
Personal Computer

IIIZ·OOODU
OWNER'S MANUAL

SHARP

SHARP

Personal Computer

MZ-808

Owner's Manual

September 1981

080211-010981

Printed in Japan ©SHARP CORPORATION

~----------------------IMPORTANT----------------------~

For users in the United Kingdom:

The wires in the power cable of this device are colored in accordance with the follow-

ing code:

BLUE Neutral

BROWN: Live

As the colors of the wires in the power cable of this device may not correspond with

the colored markings identifying the terminals in your plug, proceed as follows:

• The blue colored wire must be connected to the terminal which is marked with the

letter N or colored black.

• The brown colored wire must be connected to the terminal which is marked with the

letter L or colored red.

ii

Preface

This manual describes the Sharp MZ-80B personal computer. Read this manual thoroughly to be­

. come familiar with the operating procedures and precautions before operating your MZ-80B. This

manual is one of a series of publications describing the MZ-80B and associated software.

• Owner's Manual ... This publication

• BASIC Language Manual

• MONITOR SB-1510 Reference Manual

Chapters 1 and 2 describe the features of the MZ-80B and general operating procedures; read these

chapters first. Chapter 3 and 4 describe the hardware. This information will be helpful to you if you

intend to expand system.

All software is supplied in the form of files. A cassette tape which contains the SB-5510 BASIC

interpreter and MONITOR SB-151 0 (which support the standard BASIC programming language) is

included with the MZ-80B.

Refer to the BASIC Language Manual for details on the BASIC language.

For details on MONITOR SB-151 0, refer to the MONITOR SB-151 0 Reference Manual.

Keep the warranty card and list of service centers as well as this manual and the other two man­

uals.

iii

Precautions

The MZ-80B is one of the finest personal computers in the world; its design incorporates all the

technical knowledge accumulated by Sharp in its many years of experience in the electronics field. All

units are thoroughly inspected prior to shipment so that each will operate normally when it is un­

packed. However, be sure to check visually for any damage caused during transportation. If any

damage is found or any parts are missing, contact your dealer immediately.

Observe the following guidelines to keep your set in optimum operating condition:

• . Do not place the MZ-80B in locations where the temperature is extremely high or low or where it

varies to a great extent. Avoid exposing the unit to direct sunlight, vibration or dust.

• Handle the power cable carefully to prevent it from being damaged. When removing it from the

AC outlet, turn the power off first, then pull the plug (do not pull on the cable).

• If the power switch is turned off then immediately turned on again, initialization may not be per­

formed correctly. Allow a few moments after turning the power off before turning it on.

For more detailed information, see Appendix 4.

iv

Contents

bnportant 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o o o 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o o 0 o o o o o o o o o o ii

Preface 0 iii

Precautions 0 iv

Chapter 1 The World of the MZ-808 Personal Computer 0 0 0 0 0 0 0 0 • 0 0 ••• 0 0 0 1

101 Features 0 2

lolol Memory configuration 0 3

10102 Superb operability 0 4

102 Expansion equipments 0 6

Chapter 2 Using the MZ-808 0 0 • 0 0 0 • , 0 •• 0 0 ••• 0 ••• 0 •••• 0 •• 0 • 0 0 0 0 0 • • • 9

201 Initial program loading 0 0 0 0 •• 0 • 0 0 0 0 0 0 11

20101 Activating system software contained in a cassette tape file 0 0 0 0 0 11

201.2 Activating system software stored in a diskette file 0 0 0 0 0 0 0 0 0 0 0 12

201.3 Flow chart of Initial Program Loader 0 13

202 Keyboard 0 • 0 15

20201 Main keyboard 0 16

20202 Numeric pad 0 21

20203 Special function keys 0 22

2.02.4 Cursor control keys 0 24

20205 Cassette tape deck control keys 0 25

2 0 3 Display 0 26

203.1 Character display control system 0 26

2 0 3 0 2 Graphic display control system 0 29

Chapter 3 Option Device Installation ° 0 •• 0 0 0 • 0 0 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 0 0 • 0 • • • 31

3 01 Installation of optional devices in the main cabinet of MZ-80B 0 0 0 0 0 0 0 0 32

301.1 Installing the Expansion RAM 0 34

3 0 1.2 Installing the Graphic Memory 1 Card 0 35

301.3 Installing the Expansion 1/0 Port 0 36

v

3.2 Setting option device interface cards in the expansion 1/0 port 37

3.2.1 Setting the Graphic Memory 2 Card . 37

3.2.2 Other interfaces . 38

Chapter 4 Hardware Configuration of the MZ-808 . 39

4.1 The MZ-80B system diagram . 40

4 .2 Memory configurations . 42

4 .2. 1

4 .2.2

Memory map for initial program loading state

Memory map for normal state

42

43

4.2.3 Memory map for V-RAM accessing state 44

4.3 Signal system for the 8255 block, the 8253 block and the IPO block . . . 48

4.3.1 Signal system for the 8255 block 49

4.3.2 Signal system for the 8253 block . 51

4.3.3 Signal system for the Z80A-PIO block . 52

4.4 The MZ-80B circuit diagrams . 56

APPENDIX . 69

A.l Z80A-CPU technical data . 70

A.2 Z80A-PIO technical data . 108

A.3 Specifications . 127

A.4 Caring for the system . 129

SUPPLEMENT Complete MZ-808 IPL Assembly Listing

vi

Chapter 1

The World of the MZ-808 Personal Computer

What can computers do? You will see that computers are used for many different purposes in

many places. Computers carry out complicated scientific calculations, various business procedures,

simulations and statistical processing with the aid of high level languages such as BASIC, PASCAL,

FORTRAN and COBOL. Computers operate measuring systems and automatic control systems in a

variety of plants and networks. In laboratories engaged in software development, the computer is even

used to study itself.

What can your MZ-80B do? There is no definite answer to this question, since the MZ-80B can be

used in such a wide range of applications. You may apply it to any purpose you wish.

Chapter 7 of this manual describes the features of the MZ-80B, hardware expansion and the scope

of the software.

I

2

1.1 Features

The MZ-80B is a compact personal computer with superb operability which features a variety of

software and freely expandable hardware.

The CPU (Central Processing Unit) and the main memory form the nucleus of the computer. The

MZ-80B uses the Z80A microprocessor (equivalent to the LH0080A produced by Sharp), one of the

best microprocessors currently available for central processing units. The main memory which can be

directly accessed by the CPU is constituted entirely of random access memory. It is expandable to

64K bytes. Consequently, no fixed programs or data reside in the main memory and any type of

system software can be loaded into it from an external file. This makes it possible to make the best

possible use of the main memory area.

The 1/0 devices, timer, initial program loader, etc., support the CPU and main memory. The initial

program loader is automatically started when the power switch of the MZ-80B is turned on. It loads

programs from a cassette tape or diskette file , then transfers control to the program loaded.

A typewriter keyboard, numeric pad, special function keys, cursor control keys and cassette tape

deck control keys are included on the control panel. A variety of control commands and data can be

entered with these keys.

Both character display and graphic display are possible, allowing various forms of data representa­

tion.

FIGURE 1.1 Personal Computer MZ-80B

3

1.1.1 Memory configuration

Random access memory (RAM) is the type of memory which is most naturally suited to comput­

ers. When this type of memory is employed, the user can select the programming language and the pro­

gram to be executed at will. The MZ-80B employs this method to allow you to select the programming

language which best suits your purpose. Further, if you want the computer to execute a machine

language program, you can code and execute it.

In the MZ-80B, the IPL (Initial Program Loader) automatically loads programs which are stored on

cassette tape or (if a disk drive is connected) diskette into the main memory when the power is turned

on, then transfers control to the program loaded. Initial program loading from cassette tape is com­

pleted in a few minutes ; loading from a diskette is accomplished in seconds.

The IPL is stored in ROM (Read Only Memory) . This ROM address space is different from that of

the main memory , and it is automatically activated when the power is turned on. See FIGURE 1.2.

Main Memory

64k bytes

(32k bytes
: Optional)

RAM

Normal state

c
p
u

Boot state

FIGURE 1.2

IPL

ROM

4

1.1.2 Superb operability

The MZ-80B becomes a BASIC language computer after the SB-5 510 BASIC interpreter has been

loaded and activated by the IPL. You can now perform a wide variety of operations with the MZ-80B,

such as data input and output, text file generation, debugging and file access.

The MZ-80B's superb operability and expandability will help you to perform such operations with

ease.

• Keys on the console are divided into groups according to their functions. The main typewriter

keyboard and the numeric pad are located at the front of the console. The special function keys,

cursor control keys and cassette tape deck control keys are located under the CRT display screen

and cassette tape deck.

All ordinary operations other than power on/off can be performed with these keys.

• Alphabetic characters, numerics and symbols are all input from the typewriter keyboard. The (RYSJ

key allows input of reverse characters and the r-GRPH I key enables input of graphic patterns from

the keyboard.

Small letters are normally input from the console of the MZ-80B by pressing the[SHIFT I key.

A command is provided, however, which makes it possible to reverse the shift function so that

capital letters are input when the[SHIFT I key is pressed. Tabulation settings can also be made

by the program.

These functions improve the efficiency of message coding and table and graph editing. The cursor

control keys allow these tasks to be performed even more efficiently.

• A separate numeric pad including 0 ~ 0, [oo I , [!] , c=::J and 8 keys is also provided. This

is convenient when input of large amounts of numeric data is required. The numeric keys are

scanned by a different scan signal than that which scans the numeric keys on the typewriter key­

board . This makes various applications possible. For example, keys on the numeric pad can be

easily operated with the right hand as real time operation interruption keys.

• Functions of the 10 special function keys are all user definable. Therefore, by defining a special

function key as a frequently used command, the command can be executed just by pressing the

key once.

The MZ-80B uses the high speed Z80A-CPU which allows instructions to be executed in half the time required by

the Z80-CPU.

5

• The cassette tape deck is controlled by software. All cassette tape operations, i.e., storing, loading

and verifying data and rewinding, fast-forwarding and stopping the tape, are performed by the pro­

gram.

The APSS (Automatic Program Search System) fast-forwards the tape until the specified file is

found.

Automatic functions allow the cassette tape deck to be operated much more efficiently than has

been possible in the past.

Manual operation keys,[REW], [£D, [sToP] and [EJEcT], are provided on the console.

• The MZ-80B has a superior display system with the following features; it displays all characters

and patterns input from the keyboard in any mode; it operates in either the 40 or 80 characters/

line mode; the scrolling area can be restricted to a part of the screen; and black and white can be

reversed.

Further, 2 optional graphic memories which enable graphic display of 320 x 200 dots per frame

can be added to the MZ-80B. With this high resolution, the range of possible applications for the

MZ-80B becomes very wide indeed.

6

1.2 Expansion equipments

A variety of peripheral devices is available for expanding the MZ-80B personal computer system.

FIGURE 1.3 shows a typical expanded system configuration. With the floppy disk drive, numerous

data and program files can be stored and accessed at high speed. With the printer, hard copies of list­

ings and printed graphic patterns can be obtained. This improved processing efficiency, resulting in

a wider range of applications.

The MZ-80B dual floppy disk drive uses a double density mini-floppy diskette (286K bytes/disket­

te) with a diameter of 5.25 inches, both sides of which are used for recording. It enables use of the

DISK BASIC inter-Pret(!r., which is suitable for practical business applications of the double precision

DISK BASIC interpreter, which performs 16 digit BCD operations. Thus, the expanded system ex­

hibits an ability which is comparable with that of larger computers with the aid of a variety of the

floppy disk operating system software.

