mode (byte output, byte
input, byte bidirectional bus, or bit control mode). All data transfer between the peripheral device and the CPU is
achieved through the data input and data output registers. Data may be written into the output register by the CPU or
read back to the CPU from the input register at any time. The handshake lines associated with each port are used to
control the data transfer between the PIO and the peripheral device.

The 8-bit mask register and the 8-bit input/output select register are used only in the bit control mode. In this
mode any of the 8 peripheral data or control bus pins can be programmed to be an input or an output as specified by
the select register. The mask register is used in this mode in conjunction with a special interrupt feature. This feature
allows an interrupt to be generated when any or all of the unmasked pins reach a specified state (either high or low).
The 2-bit mask control register specifies the active state desired (high or low) and if the interrupt should be generated
when @/l unmasked pins are active (AND CPU status checking of the peripheral by allowing an interrupt to be automat-
ically generated on specific peripheral status conditions. For example, in a system with 3 alarm conditions, an interrupt
may be generated if any one occurs or if all three occur.

The interrupt control logic section handles all CPU interrupt protocol for nested priority interrupt structures. The
priority of any device is determined by its physical location in a daisy chain configuration. Two lines are provided in
each PIO to form this daisy chain. The device closest to the CPU has the highest priority. Within a PIO, Port A inter-
rupts have higher priority than those of Port B. In the byte input, byte output or bidirectional modes, an interrupt can
be generated whenever a new byte transfer is requested by the peripheral. In the bit control mode an interrupt can be
generated when the peripheral status matches a programmed value. The PIO provides for complete control of nested
interrupts. That is, lower priority devices may not interrupt higher priority devices that have not had their interrupt
service routine completed by the CPU. Higher priority devices may interrupt the servicing of lower priority devices.

When an interrupt is accepted by the CPU in mode 2, the interrupting device must provide an 8-bit interrupt vector
for the CPU. This vector is used to form a pointer to a location in the computer memory where the address of the inter-
rupt service routine is located. The 8-bit vector from the interrupting device forms the least significant 8 bits of the
indirect pointer while the I Register in the CPU provides the most significant 8 bits of the pointer. Each port (A and B)
has an independent interrupt vector. The least significant bit of the vector is automatically set to a O within the PIO
since the pointer must point to two adjacent memory locations for a complete 16-bit address.

The PIO decodes the RETI (Return from interrupt) instruction directly from the CPU data bus so that each PIO
in the system knows at all times whether it is being serviced by the CPU interrupt service routine without any other
communication with the CPU.

111

3.0 PIN DESCRIPTION

A diagram of the Z-80A-PIO pin configuration is shown in Figure 3.0-1. This section describes the function of each

pin.

D,-Dy

B/A Sel

C/D Sel

IORQ

Z-80A-CPU Data Bus (bidirectional, tristate)
This bus is used to transfer all data and commands between the Z-80A-CPU and the Z-80A-PIO. D, is the
least significant bit of the bus.

Port B or A Select (input, active high)

This pin defines which port will be accessed during a data transfer between the Z-80A-CPU and the Z-80A-
PIO. A low level on this pin selects Port A while a high level selects Port B. Often Address bit A, from the
CPU will be used for this selection function.

Control or Data Select (input, active high)

This pin defines the type of data transfer to be performed between the CPU and the PIO. A high level on this
pin during a CPU write to the PIO causes the Z-80A data bus to be interpreted as a command for the port
selected by the B/A Select line. A low level on this pin means that the Z-80A data bus is being used to trans-
fer data between the CPU and the PIO. Often Address bit A; from the CPU will be used for this function.

Chip Enable (input, active low)

A low level on this pin enables the PIO to accept command or data inputs from the CPU during a write cycle
or to transmit data to the CPU during a read cycle. This signal is generally a decode of four I/O port numbers
that encompass port A and B, data and control.

4 MHz System Clock (input)
The Z-80A-PIO uses the standard Z-80A system clock to synchronize certain signals internally. This is a
single phase clock.

Machine Cycle One Signal from CPU (input, active low)

This signal from the CPU is used as a sync pulse to control several internal PIO operations. When M1 is active
and the RD signal is active, the Z-80A-CPU is fetching an instruction from memory. Conversely, when M1 is
active and IORQ is active, the CPU is acknowledging an interrupt. In addition, the M1 signal has two other
functions within the Z-80A-PIO.

1. MI synchronizes the PIO interrupt logic.

2. When M1 occurs without an active RD or IORQ signal the PIO logic enters a reset state.

Input/Output Request from Z-80A-CPU (input, active low)

The IORQ signal is used in conjunction with the B/A Select, C/D Select, CE, and RD signals to transfer com-
mands and data between the Z-80A-CPU and the Z-80A-PIO. When CE, RD and TORQ are active, the port
addressed by B/A will transfer data to the CPU (a read operation). Conversely, when CE and IORQ are active
but RD is not active, then the port addressed by B/A will be written into from the CPU with either data or
control information as specified by the C/D Select signal. Also, if IORQ and M1 are active simultaneously,
the CPU is acknowledging an interrupt and the interrupting port will automatically place its interrupt vector
on the CPU data bus if it is the highest priority device requesting an interrupt.