The compact MZ-80P5 line printer enables not only program listing, but also graphic pattern print­

ing in the image mode.

FIGURE 1.3 Typical expansion system

7

FIGURE 1.4 shows peripheral devices which can be connected to the MZ-80B. Devices which are

enclosed in a thick solid line are connected to the expansion 1/0 port via interface cards or connected

to the specified connectors in the main cabinet.

~----------------------------------,

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L

MZ-80B
CRT

I
I DISPLAY I

t I
V-RAM I

RAM _/1--- - Graph 8KB I
32KB v--

I I
V-RAM V-RAM UNIVERSAL rt-PTR. PTP

RAM /'-- Charact. 2KB Graph 8KB
- 1/0 etc.

32KB "r- I
i' ~ I MODEM

- RS-232C t1 TELETYPE WRIT
BOOT ROM l/L--- 1 etc.
2KB 1'-r- I

ER

IEEE-488 I IEEE-488 standar
-

INTERFACE T devices
CPU

,, " 7 " EXT.
SYSTEM BUS " I- I

Z80A 1\... v PORT I

I
t. PRINTER +I t--

INTERFACE PRINTER

I

d

+I FD FLOPPY

I r-
INTERFACE DISK

KEY BOARD I
I
I

MCR ~II MARK CARD I
Vt. I- INTERFACE

SOUND rv- CASSETTE
1 READER
I

HD
I
I HARD DISK I r-- ~ INTERFACE I

TIMER ·~ I
~

COLOR DSPL. H--11 f~f.PLILIGENTI '--
INTERFACE TERMINAL

I I

: II
COLOR

I DISPLAY
---------------------------------~

FIGURE 1.4 MZ-80B system extension

Chapter 2

Using the MZ-808

This chapter describes the constituent units of the MZ-808 and their functions.

• Locations of constituent units

• Use and function of the Initial Program Loader

• Functions of keys on the keyboard

• Outline of display control systems

9

10

• Top VIew of the MZ-SOB

CRT display

Cassette tape
compartment

Name plate

Special function keys-i~~~~~~~:::~~---:::::~~~~- Cursor control keys

FIGURE 2.1

• Rear view of the MZ-SOB

Brightness con

FIGURE 2.2

L...o=:--+-1-+-- Cassette deck
control keys

\4---\--lr---t-+-- Numeric pad

Frame ground

1/0 module acce~s
window No. 1-6

11

2.1 Initial program loading

All MZ-80B system software is supported by cassette tape or diskette files.

When the power switch of the MZ-80B is turned on, the Initial Program Loader (a file reading pro­

gram mandatory for activation of system software) starts. The loader reads the system software from

cassette tape or diskette files and, upon completion of loading, transfers system control to the loaded

program.

This action takes place automatically the instant the power switch of the MZ-80B is turned on.

Accordingly , in order to activate system software stored in a cassette tape file , you must load the

cassette tape recorder with the corresponding cassette before turning on the MZ-80B ; to activate sys­

tem software stored in a diskette file, the corresponding diskette must be placed in drive No. 1 of the

floppy disk unit connected to the MZ-80B before the power is turned on.

2.1.1 Activating system software contained in a cassette tape file

Load the cassette tape into the cassette tape recorder and energize the MZ-80B. See FIGURE 2.3.

Load the cassette tape into the MZ-80B

FIGURE 2.3

The MZ-80B searches and loads the system software automatically. In this state the following

messages are shown. See FIGURE 2.4.

This message indicates that the MZ-80B is searching for

the system software on the tape.

This message indicates that loading of the BASIC inter­

preter is in progress.

FIGURE 2.4

12

FIGURE 2.5 shows that the loaded BASIC interpreter SB-5510 has been started.

FIGURE 2.5 Message indicating that BASIC interpreter SB-5510 has been started

Subsequently, the cassette tape is automatically rewound.

2.1 .2 Activating system software stored in a diskette file

Energize the floppy disk unit and place the master diskette in drive No. I; energize the MZ-80B.

The MZ-80B loads the system software automatically.

After a few seconds, a message should appear indicating that DISK BASIC interpreter SB-651 0

has been activated.

A special method of loading system programs from a ROM card connected to the expansion I/0 port is possible. The

IPL of the MZ-80B enables system program loading in this manner; when the IPL is started with the "/" (slash) key

depressed, it loads the program from the memory connected to the expansion 1/0 port.

13

2.1.3 General flow chart for Initial Program Loading

Initial Program Loading is normally accomplished by the above simple operation.

Individual operations needed to perform Initial Program Loading in special cases (for example,

when loading from a cassette tape file with the floppy disk unit connected to the MZ-80B; or when

loading from a drive other than drive No. 1) and measures to prevent errors are described later.

FIGURE 2.6 depicts the general flow chart for Initial Program Loading. Execution of Initial Pro­

gram Loading normally progresses as indicated by the solid line; however, manual operations may be

required depending upon conditions at the branchpoints.

I Power-SW ON I I IPL Reset-SW ON I
I I
t

~ "C" Key?

No
a Yes

FD Connection?
/

No

FD Power-SW?
OFF

ON

Diskette setting?
\No

Yes

I SET READY FOR FD

[SET READY FOR CMT l I
~

f SELECT CMT OR FD No
Tape setting?

"C" key: Cassette tape
Yes " F" key: Floppy diskette

I
Program search

I & load / "C" Key?

No

~ ~ OBJECT Mode? Program search "F" Key?

Yes' & load Yes r Break

No'
DRIVE NO? (1-4)

Error ~
NoJ

I
Jump to the

I loaded program CMT : Cassette Magnetic Tape
FD floppy d1sk Dnve

FIGURE 2.6 General flow chart for lPL

14

To read system software from a cassette tape with the floppy disk unit connected to the MZ-80B

(or with the floppy disk interface card inserted in the 1/0 port of the MZ-80B), switch on the MZ-80B

while pressing the 0 (cassette tape) key. (Loading control proceeds along flowline a.) Energizing

the MZ-80B without pressing the 0 key drives the master diskette if it is contained in drive No. 1.

When drive No. 1 is inoperative, however, when branch point {3 is reached the MZ-80B asks whether

loading is to be made from cassette tape or a diskette. If the 0 key is then pressed, the cassette tape

will undergo initial program loading.

If you intend to perform initial program loading from any drive other than drive No. 1, make drive

No. 1 inoperative before turning the power on. The drive can be made inoperative by not inserting a

diskette, by leaving its cover open or by switching it off.

Program loading will then proceed to branch point {3, at which time the system asks whether

cassette tape or diskette is specified. Press the 0 (floppy diskette) key. The system further asks

which drive number is desired. Input the desired number by pressing the corresponding key.

When you must rewind the cassette tape before initial program loading, first initiate cassette-based

loading, then press the [BREAK]' key. This will cause loading control to move to branch point {3, causing

the tape to be rewound. When the tape is completely rewound, press the 0 key.

Pressing the 0 key before the tape is completely rewound causes the system to begin the file

search immediately.

When you must fast forward the tape, first initiate cassette-based loading, then press the [BREAK)

key. This will cause the tape to be rewound as described above. Press the (sToP) key of the cassette

recorder to stop tape travel and press the ~ key to fast forward. Interrupt tape travel again by

pressing the (sToP) key, then press the 0 key to start the file search.

Initial program loading does not provide for discrimination between program texts according to

file name. When loading from cassette tape the system reads the first OBJECT mode file it encounters.

If the system encounters any file other than one in the OBJECT mode, it displays the error message

"FILE MODE MISMATCH ERROR".

The memory map and other references for initial program loading are given in item 3 of the Ap­

pendix. The assembly listing for the initial program loader is shown in the SUPPLEMENT.

The MZ-80B system can, of course, read (through IPL) any system software you have worked

out on the MONITOR SB-1510 or other systems. The MONITOR SB-1510 Reference Manual des­

cribes procedures for creating system software with the aid of MONITOR.

15

2.2 Keyboard

The keyboard of the MZ-80B is arranged as shown in Figure 2. 7, and is divided into 5 areas accord­

ing to function .

special function keys

lDDDDDDDDDDj
QD@][ill[ill[illCillQIJCill@J~

main keyboard

cursor control keys

CURSOR KEYS

CD CTI ITJ CD

FIGURE 2.7 Locations of 5 areas of the keyboard

cassette tape deck
control keys

TAPE CONTROL

numeric pad

The main keyboard (typewriter keyboard) conforms to ASCII standards and includes character

keys and control keys (such as the carriage return key and the break key).

The numeric pad is for entering numeric data and is similar to that of an ordinary electronic

calculator.

The ten blue keys in the upper left are keys whose functions are defined by the user.

The four yellow keys in the upper center are cursor control keys, and the four green keys in the

upper right are cassette tape deck control keys.

The functions of each element of the keyboard are explained in the following pages.

16

2.2.1 Main keyboard

The main keyboard is operated in a manner similar to that of an ordinary typewriter. One differ­

ence is that the main keyboard has three operating modes ; another is that several control keys are

provided (the stippled keys in Figure 2.8 are the control keys).

[DDDDDDDDDD/ TAPE CONTROL

CURSOR KEYS

ITJ GJCD CTI

FIGURE 2.8 Main keyboard and its control keys

Three operation modes are as follows:

[1] Normal mode

[2] Graphic mode

[3] Reverse mode

Some of these keys produce different characters according to operation mode, as shown in

Figure 2.9. Except under special circumstances, characters input from the main keyboard are dis­

played on the screen in the position where cursor is located.

reverse mode

normal mode

8 hold down I SHIFT

hold down I SHIFT b
~---graphic mode

FIGURE 2.9 Different characters of a key

17

The functions of the control keys which are independent of operation mode are explained below.

SHIFT J : Similar to the shift key of an ordinary typewriter; when this key is depressed, the char-

acter keys and some of the control keys are shifted.

C R Carriage return key. When pressed, the cursor moves to the beginning of the following

line.

CR: Abbreviation for carriage return.

~ HOME returns the cursor to the upper left hand comer of the display screen. CLR

clears the display screen and also returns the cursor to the screen's upper left hand

comer.

CLR: clear

~ DEL erases the character at the left of the cursor location, shifting all following charac­

ters of the string to the left one space. INST inserts a space where the cursor is located

by shifting all following characters of the string to the right one space.

DEL: delete, INST: insert

Shift lock key. When this key is pressed with the I SHIFT I key depressed, the

SHIFT I key is locked. When the I SHIFT I key is locked, lsFT LocK I lamp lights. Press­

ing this key again without pressing the [SHIFT I key releases the shift lock.

SFT LOCK: shift lock

With this key depressed the character keys which have graphic characters produce these

graphic characters. If this key is pressed with the I SHIFT I key depressed, the graphic

mode is entered and locked, and the 1-GRPH I key lamp lights.

GRPH: graphic

('Rvs) With this key depressed the character keys _produce reversed characters. If this key

key is pressed with the I SHIFT I key depressed, the reverse mode is entered and

locked, and the (iivs] key lamp lights.

(BREAK l
R VS: reverse

When this key is pressed, a break code is generated. Pressing this key halts execution of

BASIC programs.

Tabulation control key.

TAB: tabulation

18

[1] Normal mode

[DDDDDDDDDD)
CillCITJCillCEJlliJITDQDQD@J~

SFT LOCK key
lamp

CURSOR KEYS

FIGURE 2.10 Locations of some keys

TAPE CONTROL

..,....,.. •• • A

When the BASIC interpreter or another system program is started, keyboard operation is automat­

ically set in the normal mode. Alphanumeric characters and symbols are input in the normal mode.