Read Cycle Status from the Z-80A-CPU (input, active low) o
If RD is active a MEMORY READ or I/O READ operation is in progress. The RD signal is used with B/A
Select, C/D Select, CE, and IORQ signals to transfer data from the Z-80A-PIO to the Z-80A-CPU.

112

IEI

IEO

INT

Ao - A,

ASTB

A RDY

Bo - B,

B STB

BRDY

Interrupt Enable In (input, active high)

This signal is used to form a priority interrupt daisy chain when more than one interrupt driven device is
being used. A high level on this pin indicates that no other devices of higher priority are being serviced by a
CPU interrupt service routine.

Interrupt Enable Out (output, active high)

The IEO signal is the other signal required to form a daisy chain priority scheme. It is high only if IEI is high
and the CPU is not servicing an interrupt from this PIO. Thus this signal blocks lower priority devices from
interrupting while a higher priority device is being serviced by its CPU interrupt service routine.

Interrupt Request (output, open drain, active low)
When INT is active the Z-80A-PIO is requesting an interrupt from the Z-80A-CPU.

Port A Bus (bidirectional, tristate)
This 8 bit bus is used to transfer data and/or status or control information between Port A of the Z-80A-PIO
and a peripheral device. A, is the least significant bit of the Port A data bus.

Port A Strobe Pulse from Peripheral Device (input, active low)

1) Output mode: The positive edge of this strobe is issued by the peripheral to acknowledge the receipt
of data made available by the PIO.

2) Input mode: The strobe is issued by the peripheral to load data from the peripheral into the Port A
input register. Data is loaded into the PIO when this signal is active.

3) Bidirectional mode: When this signal is active, data from the Port A output register is gated onto Port
A bidirectional data bus. The positive edge of the strobe acknowledges the receipt of the data.

4) Control mode: The strobe is inhibited internally.

Register A Ready (output, active high)
The meaning of this signal depends on the mode of operation selected for Port A as follows:

1) Output mode: This signal goes active to indicate that the Port A output register has been loaded and
the peripheral data bus is stable and ready for transfer to the peripheral device.

2) Input mode: This signal is active when the Port A input register is empty and is ready to accept data
from the peripheral device.

3) Bidirectional mode: This signal is active when data is available in the Port A output register for trans-
fer to the peripheral device. In this mode data is not placed on the Port A data bus unless A STB
is active.

4) Control mode: This signal is disabled and forced to a low state.

Port B Bus (bidirectional, tristate)

This 8 bit bus is used to transfer data and/or status or control information between Port B of the PIO and a
peripheral device. The Port B data bus is capable of supplying 1.5ma @ 1.5V to drive Darlington transistors.
B, is the least significant bit of the bus.

Port B Strobe Pulse from Peripheral Device (input, active low)

The meaning of this signal is similar to that of A STB with the following exception:
In the Port A bidirectional mode this signal strobes data from the peripheral device into the Port A
input register.

Register B Ready (output, active high)

The meaning of this signal is similar to that of A Ready with the following exception:
In the Port A bidirectional mode this signal is high when the Port A input register is empty and ready
to accept data from the peripheral device.

113

Dy 4__[9_» 15 A
- 20] 14
By - A,
D, - 13 %
CPU N - i > .
DATA ~ o -~
BUS Dy -a———p A,
D5 &— =] A5
Dg 4—3> 8 Aq
& = -« A
& 18
PORT B/A SEL ——— A RDY
CONTROL/DATA SEL ——2> g I 16 e
PIO - - i -
CONTROL CHIP ENABLE ——— By
M1 —2L |« 28 o
JORQ ——=2 g |29 o,
__ 35 “—>3 o
RD lat———» B3
<———3|—> B,
32
B
+5V —L 4—?» 5
L lt—— B,
GND ———— 24
lt———p B,
25
i 21
< B RDY
- 23 <« !7 BSTB
INT ~a— ="
INTERRUPT 2
CONTROL INT ENABLE IN ————#~]
INT ENABLE OUT ~a—=5——

FIGURE 3.0-1
PIO PIN CONFIGURATION

PORT A
1/0

PORT B
1/0

114

40 PROGRAMMING THE PIO
41 RESET

The Z-80A-PIO automatically enters a reset state when power is applied. The reset state performs the following
functions:

1) Both port mask registers are reset to inhibit all port data bits.

2) Port data bus lines are set to a high impedance state and the Ready ‘“handshake” signals are inactive (low).
Mode 1 is automatically selected.

3) The vector address registers are not reset.
4) Both port interrupt enable flip flops are reset.

5) Both port output registers are reset.

In addition to the automatic power on reset, the PIO can be reset by applying an M1 signal without the presence of
a RD or IORQ signal. If no RD or IORQ is detected during M1 the PIO will enter the reset state immediately after the
M1 signal goes inactive. The purpose of this reset is to allow a single external gate to generate a reset without a power
down sequence. This approach was required due to the 40 pin packaging limitation.

Once the PIO has entered the internal reset state it is held there until the PIO receives a control word from the
CPU.

4.2 LOADING THE INTERRUPT VECTOR

The PIO has been designed to operate with the Z-80A-CPU using the mode 2 interrupt response. This mode re-
quires that an interrupt vector be supplied by the interrupting device. This vector is used by the CPU to form the
address for the interrupt service routine of that port. This vector is placed on the Z-80A data bus during an interrupt
acknowledge cycle by the highest priority device requesting service at that time. (Refer to the Z-80A-CPU Technical
Manual for details on how an interrupt is serviced by the CPU). The desired interrupt vector is loaded into the PIO by
writing a control word to the desired port of the PIO with the following format:

D, D Ds D, D, D, D, D,

v, \'2 Vs Vi Vs Vs v, 0

Z;igniﬁes this control word is an interrupt vector

Dy is used in this case as a flag bit which when low causes V; thru V; to be loaded into the vector register. At interrupt
acknowledge time, the vector of the interrupting port will appear on the Z-80A data bus exactly as shown in the format
above.

115

43 SELECTING AN OPERATING MODE
Port A of the PIO may be operated in any of four distinct modes: Mode 0 (output mode), Mode 1 (input mode),
Mode 2 (bidirectional mode), and Mode 3 (control mode). Note that the mode numbers have been selected for mne-

monic significance;i.e. 0 = Out, 1 = In, 2 = Bidirectional. Port B can operate in any of these modes except Mode 2.

The mode of operation must be established by writing a control word to the PIO in the following format:

D, Dy Ds D, Ds D, D, Do

M, M X X 1 1 1 1 X =unused bit
I ——
mode word signifies mode word
to be set

Bits D; and D¢ form the binary code for the desired mode according to the following table:

D, D¢ Mode

0 0 0 (output)

0 1 1 (input)

1 0 2 (bidirectional)
1 1 3 (control)

Bits D5 and D, are ignored. Bits D3-Do must be set to 1111 to indicate “Set Mode™.

Selecting Mode 0 enables any data written to the port output register by the CPU to be output to the port data
bus. The contents of the output register may be changed at any time by the CPU simply by writing a new data word to
the port. Also, the current contents of the output register may be read back to the Z-80A-CPU at any time through
execution of an input instruction.

With Mode O active, a data write from the CPU causes the Ready handshake line of that port to go high to notify
the peripheral that data is available. This signal remains high until a strobe is received from the peripheral. The rising
edge of the strobe generates an interrupt (if it has been enabled) and causes the Ready line to go inactive. This very
simple handshake is similar to that used in many peripheral devices.

Selecting Mode 1 puts the port into the input mode. To start handshake operation, the CPU merely performs an
input read operation from the port. This activates the Ready line to the peripheral to signify that data should be loaded
into the empty input register. The peripheral device then strobes data into the port input register using the strobe line.
Again, the rising edge of the strobe causes an interrupt request (if it hdas been enabled) and deactivates the Ready signal.
Data may be strobed into the input register regardless of the state of the Ready signal if care is taken to prevent a data
overrun condition.

Mode 2 is a bidirectional data transfer mode which uses all four handshake lines. Therefore only Port A may be
used for Mode 2 operation. Mode 2 operation uses the Port A handshake signals for output control and the Port B
handshake signals for input control. Thus, both A RDY and B RDY may be active simultaneously. The only operation-
al difference between Mode O and the output portion of Mode 2 is that data from the Port A output register is allowed
on to the port data bus only when A STB is active in order to achieve bidirectional capability.

Mode 3 operation is intended for status and control applications and does not utilize the handshake signals. When
Mode 3 is selected, the next control word sent to the PIO must define which of the port data bus lines are to be inputs
and which are outputs. The format of the control word is shown below:

D, D¢ Ds D, D, D, D, Do

[/0; | I/Os | I/Os | 1/Os | /O3 | 1/O; | I/O; | 1/Og

116

If any bit is set to a one, then the corresponding data bus line will be used as an input. Conversely, if the bit is reset,
the line will be used as an output.

During Mode 3 operation the strobe signal is ignored and the Ready line is held low. Data may be written to a port
or read from a port by the Z-80A-CPU at any time during Mode 3 operation. When reading a port, the data returned to
the CPU will be composed of input data from port data bus lines assigned as inputs plus port output register data from
those lines assigned as outputs.