For example, to input a B, press the [!]key (See Figure 2.10)in the same manner as on an ordinary

typewriter. Note that the letter keys normally produce capital letters. To enter lower case letters, hold

down the [SHIFT)key then press the letter key -just the opposite of an ordinary typewriter.

The reason for this is that capital letters are generally easier to read on the screen, so most people

prefer to write their programs in capital letters. When a key has two non-alphabetic symbols on it,

such as [I] (above the 0 key. See Figure 2.10.), pressing the key alone enters "8". If you hold

down the [SHIFT j key while pressing [I] , "(" will be entered. Only the 26 letter keys are shifted

in the opposite direction from a standard typewriter. t

The [sh LOcK) key locks the [SHIFT key so that it does not need to be held down. When the

SHIFT) key is locked, the (sFT LOcK) lamp (See Figure 2 .I 0) lights and pressing the [!]key inputs

"b". Characters and symbols which can be input in the normal mode correspond to ASCII codes 20H

to 7EH. (See Figure 2.22, ASCII code table.)

t The BASIC interpreter SB-5510 and DISK BASIC interpreter SB-651 0 are provided with the CHANGE statement.

With this statement, the shift direction of the 26 alphabetic characters, A to Z, entered from the keyboard can be
changed.

[2] Graphic mode

lDDDDDDDDDDj
QTI@][ill[£D[ill[W@JCTIJ@]~

GRPHkey
lamp

FIGURE 2.11 Locations of some keys

19

TAPE CONTROL

Graphic patterns produced by the stippled keys shown in Figure 2.11 may be input when the sys­

tem is in the graphic mode. Each graphic pattern is printed in white on the front of each of these 30

keys.

For example, pressing the 0 key inputs the graphic pattern. When any key other than one

of these 30 keys is pressed, the character assigned to the key is input. Note that graphic patterns

cannot be input when the (SHIFT) key is held down.

Included in the graphic patterns are ruled line patterns which are provided for generating tables.

Figure 2.12 shows an example of a table generated using ruled line patterns.

FIGURE 2.12 A table generated in the graphic mode

These graphic patterns correspond to ASCII code 80H to 9FH, (See Figure 2.22, ASCII code table.)

Graphic patterns can be processed as string data in the same manner as other characters and symbols.

20

[3] Reverse mode

lDDDDDDDDDDI
ITDC£DlillCITJ0JQTI@JCill@J~

CURSOR KEYS

CD CD (IJ o::J

-RVS key
lamp

FIGURE 2.13 Location of a key

TAPE CONTROL

In the reverse mode, all characters and symbols which can be input in the normal mode appear

on the screen in reverse highlighting.

For example, pressing the 0 key in the reverse mode inputs the reverse upper case character

and pressing it with the I SHIFT key depressed inputs the reverse lower case character.

The reverse characters and symbols correspond to ASCII codes AOH to FEH. See Figure A.l,

ASCII code table .

As shown in Figure 2.21, the dot patterns constituting reverse characters are set/reset in the exact

opposite state of those comprising normal characters.

FIGURE 2.14 A title generated in the reverse mode

The entire display may be reversed by setting terminal PA4 of programmable peripheral interface

8255 to high. For details, see Paragraph 4.3.1.

21

2.2.2 Numeric Pad

The group of keys on the right of the main keyboard is referred to as the numeric pad. It includes

the numeral keys (0 through 9), and the [oo] key, 8 , GJ G and I ENT] keys.

These keys are provided on the numeric pad for the convenience of users who frequently enter numer­

ic data.

lDDDD DDDDDD j
ITDlliJCflJC!:DCWCEJ~CilllEJ§J

CURSOR KEYS

FIGURE 2.15 Location of number pad

TAPE CONTROL

When the I oo] key is pressed once, two zeros are entered, just as if the 0 key were pressed

twice.

A small projection is provided on the face of the 0 key so that the operator can enter numeric

data without constantly looking at the keyboard.

All of the keys on the numeric pad operate without relation to the main keyboard operation mode

or the I SHIFT] key.

8 , G and G keys are also provided on the main keyboard, along with the CR

key, which has the same function as the I ENT] key on the numeric pad.

22

2.2.3 Special Function Keys

The ten blue keys in the upper left of the keyboard, marked Fl through FlO, are called special

function keys. See Figure 2.16.

[DDDDDDDDDDj TAPE CONTROL

FIGURE 2.16 Location of Special Function keys

These keys are undefined when the MZ-80B is activated. The user can define a function for each of

these keys by using the BASIC SB-5 510 DEF KEY statement.

To define the function of special function key I as the BASIC command RUN, execute the follow­

ing statement:

DEF KEY (1) = RUN

Once this statement is executed, special function key 1 performs the function of the RUN com­

mand until it is redefined. Thus, when special function key I is pressed in the direct mode, the follow-

ing appears on the display. Then, by pressing CR] key, the RUN command is executed.

The [c R] key can be defined together with the RUN command as the function of a special

function key, if desired.

Execute

DEF KEY (1) = RUN~

The symbol " r " represents the carriage return function, but there is no key on which this

symbol appears. To enter this symbol, press the [sn LOCK) and r-GRPH) keys simultaneously. When

special function key 1 is defined in this manner, the command may be executed just by pressing the

key once.

23

It is convenient to define the functions of special function keys as direct mode commands and

statements. However, numerical data and string data can also be assigned to these keys. The following

statement assigns the character string "Personal Computer MZ-80B" to special function key 8.

DEF KEY (8) = Personal Computer MZ-80B

To obtain a listing of the definitions of the special function keys, execute the KLIST command.

When KLIST is executed, a list such as that shown in Figure 2.17 is displayed.

KLIST
I LIST~

2 RUN~

3 RUN lOOt

4 AUTO----y

5 CONT1t

6 2.7182818
7 3.1415927
8 Personal Computer MZ-80B

9
10 KLIST~
Ready

FIGURE 2.17 List of special function keys

This list shows that special function keys I through 5 are defined as commands plus the I c R)

key; special function keys 6 through 8 are defined as data; special function key 9 is undefined and

special function key 10 is defined as KLIST I c R)

Labels are provided to enable the user to indicate the definition of each key under the transparent

cover above each key.

These labels are useful when the same functions are assigned to the special function keys every time

the MZ-80B is activated.

24

2.2.4 Cursor Control Keys

The four yellow keys beside the special function keys are called cursor control keys. An arrow

appears on the face of each key. See Figure 2.18.

lDDDDDDDDDDj
CillCillCillQDG:DCill~CillCTIJ~

FIGURE 2.18 Location of Cursor Control Keys

Each key moves the cursor in the direction indicated by the arrow.

TAPE CONTROL

The cursor moves one position every time a cursor control key is pressed. Therefore, to move the

cursor to the right 3 positions, the ~ key must be pressed three times.

To move the cursor repetitively, hold down the [SHIFT] key and press the appropriate cursor

control key. The cursor will then move continuously until either of these keys is released.

When the cursor is to be moved to a position nearer to the upper left corner of the screen than to

its current position, first press the [H~~E] key to move the cursor to the home position, then move it

with the cursor control keys to save time.

25

2.2.5 Cassette Tape Deck Control Keys

The four green keys above the number pad are called cassette tape deck control keys. See Figure

2.19.

[DDDDDDDDDDI TAPE CONTROL

CURSOR KEYS

ITJ c:TI CD CTI

FIGURE 2.19 Location of Cassette Tape Deck Control K~ys

These keys are connected directly to the cassette tape deck and perform a different role than the

other keys.t

The functions of these keys are as follows:

I REW) Rewinds the cassette tape.

QU Fast forwards the cassette tape.

[sToP) Stops the cassette tape.

[EJEcT) Ejects the cassette.

These functions have no relation to the mode in which the computer is operating.

Recording and reading data to/from the cassette tape are controlled by the software.

With BASIC SB-551 0, recording or reading of program text is performed by the SAVE and LOAD

commands, respectively. Recording or reading of data files is performed by the PRINT /T and INPUT/

T statements, respectively.

Instructions for recording and reading are provided with all system software.

t All other keys are scanned by the Z80A-PIO and processed by the software (See Paragraph 4.3 .3), but the cassette

tape deck control keys directly control the motor and eject mechanisms of the tape deck.

26

2.3 Display

There are two display control system: character display control and graphic display control. The

character display control system displays character on the CRT screen using the character V-RAM and

character generator. The graphic display control system displays optional curves and dot patterns of

high resolution using the graphic V-RAM.

2.3.1 Character display control system

Characters generated by the character generator of the MZ-80B are shown in FIGURE 2. 21 along

with their corresponding ASCII codes.

As shown in the figure, character from "~" ($1 F) through "1r" ($FF) can be displayed on the

CRT screen.t Input of these characters from the keyboard was explained previously. Characters en­

tered are displayed at the position where the cursor is located. The cursor pointer is controlled by the

monitor program. The cursor position is changed by one of control codes $01 ~$06. See ASCII code.

table: FIGURE 2.22.

FIGURE 2.20 shows forms in which the character "A" can be displayed control of the character

display control system.

40 characters/line

80 characters/line

Normal mode

•
Reverse mode

•• • • ., .
•••••• • • • • • •

FIGURE 2.20 Character "A" displayed in various modes

t Some special characters, such as <? , H and C which indicate movement of cursor are displayed when a BASIC

program file generated by the Sharp MZ-80K personal computer is converted .

u
L 0 1

0

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

2 3 4 5 6 7 8 9 A B c

FIGURE 2.21 All characters along with corresponding ASCII Code

Note : U.
L.

. Upper 4 bits

. Lower 4 bits

27

D E F

28

UPPER 4 BITS
0 I 2 3 4 56 7 8 9 ABC DE F

FIGURE 2.22 ASCII Codes of characters and control codes

29

2.3.2 Graphic display control system

FIGURE 2.23 shows an example of a projection of a three-dimensional object displayed using

BASIC graphic control statements. Refer to BASIC Language Manual.

FIGURE 2.23

Chapter 3

Option Device Installation

This chapter describes procedures for installing optional devices in the main cabinet of the MZ-

808.

MZ-80RM

MZ-80GM

MZ-80EU

Expansion Memory Module: 32K byte RAM card

Graphic Memory 1: 8K byte RAM card

Expansion 1/0 Port

These optional devices must be installed properly according to procedures explained in this

chapter.

Other optional devices are connected via the expansion I /0 port. General procedures and notes on

connecting optional devices via the expansion I /0 port are contained in the last part of this chapter.

31

32

3.1 Installation of optional devices in the main cabinet of MZ-80B

Optional devices which can be installed in the main cabinet of the MZ-80B are expansion memory

module MZ-80RM, graphic memory I MZ-80GM and expansion 1/0 port MZ-80EU.

FIGURE 3.1 shows the locations in which these devices are installed.

MZ-80RM

MZ-80EU
MZ-80GM

FIGURE 3.1

33

Before installing optional devices, the upper part of the MZ-80B, that is, the display and cassette

tape deck section must be removed.

First, turn the MZ-80B power switch off and pull the power plug out of the AC outlet. Remove

the two retaining screws on the rear side of the main cabinet. See FIGURE 3.2.

Retaining
screw

FIGURE 3.2

------~~-- - --

..L-------Retaining
screw

Gently lift the upper part of the main cabinet and support it with the supporting arm. See FIG­

URE 3.3.

Supporting arm

FIGURE 3.3

CAUTION: If the power is turned on with the upper part of the main cabinet lifted, electrical

parts may be damaged.

Metal articles remaining in the cabinet can cause serious trouble.

Ensure that no paper clips or other metallic articles fall into cabinet.

34

3 .1.1 Installing the Expansion RAM

The 32K byte expansion RAM card, MZ-80RM, is inserted in the 20 pin connector on the CPU

board as shown in FIGURE 3.1. This connector is located on the right rear side of the CPU board as

viewed from the rear. The standard 32K byte RAM card is already installed beside the expansion RAM

connector. The connector pins on the bottom of the expansion RAM card can be inserted into the 20

pin connector on the CPU board.

The connector cannot be inserted backwards. Visually check orientation of the expansion RAM

card before inserting it. See FIGURE 3.4.

FIGURE 3.4

35

3.1.2 Installing the Graphic Memory 1 Card

Graphic memory 1, MZ-80GM, is an 8K byte RAM card which is installed on the under side of the

upper cabinet as shown in FIGURE 3.1. Four white posts are provided on the bottom panel of the

upper cabinet for affixing the graphic memory I card.

Affix the graphic memory 1 card to the posts with the components surface facing downward and

the flat cable output port facing the front. See FIGURE 3.5.

FIGURE3.5

After affixing the graphic memory 1 card, connect the wide 40 wire flat cable connector to termi­

nal CNS on the CPU board with the ".6" markings aligned. Then, connect the narrow 10 pin flat cable

connector to terminal CN13.

Do not mistake CN4 located beside CNS for CNS; CN4 is for connecting the expansion I/0 port.

For CN2 on the graphic memory I card, see paragraph 3.2.1.

FIGURE3.6

11..----- CN2: signal port connected to
graphic memory 2

----~-10 wire flat cable

~---- 40 wire flat cable

- I
/

36

3.1.3 Installing the Expansion 1/0 Port

The expansion 1/0 port, MZ-80EU, is installed in the open space at the rear of the lower cabinet as

shown in FIGURE 3 .1. Installation procedures are illustrated in FIGURE 3.7.

1) Open the I/0 module access window by removing

the two screws holding the window cover panel as

shown above.

3) Affix the expansion I/0 port on the inside with

two screws as shown above .

2) Insert the expansion I/0 port MZ-80EU as shown

above .

4) Affix the expansion I/0 board at the window with

two screws as shown above.

FIGURE 3.7

After the expansion 1/0 port is installed, connect the 40 wire flat cable connector to terminal CN4

of the CPU board and the power supply cable connector to terminal CN7 of the CPU board.

37

3.2 Setting option device interface cards in the expansiOn 1/ 0 port

All interface cards for optional devices other than those explained in paragraph 3.1 are inserted in

the expansion I/0 port.

3.2.1 Setting the Graphic Memory 2 Card

Lift the upper cabinet and set the cabinet support arm. Insert the MZ-80GMK in position No. 4

(located in the upper right hand corner as viewed from the rear) of the expansion I/0 port as shown in

FIGURE 3.8.

FIGURE 3.8

Then, connect the 10 wire flat cable connector of the MZ-80GMK to terminal CN2 of graphic

memory 1 card MZ-80GM . See FIGURE 3.9.

10 wire flat cable

FIGURE 3.9

38

3.2.2 Other Interfaces

FIGURE 3.10 shows the rear view of the expansion 1/0 port access window. The graphic memory

2 card, MZ-80GMK, is already set in position No. 4.

For details on setting 1/0 interfaces for the floppy disk drive, printer and color display device,

refer to their respective manuals.

FIGURE 3.10

Chapter 4

Hardware Configuration of the MZ-808

This chapter includes an explanation of the major units of the MZ-808 and the following diagrams.

• Standard system configuration

• Memory configurations

• 8255 signal system

• 8253 signal system

• PIO signal system

• All circuit diagrams

These materials are for reference only and the Sharp Corporation is not obligated to answer any

questions about them.

39

40

4.1 The MZ-80B system diagram

Figure 4.1 shows the standard system configuration of the MZ-80B personal computer.

RESET
SWITCH
IPL
RESET
SWITCH

FRAME
GROUND AC

~ .-----1,..] u
POWER SWITCH

,c:=::::::1

II
POWER UNIT

I +SV
POWER +12V

-SV ONIPL
GROUND

RESET -
l R

E .____,. s
E

,J T
-

A

'I

Z80A
A

..
CPU

I"
A

'I

<I>

CRYSTAL
4MHz

16 ~ OSCILLA-
MHz1_ TOR 31.25kHz

JL

L
E
D

"

Main Memory

RAM
32k bytes

IPL 1--

ROM 2k bytes I--

L r
RAM

32k by tes
(OPTION)

ADDRESS
SELECTOR

r I
J

. <

L I=

1111
I=

ADDRESS BUS

II 11

11 -
~

-

HA HI IS

I
J~
il_

CONTROL BUS
;>.

r-

HAND SHAKE
Z80A-PIO

PORTS <I>

i' '-

1--

KEYBOARD

FIGURE4.1

CHARACTER SPEAKER

GENERATOR AUDIO ROM 2k bytes r=: AMPLIFIER

r--\ V-RAM
VL-

CRT DISPLAY
CHARACTER

-v' 2k bytes [\r OSCILLA-
~

v

TOR SHIFT E
~ L REGISTER

E VIDEO GENE-- c
- V-RAM - T RATOR
- GRAPHIC I ,--J\ 0

~ rt 111
8k bytes

v {OPTION)

I I II II II I
,------'-

II I II V-RAM

II II p GRAPHIC II

II \
E 8k bytes

ADDRESS BUS
R (OPTION)

! I

II r--t~
p
H ,.-_

~ E 0
DATA BUS R p

II
;:. A T

L I
CONTR<)L Rl S I 0

: I
v I N

'-'
0

' " 7 " p
0

8255 8253 R

co C1 C2
T

r--- uu
1 sec 12 h '---

CASSETTE TAPE CASSETTE TAPE
DECK 1/0 DECK

·"'

The MZ-80B System Diagram

No.1
I

No.6

41

42

4.2 Memory configurations

4.2.1 Memory map for IPL state

When the IPL (Initial Program Loader) in the boot ROM starts, the file (cassette tape file or

diskette file) is read automatically. The memory at this time is as shown in the map in FIGURE 4.2.

Address
$0000~-------------c--~,

$07FF t----------,

$8000

empty

RAM(I)
32k bytes

Initial Program Loading

FIGURE 4.2 Memory map for IPL operation

Program File

Boot ROM addresses range from $0000 to $07FF. This IPL loads a system program (for example,

BASIC interpreter, PASCAL or Assembler) to the head of RAM (I) (the standard 32k-byte package).

In this state, the RAM (I) addresses range from $8000 to $FFFF. After loading, the addresses are

inverted from the IPL state to the normal state so that the system program is activated.

When the IPL RESET switch (one of two reset switches provided on the back of the MZ-80B) is

pressed, IPL is performed in the same manner as described above.

43

4.2.2 Memory map for normal state

When the machine shifts from the IPL state to the normal state, the memory becomes as shown in

the map in FIGURE 4.3.

Address.--------------,
$0000

RAM (I)
32k bytes

$7FFF~--------------------~
$8000

RAM (II)
32k bytes

(expansion area)

$FFFF~--------------------~

FIGURE 4.3 Memory map for the normal state

In the case of the 32k bytes standard RAM, addresses range from $0000 to $7FFF; in the case of

the 64k bytes full RAM, the address space consists of the full area from $0000 to $FFFF.

When addresses are changed from the IPL state to the normal state or vice versa, the operation is

controlled by output terminal signals cl' c3 of port c of the 8255 as described later.

44

4.2.3 Memory map for V-RAM accessing state

Memory addresses are changed when the V-RAM is accessed. The RAM addresses in the normal

state range from $0000 to $7FFF for RAM (1), and from $8000 to $FFFF for RAM (II) . When the

V-RAM is accessed, addresses $DOOO to $FFFF of RAM (II) are disabled so that the V-RAM will be

access object.

This changeover is effected by A7 of PIO. When two pages of graphic V-RAM are used, selection

of graphic pages (I) and (II) is made by OUT port $F4. This operation is shown in FIGURE 4.4.

Address
$0000

$7FFF
$8000

$CFFF

$DOOO
$DFFF

$EOOO

RAM I

RAM IT
(Option)

RAM IT

RAM IT

'

Addr.

Addr.

~:Switching by PIO A,

I
Addr. I V-RAM ,,~ddr., Character

~
/Switching by OUT port $F4

Addr. Addr.

$FFFFL_ ________ ~~

V-RAM
Graphic I
(Option)

V-RAM
Graphic IT
(Option)

Page 1 Page 2

FIGURE 4.4 Switching of main memory and V-RAM (1)

Address switching of the V-RAM as shown above is effected by monitor subroutine PRINT or the

like.

45

On the other hand, when the V-RAM is accessed with the program in main memory following

$DOOO, the V-RAM addresses may be changed to $5000 to $7FFF by setting the A6 terminal of PIO

to high state.

That is, the following instructions are executed.

IN A, (E8H)

SET 6, A

SET 7, A

OUT (E8H), A

This address switching is shown in FIGURE 4.5.

Address
$0000 .--------,--::o

RAMI

Switching by PIO A6

$5000
$5FFF

$6000

$7FFF

$8000

RAM I

RAM I

RAM II
(Option)

$FFFF~----~-~

V-RAM
Character

r
V-RAM

Graphic I Addr.

(Option)

~

Page 1

Switching by OUT port $F4

V-RAM
Graphic II
(Option)

Page 2

FIGURE 4.5 Switching of main memory and V-RAM (2)

46

The relation between V-RAM output and the CRT display is as shown in FIGURE 4.6.

Address
$DOOO

I ($5000)
$D7CF
($57CF)

V-RAM
Character

Address
$EOOO
($6000)

$FF3F

($7F3F)

CRT
Display

Address
$EOOO

V-RAM
($6000)

V-RAM
Graphic I Graphic II

$FF3F

l;_ ($7F3F)

Switching by OUT port $F4

FIGURE 4.6 Relation between V-RAM and CRT display.

As shown in the figure, V-RAM characters and graphic (I) and (ll) can be displayed simultaneously.

The relation between V-RAM addresses and corresponding positions on the CRT display is as

shown in FIGURE 4.7.

• V -RAM characters

$DOOO $D027 $DODO
($5000) ($5027) ($5000)

25 lines 25 lines

$D3CO $D3E7 $D780
($53 CO) ($53E7) ($5780)

40 characters 80 characters

• V-RAM graphic
.-------------------~ NOTE:

200 dots

$EOOO
($6000)

$FF18
($7Fl8)

320 dots

$E027
($6027)

$FF3F
($7F3F)

The addresses when V-RAM
is set in the $5000~$7FFF
mode are shown in paren­
theses.

FIGURE 4.7 V-RAM addresses and CRT display

$D04F
($504F)

$D7CF
($57CF)

47

Input and output of the V-RAM for graphic display can be controlled as follows by means of the

data delivered to OUT port $F4.