44 SETTING THE INTERRUPT CONTROL WORD

The interrupt control word for each port has the following format:

D, Ds Ds D4 D3 D, D, Dy

Enable AND/ High/ Masks
Interrupt | OR Low follows

used in Mode 3 only signifies interrupt control word

If bit D, =1 the interrupt enable flip flop of the port is set and the port may generate an interrupt. If bit D; = O the
enable flag is reset and interrupts may not be generated. If an interrupt is pending when the enable flag is set, it will
then be enabled onto the CPU interrupt request line. Bits D4, Ds, and D4 are used only with Mode 3 operation. How-
ever, setting bit D4 of the interrupt control word during any mode of operation will cause any pending interrupt to be
reset. These three bits are used to allow for interrupt operation in Mode 3 when any group of the I/O lines go to certain
defined states. Bit Dy (AND/OR) defines the logical operation to be performed in port monitoring. If bit Dg =1, an
AND function is specified and if Dg =0, an OR function is specified. For example, if the AND function is specified, all
bits must go to a specified state before an interrupt will be generated while the OR function will generate an interrupt
if any specified bit goes to the active state.

Bit Ds defines the active polarity of the port data bus line to be monitored. If bit Ds =1, the port data lines are
monitored for a high state while if D5 = 0 they will be monitored for a low state.

If bit D, = 1 the next control word sent to the PIO must define a mask as follows:

D, Ds D i 9 D, D, D, Dy

MB, | MB; | MBs | MB, | MB; | MB, | MB, | MB,

Only those port lines whose mask bit is zero will be monitored for generating an interrupt.

117

5.0 TIMING

5.1 OUTPUT MODE (MODE 0)

Figure 5.0-1 illustrates the timing associated with Mode O operation. An output cycle is always started by the
execution of an output instruction by the CPU. A WR* pulse is generated by the PIO during a CPU I/O write operation
and is used to latch the data from the CPU data bus into the addressed port’s (A or B) output register. The rising edge
of the WR* pulse then raises the Ready flag after the next falling edge of ® to indicate that data is available for the
peripheral device. In most systems the rising edge of the Ready signal can be used as a latching signal in the peripheral
device if desired. The Ready signal will remain active until: (1) a positive edge is received from the strobe line indicating
that the peripheral has taken the data, or (2) if already active, Ready will be forced low 1% ® cycles after the leading
edge of IORQ if the port’s output register is written into. Ready will return high on the first falling edge of ® after the
trailing edge of IORQ. This guarantees that Ready is low when port data is changing. The Ready signal will not go
inactive until a falling edge occurs on the clock (®) line. The purpose of delaying the negative transition of the Ready
signal until after a negative clock transition is that it allows for a very simple generation scheme for the strobe pulse.
By merely connecting the Ready line to the Strobe line, a strobe with a duration of one clock period will be generated
with no other logic required. The positive edge of the strobe pulse automatically generates an INT request if the inter-
rupt enable flip flop has been set and this device is the highest priority device requesting an interrupt.

If the PIO is not in a reset state, the output register may be loaded before mode O is selected. This allows the port
output lines to become active in a user defined state.

P

" VAN
PORT QUTPUT
(s BITS) X [A
FIGURE 5.0-1 READY

MODE 0 (OUTPUT) TIMING

STROBE

INT

WR=RD-CE-C/D-10RQ

5.2 INPUT MODE (MODE 1)

Figure 5.0-2 illustrates the timing of an input cycle. The peripheral initiates this cycle using the strobe line after
the CPU has performed a data read. A low level on this line loads data into the port input register and the rising edge of
the strobe line activates the interrupt request line (INT) if interrupt enable is set and this is the highest priority request-
ing device. The next falling edge of the clock line (®) will then reset the Ready line to an inactive state signifying
that the input register is full and further loading must be inhibited until the CPU reads the data. The CPU will, in the
course of its interrupt service routine, read the data from the interrupting port. When this occurs, the positive edge
of the CPU RD signal will raise the Ready line with the next low-going transition of ®, indicating that new data can
be loaded into the PIO. If already active, Ready will be forced low one and one-half ® periods following the leading
edge of IORQ during a read of a PIO port. If the user strobes data into the PIO only when Ready is high, the forced
state of Ready will prevent input register data from changing while the CPU is reading the PIO. Ready will go high again
after the trailing edge of the IORQ as previously described.

P

STROBE

SAMPLE
PORT INPUT ——— —
(s BITS) —_—

FIGURE 5.0-2 READY
MODE 1 (INPUT) TIMING

3

¥
RD)

RD=RD-CE-C/D-IORQ

118

5.3 BIDIRECTIONAL MODE (MODE 2)

This mode is merely a combination of Mode 0 and Mode 1 using all four handshake lines. Since it requires all four
lines, it is available only on Port A. When this mode is used on Port A, Port B must be set to the Bit Control Mode. The
same interrupt vector will be returned for a Mode 3 interrupt on Port B and an input transfer interrupt during Mode 2
operation of Port A. Ambiguity is avoided if Port B is operated in a polled mode and the Port B mask register is set to
inhibit all bits.

Figure 5.0-3 illustrates the timing for this mode. It is almost identical to that previously described for Mode 0 and
Mode 1 with the Port A handshake lines used for output control and the Port B lines used for input control. The differ-
ence between the two modes is that, in Mode 2, data is allowed out onto the bus only when the A strobe is low. The
rising edge of this strobe can be used to latch the data into the peripheral since the data will remain stable until after
this edge. The input portion of Mode 2 operates identically to Mode 1. Note that both Port A and Port B must have
their interrupts enabled to achieve an interrupt driven bidirectional transfer.

@ WWMUW

WR \ b K
A RDY

ASTB \
PORT A DATA OUT DATA IN)
DATA BUS = SAMPLE)
INT

o — (4
BSTB

B RDY \

WR=RD: CE-C/D-10RQ FIGURE 5.0-3

PORT A, MODE 2 (BIDIRECTIONAL) TIMING

The peripheral must not gate data onto a port data bus while A STB is active. Bus contention is avoided if the peri-
pheral uses B STB to gate input data onto the bus. The PIO uses the B STB low level to latch this data. The PIO has
been designed with a zero hold time requirement for the data when latching in this mode so that this simple gating
structure can be used by the peripheral. That is, the data can be disabled from the bus immediately after the strobe
rising edge.

5.4 CONTROL MODE (MODE 3)

The control mode does not utilize the handshake signals and a normal port write or port read can be executed at
any time. When writing, the data will be latched into output registers with the same timing as Mode 0. A RDY will be
forced low whenever Port A is operated in Mode 3. B RDY will be held low whenever Port B is operated in Mode 3
unless Port A is in Mode 2. In the latter case, the state of B RDY will not be affected.

When reading the PIO, the data returned to the CPU will be composed of output register data from those port data
lines assigned as outputs and input register data from those port data lines assigned as inputs. The input register will
contain data which was present immediately prior to the falling edge of RD. See Figure 5.0-4.

T T Tw T
(3]
PORT
CATA BUS Y DaTA WORD I YDATA WORD 2
iy DATA MATCH S
OCCURS HERE
I0RQ /
"o 3 /
00-07 —paTa)

Timing Diagram Refers to Bit Mode Read DATA WORD IPLRerD: O BUS

FIGURE 5.04

119

An interrupt will be generated if interrupts from the port are enabled and the data on the port data lines satisfies
the logical equation defined by the 8-bit mask and 2-bit mask control registers. Another interrupt will not be generated
until a change occurs in the status of the logical equation. A Mode 3 interrupt will be generated only if the result of a
Mode 3 logical operation changes from false to true. For example, assume that the Mode 3 logical equation is an “OR”
function. An unmasked port data line becomes active and an interrupt is requested. If a second unmasked port data line
becomes active concurrently with the first, a new interrupt will not be requested since a change in the result of the
Mode 3 logical operation has not occurred.

If the result of a logical operation becomes true immediately prior to or during M1, an interrupt will be requested
after the trailing edge of M1.

6.0 INTERRUPT SERVICING

Sometime after an interrupt is requested by the PIO, the CPU will send out an interrupt acknowledge (M1 and
IORQ). During this time the interrupt logic of the PIO will determine the highest priority port which is requesting an
interrupt. (This is simply the device with its Interrupt Enable Input high and its Interrupt Enable Output low). To
insure that the daisy chain enable lines stabilize, devices are inhibited from changing their interrupt request status when
M1 is active. The highest priority device places the contents of its interrupt vector register onto the Z80 data bus during
interrupt acknowledge.

Figure 6.0-1 illustrates the timing associated with interrupt requests. During M1 time, no new interrupt requests
can be generated. This gives time for the Int Enable signals to ripple through up to four PIO circuits. The PIO with IEI
high and IEO low during INTA will place the 8-bit interrupt vector of the appropriate port on the data bus at this time.

SAMPLE
INT INT

IORQ AND MI INDICATE
INTERRUPT ACKNOWLEDGE (INTA)

Wi & /—}

FIGURE 6.0-1
INTERRUPT ACKNOWLEDGE TIMING

If an interrupt requested by the PIO is acknowledged, the requesting port is ‘under service’. IEO of this port will
remain low until a return from interrupt instruction (RETT) is executed while IEI of the port is high. If an interrupt
request is not acknowledged, IEO will be forced high for one M1 cycle after the PIO decodes the opcode ‘ED’. This
action guarantees that the two byte RETI instruction is decoded by the proper PIO port. See Figure 6.0-2.

Figure 6.0-3 illustrates a typical nested interrupt sequence that could occur with four ports connected in the daisy
chain. In this sequence Port 2A requests and is granted an interrupt. While this port is being serviced, a higher priority
port (1B) requests and is granted an interrupt. The service routine for the higher priority port is completed and a RETI
instruction is executed to indicate to the port that its routine is complete. At this time the service routine of the lower
priority port is completed.