Output data V-RAM GRPH I V-RAM GRPH IT

to port $F4 Input Output Input

00 0 X X

01 X X 0

02 0 0 X

03 X 0 0

oc 0 X X

OD X X 0

OE 0 0 X

OF X 0 0

Note Input 0: V-RAM transfer enabled

X : V-RAM transfer disabled

Output 0: shown on CRT display

X : not shown on CRT display

Output

X

X

X

X

0

0

0

0

If 03H is delivered to port $F4 with OlH stored in $EOOO, then OlH is transferred to V-RAM G-ll

$EOOO but is not displayed on the CRT because the display indicator is set at V -RAM G-1.

48

4.3 Signal system for the 8255 block; 8253 block and PIO block

This section describes the configuration of signal systems for the 8255 block, 8253 block and PIO

block, which perform essential roles in system control.

Connection of the 8255 , 8253 and PIO chips in the input/output ports is shown below, together

with a summary of the service modes of the port of each controller.

Table 4.2

CPU's

Input/Output port
Controller Service mode of each port

$EO PA output

$El PB input
8255

$E2 Pc output

$E3 mode control

$E4 Co mode 2 (16 bit rate generator)

$E5
8253

cl mode 2 (16 bit rate generator)

$E6 Cz mode 2 (16 bit rate generator)

$E7 mode control

$E8 A output mode 3 (bit control)

$E9 mode control A
Z80A-PIO

$EA B input mode 3 (bit control)

$EB mode control B

49

4.3.1 Signal system for the 8255 block

The 8255 (Programmable peripheral interface) is responsible for control of the automatic cassette

deck, reverse operation of the CRT display, blank control, memory switching between the IPL and

normal states, control of source pulse output for sound generation and control of keyboard LEDs.

FIGURE 4.8 summarizes the signal system for the 8255.

Keyboard

RVS
LED

GRPH

SFT LOCK
8255

PA7
Cassette deck control PA6

PA, D7 8
PA4 I

STOP PA3 Do
PLAY PA2

FF. REW ready PA,
MOTOR ON PA0

A,

Write data PC7
Ao

RD/WR PC6

FF. REW latch PC 5 -
EJECT PC 4

RD
PC 3

- -
WR

PC2

Read data PC, RESET
Set ready t--- PC0

-

Pawl provided/not r-- cs
provided .------- PB 7

PB 6

PB 5

Display /sound control
PB 4 __., PB 3

--10 PB 2

REVERSE --10 PB,

Required-BLANK
I

PB 0

V-BLANK +5V GND

SOUND GATE

SEL MEMORY [

BOOT/NORMAL

PIO B7

FIGURE 4.8 Signal system for the 8255 block

50

The control functions of the ports are listed below:

Table 4.3

Port A

Port
Active Control function

terminal

PA7 H Lights LED for ('Rvs]
PA6 H Lights LED for r-GRPH I
PAs H Lights LED for (sFr LOcK]

PA4 L Reverses B/W of entire display screen.

PA3 H Stops cassette operation.

PA2 H Plays cassette.

PA 1 H Prepares for FF state (prepares for REW with L).

PA0 H Activates reel motor.

Port B

Port
Control function Active

terminal

PB 7 H Detects break key during cassette play.

PB6 Input terminal for cassette data.

PBs L Indicates tape is set in the cassette deck.

PB4 L Applies pawl to prohibit writing cassette tape.

PB 3

} Reserved. PB 2

PB 1

PB 0 H Indicates fly-back between frame displays.

Port C

Port

terminal
Active Control function

PC 7 Outputs data to be written into cassette.

PC6 H Sets head amp to READ state (WRITE with L).

PCs H Latches ready state for FF and REW.

PC4 L Starts eject operation.

PC 3 L Starts IPL.

PC 2 Source pulse output sound generation.

PC 1 H Sets memory in normal state, starting $0000.

PC0 H Unconditionally clears the display screen.

4.3 .2 Signal system for the 8253 block

Counters #0, #1 and #2 of the 8253 (programmable interval timer) work as a built-in clock.

These counters are used as mode 2 rate generators, and are all 16-bit binary counters.

51

Counter #0 counts 31.25 kHz input pulses and delivers a pulse to OUT 0 every second; counter

#1 counts the output pulses of counter #0 and delivers a pulse to OUT 1 every 12 hours ; counter #2

counts the output pulses of counter #1 and switches between 0 and 1 to work as an AM/PM flag. See

FIGURE 4.9.

8253

OUT2
Counter GATE2

#2
CLK2

12 hours

OUT I

8
D Counter

GATE I
I 7 #1

Do CLK I

1 second

OUTO
Counter GATEO

#0
CLKO ~---- 31.25 kHz

FIGURE 4.9 Signal system for the 8253 block

52

4.3.3 Signal system for the ZSOA-PIO block

The Z80A-PIO (Parallel Input/Output interface controller) is responsible fo r output of the strobe

signal for keyboard scan, input of key data, setting the key strobe to low level, address switching for

V-RAM and output of the 40/80 character mode selection control signal.

FIGURE 4 .1 0 summarizes the signal system for the Z80A-PIO.

Key data
input terminal

8 ports

Port B
handshake

r-

"====
I

r-t-

Key strobe
ou tput terminal

12 ports

PortA
handshake

'--

R SEL V-RAM AD

SEL V-RAM AD

SEL 40CHR/80C

R

HR

r--

154

1..-

PIO

D,
B, I 8
B• Do /

B,
B.
B•

B/A SE L B,
B, C/D SE L
Bo

B ROY
B STB IORQ

RD

A,
A•

CE

,-- A, Ml

A•
A,
A,
A,
Ao

ARDY lEI vlf\11

A STB lEO

INT
4>+5V GND

r r i

FIGURE 4.10 Signal system for the PIO

A,

Ao

[

+5V]

~

~

Data bus

PIO cont ro l

Ml

RESET

Interrupt
control

53

The control functions of each port are listed below:

Port A

Port
Active Control function

terminal

A7 H Assigns addresses $DOOO-$FFFF to V-RAM.

A6 H Assigns addresses $50000-$7FFF to V-RAM.

As H Changes screen to 80-character mode (L: 40-character mode).

A4 L Turns all key strobe signals to L.

A3

11 Output strobe signals for keyboard scan.
A2

AI

Ao

Port B

Port
Active Control function

terminal

B7

B6

Bs

B4
> Data inputs for keyboard scan.

B3

B2

B1

Bo
I-'

54

The relationship between strobe signals and bit data during keyboard scan is shown in Table 4.5.

Strobe signals are delivered to four terminals (A3 , A2, A 1 , A0) , fed into demultiplexer 154, then

delivered to 12 keyboard strobe input terminals. Keys are discriminated by strobe signals and key

data.

For instance, when the strobe is '6H' and the key data is 'F7H', it indicates that the 'S' key is

being pressed .

Table 4.5 Key scanning strobe signals and bit data

E MODE 0 1 2 3 4 5 6 7 ~
F I F 2 F3 F4 Fs F 6 F7 Fs 0

0

F9 F IO 8 9 00 • + - 1
1

0 1 2 3 4 5 6 7 2

1
TAB SPACE icR i [!] ITJ G G I BREAK I 3

+- a b c d e f g
I f-- A

~
B f-- c f-- D T E :r F f-- G

R=
4

2
-+ • • f--

H
h

I
i

J
j

K
k I

M
m n 0

nr ~
f--

~
L

iF
- N f-- 0 PI= 5

3 F= £ 0

p p
Q

q
R

r s s
T

t u u v v w
f-- i-- 11= p- I ;r f-- w f-- 6

3 hr r • h
X y z - \

I t > < X ,.- y f-- z
~

A

f-;:- - ? - f-- f-- 7
r-r \ .!, ' ¥ 1T

- ! " # $ % &
0 1 2 3 4 5 6 7 8

4
() * + = \ I

2 8 9 @ [l 9
'

-

} ~ CLR1 INST
l ;:;;; (.i1 A 0

5 :r: Q

SPCL GRPH ISFT LOCK SHIFT RVS B

55

• For key interruption

As stated above, in the MZ-80B, key interruptions can be received by PIO control. Illustrated

below are examples of simple key interrupt and response settings.

Try to program the machine so that interrupt routine $5080 is called the moment the [BREAK I
key is pressed . In this example the address table of the interrupt routine is set to $3370 and the

vector interrupt of interrupt mode 2 is used. Also, the PIO is set in mode 3 and no handshake bus is

used.

As shown in Table 4.5, the [BREAK I key is indicated during keyscan by strobe signal 3H and bit data

7 (7FH). Therefore, the strobe signal must be set to 3H and the interrupt mask must be set to 7FH.

It is also necessary to set 70H in the 8-bit interrupt vector (LSB being '0') .

The setting codes used so far are as follows :

LD A, 33H

LD I , A

IM 2

LD HL, 5080H

LD (3370H), HL

LD A, 70H

OUT (EBH), A

LD A, CFH

OUT (EBH), A

LD A, FFH

OUT (EBH), A

LD A, 97H

OUT (EBH), A

LD A, 7FH

OUT (EBH), A

IN A, (E8H)

AND FOH

OR 13H

OUT (E8H), A

) Setting of vector register

) setting of interrupt mode 2

} Setting the address of the interrupt routine in the interrupt address

} setting the interrupt vector (8-bits)

} Setting port B in mode 3

} Setting all port B terminals in the input mode

} setting of interrupt control words, or enabling interruptions

}
Setting of mask words ; bit data 7 (MSB being 'L') is masked by writing
7FH

)

Setting of the key strobe delivered to port A to 3H. The strobe gate is
opened with A4 set to 'H'

After setting modes as described above, the address table at $3370 is referenced by the vector

interrupt when the [BREAK I key is pushed at any point, and interrupt routine $5080 is called.

After the interrupt routine is completed, the instruction used to return control to the main pro­

gramisRETI.

56

4.4 The MZ-80B circuit diagrams

This section includes all MZ-80B circuit diagrams for reference. These diagrams are arranged as

follows:

(I) CPU board , block 1 : CPU signal system

(2) CPU board, block 2

(3) CPU board, block 3 : 8255 and PIO signal system

(4) CPU board, block 4 : RAM signal system

(5) CPU board, block 5

(6) CRT display control

(7) Cassette tape deck control

(8) Power supply

(9) Graphic Memory 1 card (optional)

(10) Expansion 1/0 port (optional)

(11) Graphic Memory 2 card (optional)

'T1 -2
G;
~ --
("")
'"tl
c:::
o"
0

""
p.
o"
0
n
;-;"

("")
'"tl
c:::
"' c§'
r::..
~
~
~ s

NST
(IC 23)

{IC23}
RES

BST
(IC23l

IC 32
LS04

' ('-..._

!OK L $ 14

'

IC 32
L S04

IC32
LS04 '" j IC26

{ I PL)
BOOT RESET 3

, ('..._ >o" I I ' I >o'-

(RESET)
RESET '

EXRESET -~ IC 32
L $04

Mf II

~~~~ ~~3~ 

~-8 

"' I ' C59 IC 26 JC32 
I I' ,J,s.Bp LSI4 LS04 

12 ' 0 

ll•cp 

IC34 
LS74 

=OJ 
IC33 
LSOO 

JD 
3 

CK 

1c 2 
G #I 

R7 RIO Rll R/3 
IK IK 4.1K IK 
~ IS I I 

11 L$245 

DIR 
EXWAff A 8~07 

. 
p 

0 

- I• 
0 

c 
ir734 

L S74 

IC33 IC33 

NMl 

INT 

EXINT 
!NT 

EXWAIT 
1 

IC 17 z
4 

_ 
RFSH ' LSOS WAIT 

MREQ1 ~ 

IORQ '
4 

RD ~·~----------------, 
~ ~'~--------------. 
f 

1c 7 
L S244 

r-
I 

RESET ~:~~ : I I II j ::1 
,, 28

1RFSH ,, 19 
MREQ 

~
LSOO LSOO 

' ' RESET 

IORQ 

R5 
VIR 
Ml ~ " 

' 

' 20 
IORQ 

' 21 R5 y " zz WR 
IC5 
LS04 

RAMWR 

PIO t} 

4M 

' 
~~~: : I :1 I 

I G

.J.

res rc s
L$04 LS04 I

"
"

f!!-,
2G

.J.