120

+

IEO

‘\ ED ‘, ,‘ 4D "
————————— /
_________ J

FIGURE 6.0-2

RETURN FROM INTERRUPT CYCLE

HIGHEST PRIORITY PORT
PORT 1A

‘HI

IEI

IEO

Hi

PORT 1B

PORT 2A

HI

IEI

IEO IEI

IEO

HI

1. PRIORITY INTERRUPT DAISY CHAIN BEFORE ANY INTERRUPT OCCURS.

+

HI

IE|

IEO

Hi

UNDER SERVICE

Hi

2. PORT 2A REQUESTS AN INTERRUPT AND IS ACKNOWLEDGED.

+

HI

IEI

IEO

HI

IEI IEO

IEI

IEO

LO

UNDER SERVICE

LO

IEI

IEO

IEI

3. PORT 1B INTERRUPTS, SUSPENDS SERVICING OF PORT 2A.

+

Hi

IEI

IEO

HI

SERVICE COMPLETE-

IEO

SERVICE RESUMED

SERVICE SUSPENDED

LO

Hi

IEI IEO

IEI

IEO

LO

4. PORT 1B SERVICE ROUTINE COMPLETE, “RETI” ISSUED, PORT 2A SERVICE RESUMED.

+

HI

SERVICE COMPLETE

HI

IEI

IEO

HI

IEI IEO IEI

IEO

HI

PORT 2B
HI
IEI IEO ——
LO
IEI IEO ——
LO
IEl IEO ——
LO
IEI IEO —
HI

IEI

IEO

5. SECOND “RETI”” INSTRUCTION ISSUED ON COMPLETION OF PORT 2A SERVICE ROUTINE.

FIGURE 6.0-3
DAISY CHAIN INTERRUPT SERVICING

121

7.0 APPLICATIONS

7.1 EXTENDING THE INTERRUPT DAISY CHAIN

Without any external logic, a maximum of four Z-80A-PIO devices may be daisy chained into a priority interrupt
structure. This limitation is required so that the interrupt enable status (IEO) ripples through the entire chain between
the beginning of M1, and the beginning of IORQ during an interrupt acknowledge cycle. Since the interrupt enable
status cannot change during M1, the vector address returned to the CPU is assured to be from the highest priority
device which requested an interrupt.

If more than four PIO devices must be accommodated, a “look-ahead” structure may be used as shown in Figure
7.0-1. With this technique more than thirty PIO’s may be chained together using standard TTL logic.

-

+V MO MO MO MO PIO PIO P10 PIO
Llu-:l _0_||EI | L el el IEI IEl IEl IIEI

IEO IEO IEO IEO IEO IEO IEO IEO

L LN NN

é'-:%OA~ < DATA BUS >

FIGURE 7.0-1
A METHOD OF EXTENDING THE INTERRUPT PRIORITY DAISY CHAIN

7.2 1/0 DEVICE INTERFACE

In this example, the Z-80A-PIO is connected to an I/O terminal device which communicates over an 8 bit parallel
bidirectional data bus as illustrated in Figure 7.0-2. Mode 2 operation (bidirectional) is selected by sending the follow-
ing control word to Port A:

D, D D D, D, D, D, D,

1 0 X X 1 1 1 1

Mode Control

122

B RDY

A RDY >0
AsTB

DDDOD
Z-80A DATA BUS Z-80A S R R A
CPU TORQ P10 T O C vV
B v
M1 < PORT DATABUS b
| VT 1/0
B'ACD CE TERMINAL

A

ADDRESS
ADDRESS BUS > gus

DECODER

FIGURE 7.0-2
EXAMPLE 1/0 INTERFACE

Next, the proper interrupt vector is loaded (refer to CPU Manual for details on the operation of the interrupt).

D, D¢ Ds D4 D, D, D, Do

Vﬁ Vz V5 Vﬁ V3 Vé V& 0

Interrupts are then enabled by the rising edge of the first M1 after the interrupt mode word is set unless that M1 defines

an interrupt acknowledge cycle. If a mask follows the interrupt mode word, interrupts are enabled by the rising edge of
the first M1 following the setting of the mask.

Data can now be transferred between the peripheral and the CPU. The timing for this transfer is as described in
Section 5.0.

123

7.3 CONTROL INTERFACE

A typical control mode application is illustrated in Figure 7.0-3. Suppose an industrial process is to be monitored.

The occurrence of any abnormal operating condition is to be reported to a Z-80A-CPU based control system. The
process control and status word has the following format:

D7 D6 D5 D4 D3 D2 D1 Do

s Turn Power |Halt Turn Pressur-
%g:flal On Failure |Process- zj’ggl Heaters |ize }:lzsrigre
Power Alarm |ing On System
PORT A
BUS
A, DOEPEC. TEST
Z80A-CPU Z8OA-PIO Ag {>O TURN ON PWR
As PWR. FAIL ALM
Ay HALT INDUSTRIAL
PROCESSING
K D7-DO > Ag TEMP. ALM. SYSTEM
A, ">°7 HTRS. ON
Ay {>O PRESS. SYS
Ag PRESS. ALM
BA CD CE
ADDRESS
AO-
BT TN bt
FIGURE 7.0-3

CONTROL MODE APPLICATION

The PIO may be used as follows. First Port A is set for Mode 3 operation by writing the following control word to Port
A.