1c 1
L SOO

IC5
LS04

12 ~ fc,.---------------_._,'l

~------------~" ~~'~'----------------
IC5
L S04

27 Ml
18

HALT

26 RES ET

~06
~05
~04
~03
~02

~01
¢

" Do

':.!.

1c s
L S244

,
A"

A"

" Al3

-c:r- A"

A"

Aro

A'

A•
I G 2 G

i 'i

IC 10
L S244

A> ' A'

A' ' A•

" A• A '

A• -c:r- " A•

A3 " A3

" A'
A r ' A r

' Ao
IG 2G

i 'i

M Z - 80 8 (I)

v.
'oo,j

58

FIGURE 4 .12 CPU board, block 2

~
co
0
co
N

2

~0

• ~ ~ ~ ~ i .

· '~'-" ., co
:~ ~~ 'r

' ' . u
~ ~ li li Q

:~;;<i:.'i .. <D<D<II<D<II

I~

'!ii11ffi
..

n (
•

FIGURE 4.13 CPU board , block 3 : 8255 and PIO signal system

r<l

m
0
m

N
2

59

60

~.
0 - N " ~ .. ,.0 ~

oacooQOO ~ g

::;;:
0:::

'-

~
m
0
m

""" .. !:' ! ~ ~ N

·~ I } :~
::;;:

!::!~ . -
~ ... ~ = .. " ~

- 1-

1- 1-

- 1-- 1-- 1-
~"' "• - i ~ r-

~-
> 0

"- ~ f= ~

- 1-

,., ' ~ - - f- f- - t- t-
. : - - f- f- - t- 1- ~fr e]~ ~ - 1- f- - t- t-

~! • - ~ f- = t- t-

= ; ~ t- 1-
= 0 = N ~ - -. t- -. 1- -,
: 0 j c = , 0 i ~ 1-

: 0
- > 0 t-

: 0
1- , 0

~ t- ~ t- - ~ 1- 1- ~

!---'
- t- t- - 1- 1-- t- 1- - 1- 1-

'
- - r- - - r- -

f- t- - t- t-

t- t- - '- t- I~ /
t- t- - - t- ·~--~0'
t- t- - - ~ t- t- - ' = ' i ~ ~ ;:;:~ - - 1-

,;g. - ; ~- - . f- :a t- ~ 1- ~ - ~- ~ 0 ~
f- t- - -
t- t- - - 1-

- '----- - - '---- -

FIGURE 4.14 CPU board, block 4: RAM signal system

61

CN5 --MZ-SOGM

CN4,5 40P

I Al5 2 Al4

3 Al3 4 Al2

5 All 6 AIO

7 A9 8 AS

9 GNO 10 A7

II A6 12 A5

13 A4 14 A3

15 A2 16 AI

17 A0 18 GNO

19 07 20 06

21 05 22 04

23 03 24 02

25 01 26 00

27 GNO 28 NMI

29 EX WAIT 30 EX INT

31 EX RESET 32 RESET

33 lEO 34 HALT

35 MREQ 36 IOREQ

37 RO 38 WR

39 Ml 40 BUS0

-5V

+12V

+5V

+ + + To MZ-SOEU
+

GNO

FIGURE 4.15 CPU board, block 5

'Tl

cs c::
:;r::l
trl
~ -c:;r,

n
~
8:
en
'0

~
('")

0
~ e..

MZ -808 DISPLAY SE.;;.C..;..T;..;;IO;.;..N;.._ ___ _

Sound
input

Sync

Video

GND

E

+12V

1
~ I

VS P0090P-16YA

R2002 C20n2 500(8) 150P
RVR-8 0015PA
ICONTR AST

~~ g~~""' ,::l:r "~lml~

r-"~
.....

02001
02Z7.5A

11

I
R20 05

R2001 120 02003
47 R2013

12 V 3 .31112W)

~

~

gy)

R2021 ~ 1+
330

IK

QPWBF 0324PAZZ

02006

R~~~g039TA r--+---{

C2040
4l7)l/50V

RTRNF2015TA t

0\
N

ERASE
HEAD

REC/PB
HEAD

STOP _._

r J3~~~~2
STOf>

S.+1 2V GZV- 2 t:,:~
RYI 1-42 .9mA,20VAI 'ItO ,,--a- - - sg - - ,-i..,

I I

r~...---.{~>,-+---+' -o,-' _ _!3 - j (;~~~ ~~)

t sv

03012
2SC2562Y

f~~~:,?¢--+-----'1
J3004·1

CN3002·2
r-- -
1

Vee 1
CIN3002·3

t::c h--
:oose38
L _ _ _

CN3002·1

0 3!03
1515 55

J 3003-S WHITE

63

CASSETTE CONTROL

R3ll6

"'"

R311S R3117
A3120 IOKG 2MG
~ . 6KG

S.+I 2V

tSV

C3026
100)0

J3006-4
S. + 12V

NS. + 12V o-- --4b.t::--.

I
I

- -'
C3021

IOlZ

R302 6

O.L .

L:...._. _ _:.:"+--~J3005-7
'---4--+------.---¢J3005·9

.---.---t~J300s-e

C3020
ro:sz

R302 5

"