D, D Ds D, D, D, D, Do

1 1 X X 1 1 1 1

Whenever Mode 3 is selected, the next control word sent to the port must be an I/O select word. In this example we
wish to select port data lines A5, A3 and AO as inputs and so the following control word is written:

D, D Ds D, D, D, D, Do

0 0 1 0 1 0 0 1

Next the desired interrupt vector must be loaded (refer to the CPU manual for details);

D, Dy D D, D, D, D, D,

v, Vi Vs Ve | Vi Vs, v, 0

124

An interrupt control word is next sent to the port:

D, D¢ Ds D, D, D, D, Dy

1 0 1 1 0 1 1 1

Enable OR Active Mask
Interrupts Logic High Follows Interrupt control

The mask word following the interrupt mode word is:

D, (58 Ds D, D, D, D, Do

1 1 0 1 0 1 1 0

Selects A5, A3 and AO to be monitored

Now, if a sensor puts a high level on line As, Aj, or Ay, an interrupt request will be generated. The mask word may
select any combination of inputs or outputs to cause an interrupt. For example, if the mask word above had been:

D, D¢ Ds D4 D3 D, D, Do

0 1 0 1 0 1 1 0

then an interrupt request would also occur if bit A, (Special Test) of the output register was set.

Assume that the following port assignments are to be used:
EOy = Port A Data
Ely = Port B Data
E2y =Port A Control
E3y = Port B Control

All port numbers are in hexadecimal notation. This particular assignment of port numbers is convenient since A, of the
address bus can be used as the Port B/A Select and A, of the address bus can be used as the Control/Data Select. The
Chip Enable would be the decode of CPU address bits A; thru A, (1110 00). Note that if only a few peripheral devices
are being used, a Chip Enable decode may not be required since a higher order address bit could be used directly.

125

8.0 PROGRAMMING SUMMARY

8.1 LOAD INTERRUPT VECTOR

\Z Vs Vs Vi Vs V, Vi 0
8.2 SET MODE
M, M, X X 1 1 1 1
M, M, Mode
0 0 Output
0 1 Input
1 0 Bidirectional
1 1 Bit Control

When selecting Mode 3, the next word must set the I/O Register:

1/0, I/04 1/0Os /0,4 1/03 1/0, 1/0;, | /0o

I/0 = 1 Sets bit to Input
I/O = 0 Sets bit to Output

8.3 SET INTERRUPT CONTROL

Int AND/ High/ Mask 0 1 1 # 1
Enable | OR Low Follows

Used in Mode 3 only

If the “mask follows” bit is high, the next control word written to the port must be the mask:

MB, MBg MB; MB, MB;, MB, MB, MB,

MB = 0, Monitor bit
MB = 1, Mask bit from being monitored

Also, the interrupt enable flip flop of a port may be set or reset without modifying the rest of the interrupt control
word by using the following command:

Int
Enable X X X 0 0 1 1

126

A. 3 Specifications

1. MZ-80B GENERAL SPECIFICATIONS

| SHARP LHO080A (Z80A-CPU)

| ROM 2K bytes (character generator)
| RAM 32K bytes (dynamic RAM)
Can be expanded to 64K bytes.
(option)

ROM 2K bytes (initial program loader)

92 keys
ASCII standard main keyboard
Numeric pad
Special function keys
Cursor control keys
Cassette tape deck control keys

| 9" CRT (green display)
Character display
8x8 dot matrix
1) Characters; 1000
(40 characters x 25 lines)
2) Characters; 2000
(80 characters x 25 lines)
1), 2): software change-over
Graphic display (option)
320 x 200 dots
Two graphic areas

Cursor control; up, down, left, right,
home, clear
Deletion, insertion

Built-in

Local supply rating voltage

Operating temp; 0° to 35°C
Storage temp; —15° to 60°C

Lower than 80%

Standard audio cassette tape

Data transfer speed; 1800 bits/sec.
Data transfer system; SHARP PWM
Automatic or manual control

Max. 400 mW (440 Hz)

2. CPU BOARD SECTION SPECIFICATIONS

SHARP LHO080A (Z80A-CPU) I pc.

SHARP LHO081A (Z80A-PIO) 1 pc.

Character generator ROM (2K bytes)

IPL ROM (2K bytes) 1 pc.

1 pe.

Standard; 16K bits dynamic RAM

(SHARP LH4116) 16 pes.
Video RAM (2K bytes) 1 pc.

3. POWER SUPPLY SECTION SPECIFICATIONS

Use a power source with the voltage
shown on rating name plate.

5V, =5V, 12V (stabilizing),
12V (non-stabilizing)

127

4. DISPLAY SECTION SPECIFICATIONS

9::

60Hz (vertical),
15.75kHz (horizontal)

Horizontal *The pattern of the left in the
eeesesed center of the picture must
be clear.

DC 12V, 1.1A £10%

Horizontal; 8% (+14% max.)

E2728B3; 9’ 90° deflection
explosion proof type
Heater; 12V, 75mA

Vertical; 8% (+12% max.)

Pincushion dist.; 1% (2% max.)
Barrel dist.; 1% (2% max.)
Trapezoidal dist.; 1% (2% max.)

2 pcs.

Parallelogram dist.; 1° (2.5° max.)

7 pcs.

Zero beam; 11.0kV

13 pcs.