NS.+ 12V
0300 ..
tSIUI!I

03015

~~~:J~t:11~~~~~Z=S8~7~6~ZP~L------~·J3005 · 3l 

03020 
2587610 

03005 
ISI885 

BRKL 

J3005-4 J 

':>o!!-_J~f')~I/:;~;J_~~'::J_ _____ ~J3005 - S 1 
PNL L 

J3005-6 J 

>"'----1-fl?:~~:;iSL::~~'-------!J•oos - , ) 
CM 

J3005 - 2J 

FIGURE 4.17 Cassette tape deck control 



"%1 

c=i c 
G; 
~ -00 

'"1::1 
0 
::;;: 
(1) .... 
en 
~ 
'0 :z 

;> 

1 
10 
I 
I 
I 
I 

y 
'"" 0 

FILTER PWB ,---------, 
I I 
I FlO I I 

I 
I 

CIOI I '"'' l il 'f:~ ' (F-250V l 

(F 250 V) : 

I 

I 
I 

I 
I 
I 
I 
I 
I 

T I OI 

T . F 

0\ 
~ 



4 Al2 

II 6 AIO 

:.'=•o--t-':,~+-':'-:~:---1 
: ~ : !"-----~-'-': :+-':'~~'---j 

1-':f'~+-A::_~::_t: :+-'GA:,:N~,----j 

1-'~:.:~+-a"-';'----+~""~+-'~'-'='---j 

l-'~~~+-at''--,'--_-_,+f'2"'
2

c:-:1-=-i~i~-=-~ 
27 28 

~~ -+~::'~+-_--1 
33 34 -

35 36 -

37 RD 38 WR 

39 _ _._•.o.:o:..L.------' 

(To g~y3 s1~RD) 
;.4:-;I"'G"'OUT 42 CSED 

43 I WR 44 F4 - F 7 

45 +SV 46 8 M 

47 VB L K 48 l M 

49 GND 50~ 

IC IB 

A3~A Az o---: 
A ,..___1 

·.~ Ao- -

IC 5 
L $ 157 

y. 

" 
' , 

r-t 

IC IS IC 16 

4> , ~ 
~10 10

2 

~20 

IC 7 
L $ 157 

12 30 zor'+---+------t-----------, 

~ G l 

30f"~---+-------~ GO 

F4 -F7 9 ~
2 

tWR :=:;:) ./}''------t--++"1
9 

+· 

GND rr 
IC\3 GNO ,------;QY---'"'-'~1 .... 

+SV 
1, Et."2 

IC6 
L$157 

ICS IC 9 
LS I 57 LS42 -

Go J. 3 c 

A12~A Y~ B , !.____ 

2L--
I L_ 

S G 
~ A 0

1 

-

19 22231 2 3 4 ~ 6 7 9 

IC 4 2016 C5 
Ato A9 A8A7 Ask>A4A3A2At Ao ~8 

" LW-,Er--r--r--r-r-,-r-r-1--r--r--r-r-,-r-r-1--r--ro-'E '' 

Rb o--------------l--t-t----+-J• ~·~ I • 
3 

1 
~~ ~ JC I 2KRAM 2016 h 

'--_JJ''-----+-+-'!!j'L_,o,' ,.O£_DT'..;"'n D;-> D.:,.'- DT>-"'Dro _________ __." 
ICI9 

" " 

+SV 

' J 

I M o--------"'j12 CK 

L S08 

·""·i ·N 
c ol-'''-----=-----' I 

~ K Q p'~----------------------------------------------------------~ 

GND 0>---~1>----•~ 
IC 17 
L S I07 

IC21 
~ LSOO 

HBLK D-+-----------~'1__) 

ICI6 
L $04 

VBLK D-+-----------~',' 

FIGURE 4.19 Graphic Memory 1 card (optional) 

IC21 

ICI4 
LS I65 

"" 

(FROM ~:-s~g~K) 
CN 2 lOP 

I Gl 2 CSED 

3 GO 4 GOUT2 

5 GNO 6 B M 

7 V BLK 8 I M 

9 GND 10 HBLK 

"" +SV 

IC I7 

ICI6 
L S04 

f~

8 
¥· L:

0

107 ' 

M Z-BO GM 

65 



'TI 
C) 
c:::: 
::tl 
trl 

"'" N 
0 

~ 
'"0 

~ 
"' 5' 
:3 -0 

'"0 
0 
::4. 

,-.._ 
0 

'"0 
.-+-

5' 
:3 
e:... 
'-' 

I 

3 

5 

7 

9 

II 

13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

35 

37 

39 

(
To CPU BOARD) 

CN4 40P 

CN 7. 8 40P 

Al5 2 Al4 

Al3 4 Al2 

All 6 AIO 

A9 8 A8 

GND 10 A7 

A6 12 A5 

A4 14 A3 

A2 16 AI 

AO 18 GND 

D7 20 D6 

D5 22 D4 

D3 24 D2 

Dl 26 DO 

GND 28 NMI 

EX WAIT 30 EX INT 

EX RESET 32 RESET 

lEO 34 HALT 

MREQ 36 IOREQ 

RD 38 WR 

Ml 40 sus¢ 

RA2 
I Kfi x5 

De 
IC2 

lEO LS08 
12 

3 ~II 

IC2 
LS08 

/"" lEO I IEI2 IE02 

t-- -

( CNI CN2 

\- t-- -
INTi INT2 

A 8 

EX INT 

+5V +5V 
RAI 
IK!l.x4 

nfi?,' D I 
3 

2 
IC I 

4 

0 LS08 w 
iC2 IC I 
LS08 LS08 

IEJ:s IEO:s /E/4 IE04 lEts lEOs IE/6 IE06 

- t--

CN 3 CN4 CN 5 CN6 

t-- t---
INT3 INT4 INT5 INT6 

J 

CNI-v CN6 

A I 8 

t5V I t5V 

D2 2 D3 

Dl 3 D4 

DO 4 D5 

GND 5 D6 

A15 6 07 

Al4 7 BUS¢ 

Al3 8 Ml 

Al2 9 WR 

All 10 RD 

AIO II IOREQ 

A9 12 MREQ 

A8 13 GND 

A7 14 HALT 

A6 15 lEI 

A5 16 lEO 

A4 17 RESET 

A3 18 EX RESET 

A2 19 EX INT 

AI 20 EX WAIT 

AO 21 NMI 

GND 22 GND 

A: PARTS SIDE 

MZ-80EU 

0\ 
0\ 



IC I 
LSI 57 

,----
63 ~8 
G 2 >------lQ 
Go ,_______..!. 
Go~ 

IC2 
L$157 

,-­
Gr~B 
66~ 
G' ,_______..!. 
G•~ 

Ar o--.1! A Y .!.L 
A6~ L 
As o-----:- L 

A4 o----!- S G L p 

IC3 
LS I 57 

,--
Gu ~B 
Gto~ 
G9 ,_____.!. 
Go >-------' 

IC9 
LSI 57 

-
Gt2~8 

S G 

.. , , ••• 4 I,.,. 

IC 17 
LS 42 

,--

F ~ 

3~ 
2 .l.._ 

I.L_ 

~A ¢ L 

'--

Ato A9 As A7 AsA'J A• AJ A2 At AFoo• r"--------' 
IC 19 2016 C:b_ 

2 1 WE 

I 
on 

Gl o--­

C SED o-

IC IS 
LS32 

::)~ 
IC 15 ,1 L S32 

,-------~~·:~~~'~' --+-~','~-r~-r~ICrl~6 ,-2rOTI6-r~-r~~~~~ 

tcts ICI4 Lcstci
4 

I 
'iiR o-------+::::QY----"':~;_:-s-..,32 8 we; ' ~ 

f'" 
~l-r-T""T-,r-,-lrc '12 -,--,2--,0I6r-,-T""T"-,--,--r-~h 

I p5· ~·-
Ro <>-------+------, ~ 

IC 14 IC I3 

5 

L $04 LSOO 

~ 19 

.. I IC 8 2KRAM 2016 t:_ 
" '-'i"'r-,o::;:;.;, "=r,:'-'or:-'i"r-:,.:r":=-, ":r:,-'"r:'------------'Jl. 

IC 7 

~ 
~------------~i-+-t-r,_+-+----------'j6H QH9 2 OIR G te 

A 8 Do <>----------'i 
01 ' 4 02 o----------'i 

0> 
04 

, . 
" 'G 

" 4 F 

" > E 

" "0 
1 0 , o--------- -'-1 " . " " 8 
9 " 
~4 

06 

07 

"c CLH" 

eM o--.QJl-.;:V"----' _ _ :_-~:~~~~~~~~~~~~~~~~~~~~:"---'!"l Jf" • 
GNOo-----------i ,l, L 5245 

ICIS 
L$32 HIV 3 

:~ " ,,g,} ± 
' J c o~'----_J 

Go Gt 62 G> G< G' G• Gr Go G• Goo 

I Mo------~~~~K Q~'~--------------------------------------------------------~ 
GNO o--------~

1 

IC II l LSI07 

IC I3 
h. t t ~. t t ~. t t 

LSOO 

" . 
HBLK 

, 

IC I4 
L$04 

VBLK " " 

O• 8 Qo 

:.~y ~y "A IC 5 IC 6 IC 10 
L S93 L S93 LS93 

R 

']' '!' 'I' 

FIGURE 4.21 Graphic Memory 2 card (optional) 

L 
I 

Gu 

IC I4 
LS04 

I 
3 

5 

7 

9 

r-------o GO 

ln)>!!"----o GOUT 2 

IC I3 
LSOO 

(To ~~ie?0~M) 
CN lOP 

Gl 2 C SED 

GO 4 GOUT2 

GNO 6 8 M 

VB LK a IM 

GNO 10 HBLK 

G02 

IC II 

~y 
MZ -SO GMK 

67 





APPENDIX 

The Appendix includes technical data on the Z80A-CPU and Z80A-P/O for reference. This infor­

mation will be helpful to you in expanding the system. 

69 

~ · 



70 

A.l Technical Data of Z 80A-CPU 

1.0 ARCHITECTURE 

A block diagram of the internal architecture of the Z-80A CPU is shown in Figure 1.0-1. The diagram shows all of 
the major elements in the CPU and it should be referred to throughout the following description. 

13 
CPU AND 
SYSTEM 
CONTROL 
SIGNALS 

1.1 CPU REGISTERS 

INSTRUCTION 
DECODE 
& 
CPU 
CONTROL 

rrr 
+ 5V GND ¢ 

Z-SOA CPU BLOCK DIAGRAM 
FIGURE 1.0-1 

The Z-80A CPU contains 208 bits of R/W memory that are accessible to the programmer. Figure 1.0-2 illustrates 
how this memory is configured into eighteen 8-bit registers and four 16-bit registers. All Z-80A registers are imple­
mented using static RAM. The registers include two sets of six general purpose registers that may be used individually 
as 8-bit registers or in pairs as 16-bit registers. There are also two sets of accumulator and flag registers. 

Special Purpose Registers 

1. Program ctmnter (PC). The program counter holds the 16-bit address of the current instruction being fetched 
from memory . The PC is automatically incremented after its contents have been transferred to the address lines. 
When a program jump occurs the new value is automatically placed in the PC , overriding the incrementer. 

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current top of a stack located anywhere in 
external system RAM memory . The external stack memory is organized as a last-in first-out (LIFO) file. Data can 
be pushed onto the stack from specific CPU registers or popped off of the stack into specific CPU registers 
through the execution of PUSH and POP instructions. The data popped from the stack is always the last data 
pushed onto it. The stack allows simple implementation of multiple level interrupts, unlimited subroutine nesting 
and simplification of many types of data manipulation. 



MAIN REG SET ALTERNATE REG SET 

--
ACCUMULATOR 

A 

B 

D 

H 

I 

FLAGS ACCUMULATOR 
F A' 

c B' 

E D' 

L H 

INTERRUPT I MEMORY 
VECTOR REFRESH 
I R 

INDEX REGISTER IX 

INDEX REGISTER IY 

STACK POINTER SP 

PROGRAM COUNTER PC 

FLAGS 
F' 

c· 

E' 

L ' 

SPECIAL 
PURPOSE 
REGISTERS 

Z-80A CPU REGISTER CONFIGURATION 
FIGURE 1.0-2 

GENERAL 
PURPOSE 
REGISTERS 

71 

3. Two Index Registers {IX & IY). The two independent index registers hold a 16-bit base address that is used in 
indexed addressing modes. In this mode, an index register is used as a base to point to a region in memory from 
which data is to be stored or retrieved. An additional byte is included in indexed instructions to specify a dis­
placement from this base. This displacement is specified as a two's complement signed integer. This mode of 
addressing greatly simplifies many types of programs, especially where tables of data are used. 

4. Interrupt Page Address Register {I). The Z-80A CPU can be operated in a mode where an indirect call to any 
memory location can be achieved in response to an interrupt. The I Register is used for this purpose to store the 
high order 8-bits of the indirect address while the interrupting device provides the lower 8-bits of the address. 
This feature allows interrupt routines to be dynamically located anywhere in memory with absolute minimal 
access time to the routine. 

5. Memory Refresh Register {R). The Z-80A CPU contains a memory refresh counter to enable dynamic memories 
to be used with the same ease as static memories. Seven bits of this 8-bit register are automatically incremented 
after each instruction fetch. The eighth bit will remain as programmed as the result of an LD R , A instruction. 
The data in the refresh counter is sent out on the lower portion of the address but along with a refresh control 
signal while the CPU is decoding and executing the fetched instruction. This mode of refresh is totally transparent 
to the programmer and does not slow down the CPU operation. The programmer can load the R register for test­
ing purposes, but this register is normally not used by the programmer. During refresh, the contents of the I 
register are placed on the upper 8 bits of the address bus. 

Accumulator and Flag Registers 

The CPU includes two independent 8-bit accumulators and associated 8-bit flag registers. The accumulator holds 
the results of 8-bit arithmetic or logical operations while the flag register indicates specific conditions for 8 or 16-bit 
operations, such as indicating whether or not the result of an operation is equal to zero. The programmer selects the 
accumulator and flag pair that he wishes to work with a single exchange instruction so that he may easily work with 
either pair. 



72 

General Purpose Registers 

There are two matched sets of general purpose registers , each set containing six 8-bit registers that may be used 
individually as 8-bit registers or as 16-bit register pairs by the programmer. One set is called BC, DE and HL while the 
complementary set is called BC', DE' and HL'. At any one time the programmer can select either set of registers to 
work with through a single exchange command for the entire set. In systems where fast interrupt response is required, 
one set of general purpose registers and an accumulator/flag register may be reserved for handling this very fast routine. 
Only a simple exchange commands need be executed to go between the routines. This greatly reduces interrupt service 
time by eliminating the requirement for saving and retrieving register contents in the external stack during interrupt or 
subroutine processing. These general purpose registers are used for a wide range of applications by the programmer. 
They also simplify programming, especially in ROM based systems where little external read/write memory is available. 

1.2 ARITHMETIC AND LOGIC UNIT (ALU) 

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU. Internally the ALU communi­
cates with the registers and the external data bus on the internal data bus. The type of functions performed by the ALU 
include: 

Add 
Subtract 
Logical AND 
Logical OR 
Logical Exclusive OR 
Compare 

Left or right shifts or rotates (arithmetic and logical) 
Increment 
Decrement 
Set bit 
Reset bit 
Test bit 

1.3 INSTRUCTION REGISTER AND CPU CONTROL 

As each instruction is fetched from memory , it is placed in the instruction register and decoded . The control sec­
tion performs this function and then generates and supplies all of the control signals necessary to read or write data 
from or to the registers , control the ALU and provide all required external control signals. 



73 

2.0 PIN DESCRIPTION 

The Z-80A CPU is packaged in an industry standard 40 pin Dual In-Line Package. The 1/0 pins are shown in Figure 
2.0-1 and the function of each is described below. 

Ao-Ais 
(Address Bus) 

D0 -D7 

(Data Bus) 

MI 