(10.0kV, min., 12.0kV, max.)

DC 12.0V, 1.05A (1.2A max.)

400mW max. (440 Hz)
Speaker 8cm, round dynamic type
(329)

Volume, V-Hold,
Contrast, H-Hold,
Brightness, Focus

—10°C to 50°C

—10dB +4dB at 100Hz
—12dB +4dB at 10kHz

5. CASSETTE TAPE DECK SECTION SPECIFICATIONS

PWM recording

| pC system

5V £5%
12V £5% (stabilizing)
9.5V~16.5V (non-stabilizing)

22 transistors
13 1ICs
9 diodes

From C30 to C60

4.75 cm/sec.

| 2-track monaural

Specifications and design subject to change without prior notice for product improvement.
In such cases, items mentioned may be partially different from the product.

128

A.4 Caring for the system

= Power cable

Don’t place heavy objects such as desks or chairs, on the power cable and do not damage the covering of the power
cable or a severe accident may occur. Be sure to pull the plug (not the cable) when disconnecting the unit from the
AC outlet.

® Line voltage
The correct line voltage is shown on rating name plate. Extremely high or low line voltages may cause trouble or
result in incorrect operation. Contact your dealer if such trouble occurs.

® Ventilation
Ventilation holes are provided in the cabinet. Never place the unit on a carpet or the like because the holes on the
bottom plate of the cabinet will be covered. Place the set in a well ventilated location.

® Moisture and dust
Place the unit in a location which is free from moisture and dust.

® Temperature
Do not expose the unit to direct sunlight and do not place it near heaters to prevent its temperature from rising.

m Water and other foreign substances
Operating the unit when it is wet or contains foreign articles such as clips, pins or other metallic items is dangerous.
If water or other liquid enters the unit, immediately pull the power plug and contact your dealer.

® Shock
If the unit is subjected to shock the sensitive electronic parts may be damaged.

= Trouble
If any trouble occurs, stop operating the unit immediately and contact your dealer.

= Long periods of disuse
When the unit is not operated for a long time, be sure to pull the power plug from the AC outlet.

m Connection of peripheral devices
When connecting peripheral devices, use only parts and devices designated by the Sharp Corporation. Use of parts
and devices other than those designated (or modification of the set) may result in trouble.

m Stains
Remove stains from the cabinet with a soft cloth moistened with water or detergent. Never use solvents such as
benzine, or discoloration will result.

®m Noise
When the unit is used in locations where there are high electrical noise levels induced in the AC line, use a line filter
to remove the noise. Keep the signal cables away from power cables and other electric equipment.

®m Use and storage
Do not use or store the unit with the upper cabinet open, or trouble may occur.

m Radio wave interference
When a radio or TV set is used near the MZ-80B, noise may interfere with broadcast reception. Equipment causing
a strong magnetic field may interfere with operation of the MZ-80B.
Keep such equipment at least 2 to 3 meters away from the MZ-80B.

129

Power switch operation
Once the power switch is turned off, wait at least 10 seconds before turning it on again. This ensures correct opera-
tion of the microprocessor. Never insert the power plug into an AC outlet with the power switch set to ON.

Cassette deck maintenance

Dirty cassette deck recording and reproducing heads may result in incorrect data recording the reproduction. Be
sure to clean the heads every month. Commercially available cleaning tape is convenient.

Discoloration of CRT screen
If a certain spot of the CRT screen is lit an external period of time the spot may become discolored. (If it is neces-
sary for certain spot to be lit for an extended time, turn down the brightness control on the display control unit.)

	Sharp_MZ-8OB_OM_Cover_Front
	162237
	162247
	162253
	162257
	162304
	162307
	162313
	162316
	162323
	162326
	162332
	162335
	162342
	162345
	162352
	162355
	162401
	162405
	162411
	162414
	162420
	162424
	162430
	162433
	162439
	162443
	162449
	162453
	162459
	162502
	162509
	162512
	162518
	162521
	162528
	162531
	162538
	162541
	162547
	162551
	162557
	162600
	162606
	162610
	162616
	162619
	162626
	162629
	162635
	162639
	162645
	162648
	162654
	162658
	162704
	162707
	162714
	162717
	162723
	162727
	162733
	162736
	162742
	162748
	162754
	162758
	162804
	162808
	162814
	162817
	162823
	162827
	162833
	162840
	163235
	163245
	163251
	163254
	163300
	163304
	163310
	163314
	163320
	163323
	163329
	163333
	163339
	163342
	163348
	163352
	163358
	163402
	163408
	163411
	163417
	163421
	163427
	163430
	163436
	163440
	163446
	163450
	163456
	163459
	163505
	163509
	163515
	163518
	163524
	163528
	163534
	163537
	163544
	163547
	163553
	163557
	163603
	163606
	163612
	163616
	163622
	163625
	163632
	163635
	163641
	163645
	163651
	163654
	163700
	163704
	163710
	163713
	163719
	163723
	163729
	163733
	163739
	163744
	163751
	163754
	163800
	163803
	163810
	163817