SYSTEM 
CONTROL 

CPU 

MREQ 
IORQ 
RD 
WR 

HALT 

WAIT 

27 

19 

20 
21 
22 

28 

18 

24 

30 
A o 

31 AI 
32 
33 

A2 
As 

34 
A4 

35 
As 

36 A 6 
37 
38 

A7 ADDRESS 
As BUS 

39· A g 
40 

A 10 
I 

A11 
2 A 12 

CONTROL INT 16 3 
Z-SOA·CPU 4 

A 13 

NMI 

RESET 

CPU {BUSRQ 
BUS --
CONTROL BUSAK 

<ll 

+ 5V 

GND 

17 

26 

25 

23 

6 

II 

29 

Z-80A PIN CONFIGURATION 
FIGURE 2.0-1 

5 

14 

15 
12 
8 

7 

9 

10 

13 

A1 4 
A1 5 

Do 
Dl 
D2 
D3 DATA 
D4 BUS 

Ds 
D6 
D 7 

Tri-state output, active high. A0-A15 constitute a 16-bit address bus. The address bus pro­
vides the address for memory (up to 64K bytes) data exchanger and for l/0 device data 
exchanges. 1/0 addressing uses the 8 lower address bits to allow the user to directly select 
up to 256 input or 256 output ports. A0 is the least significant address bit. During refresh 
time, the lower 7 bits contain a valid refresh address. 

Tri-state input/output, active high. D0 -D7 constitute an 8-bit bidirectional data bus. The 
data bus is used for data exchanges with memory and I/0 devices. 

(Machine Cycle one) 
Output, active low. M1 indicates that the current machine cycle is the OP code fetch cycle 
of an instruction execution. Note that during execution of 2-byte op-codes, M1 is generated 
as each op code byte is fetched. These two byte op-codes always begin with CBH, DDH, 
EDH or FDH. M1 also occurs with IORQ to indicate an interrupt acknowledge cycle. 

MREQ 
(Memory Request) 

Tri-state output, active low. The memory request signal indicates that the address bus holds 
a valid address for a memory read or memory write operation. 



74 

IORQ 
(Input/Output Request) 

RD 
(Memory Read) 

WR 
(Memory Write) 

RFSH 
(Refresh) 

HALT 
(Halt state) 

WAIT 
(Wait) 

INT 
(Interrupt Request) 

NMI 
(Non Maskable 
Interrupt) 

Tri-state output, active low. The IORQ signal indicates that the lower half of the address bus 
holds a valid 1/0 address for a I/0 read or write operation. An IORQ signal is also generated 
with an M1 signal when an interrupt is being acknowledged to indicate that an interrupt 
response vector can be placed on the data bus. Interrupt Acknowledge operations occur 
during M1 time while 1/0 operations never occur during M1 time. 

Tri-state output, active low. RD indicates that the CPU wants to read data from memory or 
an 1/0 device. The addressed 1/0 device or memory should use this signal to gate data onto 
the CPU data bus. 

Tri-state output, active low. WR indicates that the CPU data bus holds valid data to be 
stored in the addressed memory or 1/0 device. 

Output, active low. RFSH indicates that the lower 7 bits of the address bus contain a refresh 
address for dynamic memories and the current MREQ signal should be used to do a refresh 
read to all dynamic memories. 

Output, active low. HALT indicates that the CPU has executed a HALT software instruction 
and is awaiting either a non maskable or a maskable interrupt (with the mask enabled) 
before operation can resume. While halted, the CPU executes NOP's to maintain memory 
refresh activity. 

Input, active low. WAIT indicates to the Z-SOA CPU that the addressed memory or I/0 
devices are not ready for a data transfer. The CPU continues to enter wait states for as long 
as this signal is active. This signal allows memory or 1/0 devices of any speed to be synchron­
ized to the CPU. 

Input, active low. The Interrupt Request signal is generated by I/0 devices. A request will be 
honored at the end of the current instruction if the internal software controlled interrupt 
enable flip-flop (IFF) is enabled and if the BUSRQ signal is not active. When the CPU 
accepts the interrupt, an acknowledge signal (IORQ during M1 time) is sent out at the begin­
ning of the next instruction cycle. The CPU can respond to an interrupt in three different 
modes. 

Input, negative edge triggered. The non maskable interrupt request line has a higher priority 
than INT and is always recognized at the end of the current instruction, independent of the 
status of the interrupt enable flip-flop. NMI automatically forces the Z-SOA CPU to restart 
to location 0066H. The program counter is automatically saved in the external stack so that 
the user can return to the program that was interrupted. Note that continuous WAIT cycles 
can prevent the current instruction from ending, and that a BUSRQ will override a NMI. 



RESET 

BUSRQ 
(Bus Request) 

BUSAK 
(Bus Acknowledge) 

75 

Input, active low, RESET forces the program counter to zero and initializes the CPU. The 
CPU initialization includes: 

1) Disable the interrupt enable flip-flop 

2) Set Register I = OOH 

3) Set Register R = OOH 

4) Set Interrupt Mode 0 

During reset time, the address bus and data bus go to a high impedance state and all control 
output signals go to the inactive state. 

Input, active low. The bus request signal is used to request the CPU address bus, data bus 
and tri-state output control signals to go to a high impedance state so that other devices can 
control these buses. When BUSRQ is activated, the CPU will set these buses to a high imped­
ance state as soon as the current CPU machine cycle is terminated. 

Output, active low. Bus acknowledge is used to indicate to the requesting device that the 
CPU address bus, data bus and tri-state control bus signals have been set to their high imped­
ance state and the external device can now control these signals. 

Single phase TTL level clock which requires only a 330 ohm pull-up resistor to +5 volts to 
meet all clock requirements. ( 4 MHz) 



76 

3.0 TIMING 

The Z-80A CPU executes instructions by stepping through a very precise set of a few basic operations. These 
include: 

Memory read or write 

1/0 device read or write 

Interrupt acknowledge 

All instructions are merely a series of these basic operations. Each of these basic operations can take from three to 
six clock periods to complete or they can be lengthened to synchronize the CPU to the speed of external devices. The 
basic clock periods are referred to as T cycles and the basic operations are referred to as M (for machine) cycles. Figure 
3.0-0 illustrates how a typical instruction will be merely a series of specific MandT cycles. Notice that this instruction 
consists of three machine cycles (M 1, M2 and M3). The first machine cycle of any instruction is a fetch cycle which is 
four , five or six T cycles long (unless lengthened by the wait signal which will be fully described in the next section). 
The fetch cycle (M 1) is used to fetch the OP code of the next instruction to be executed. Subsequent machine cycles 
move data between the CPU and memory or 1/0 devices and they may have anywhere from three to five T cycles (again 
they may be lengthened by wait states to synchronize the external devices to the CPU). The following paragraphs des­
cribe the timing which occurs within any of the basic machine cycles. 

T Cycle 

Machine Cycle 

Ml 

(OP Code F etch) 

M2 
(Memory Read) 

Instruction Cyc le 

M3 
(Memory Write) 

BASIC CPU TIMING EXAMPLE 
FIGURE 3.0-0 

All CPU timing can be broken down into a few very simple timing diagrams as shown in Figure 3.0-1 through 3.0-7. 
These diagrams show the following basic operations with and without wait states (wait states are added to synchronize 
the CPU to slow memory or I/0 devices) . 

3 .0-1. Instruction OP code fetch (M 1 cycle) 

3.0-2 . Memory data read or write cycles 

3.0-3. 1/0 read or write cycles 

3.0-4. Bus Request/Acknowledge Cycle 

3.0-5 . Interrupt Request/Acknowledge Cycle 

3.0-6. Non maskable Interrupt Request/Acknowledge Cycle 

3.0-7. Exit from a HALT instruction 



77 

INSTRUCTION FETCH 

Figure 3.0-1 shows the timing during an Ml cycle (OP code fetch). Notice that the PC is placed on the address bus 
at the beginning of the Ml cycle . One half clock time later the MREQ signal goes active. At this time the address to the 
memory has had time to stabilize so that the falling edge of MREQ can be used directly as a chip enable clock to 
dynamic memories. The RF line also goes active to indicate that the memory read data should be enabled onto the CPU 
data bus. The CPU samples the data from the memory on the data bus with the rising edge of the clock of state T3 and 
this same edge is used by the CPU to turn off the RD and MRQ signals. Thus the data has already been sampled by the 
CPU before the RD signal becomes inactive. Clock state T3 and T4 of a fetch cycle are used to refresh dynamic memo­
ries. (The CPU uses this time to decode and execute the fetched instruction so that no other operation could be per­
formed at this time). During T3 and T4 the lower 7 bits of the address bus contain a memory refresh address and the 
RFSH signal becomes active to indicate that a refresh read of all dynamic memories should be accomplished. Notice 
that a RD sgianl is not generated during refresh time to prevent data from different memory segments from being gated 
onto the data bus. The MREQ signal during refresh time should be used to perform a refresh read of all memory ele­
ments. The refresh signal can not be used by itself since the refresh address is only guaranteed to be stable during 
MREQ time. 

T , 

-~ 
y PC 

MREQ \ 

\ 
-

,_ _____ 
r-------

- 1\ 
DBO DB? 

M I Cycle 

T z T 3 T 4 

~ ~ IL-
X REFRESH ADDR. 

I 

I 

_-y-c_ ------ ------
------ ------

I 

'ii\lr-c 
L:.:...:.fl 

\ 

INSTRUCTION OP CODE FETCH 
FIGURE 3.0-1 

T l 

~ 

X 

\ 

------ -
------ -

\_ _____ 
-

I 

Figure 3.0-lA illustrates how the fetch cycle is delayed if the memory activates the WAIT line. During T2 and 
every subsequent Tw, the CPU samples the WAIT line with the falling edge of <I>. If the WAIT line is active at this time, 
another wait state will be entered during the following cycle . Using this technique the read cycle can be lengthened to 
match the access time of any type of memory device . 



78 

-J 

-
AO - A15 

MREQ 

RD 

DBO 087 

-
Ml 

-
WAIT -

RFSH 

Ml Cycle 

Tl T2 T w T w T 3 T4 

~ ~ ~ ~ ~ ~ 
IY PC X REFRESH ADDR. 

\ 

\ I 
r-;;:; 
~~ 

1\ I 
-----1-""l_L-- =}___J._-=- -_r---c- ------
------ r-- -- - - ------

\ 

INSTRUCTION OP CODE FETCH WITH WAIT STATES 
FIGURE 3.0-1A 

I 

------
r-------

MEMORY READ OR WRITE 

,---

X 

-

Figure 3.0-2 illustrates the timing of memory read or write cycles other than an OP code fetch (M 1 cycle). These 
cycles are generally three clock periods long unless wait states are requested by the memory via the WAIT signal. The 
MREQ signal and the RD signal are used the same as in the fetch cycle. In the case of a memory write cycle, the MREQ 
also becomes active when the address bus is stable so that it can be used directly as a chip enable for dynamic memo­
ries. The WR line is active when data on the data bus is stable so that it can be used directly as a R/W pulse to virtually 
any type of semiconductor memory . Furthermore the WR signal goes inactive one half T state before the address and 
data bus contents are changed so that the overlap requirements for virtually any type of semiconductor memory type 
will be met. 

AO - AI5 

MREQ 

RD 

WR 

DATABUS 
( D0 - 07) 

WAIT 

Memory Read Cycle Memory Write Cycle 

T l T 2 T 3 T l T 2 T 3 

---' ~ ~ ~ ~ ~ ~ 
X MEMORY ADDR. X MEMORY ADDR. 

\ I \_ I 

\ I 

\ I 

IN DATAOUT 

- 1----- r-.TL~ ----- ----- 1-_-Jl.~ ------
-- ----- 1------------

MEMORY READ OR WRITE CYCLES 

FIGURE 3.0-2 

-----

r---

L_ 

---



79 

Figure 3.0-2A illustrates how a WAIT request signal will lengthen any memory read or write operation. This opera­
tion is identical to that previously described for a fetch cycle. Notice in this figure that a separate read and a separate 
write cycle are shown in the same figure although read and write cycles can never occur simultaneously. 

~ 

-
AO - AI5 

MREQ 

RD 

DATA BUS 
( D0 - 07) 

WR 

DATA BUS 
(DO - 07) 

WAIT -
--

T l T2 T w T w T3 T, 

~ r---L-~ r---L-r---L-r---L-
X 

~ 

\ 

-----
-----

MEMORY ADDR. X 

I 

I 

IN 

~ J 

DATA OUT 

~-- l___L= TL~ 
----- -----

- --- -----------

MEMORY READ OR WRITE CYCLES WITH WAIT STATES 
FIGURE 3.0-2A 

INPUT OR OUTPUT CYCLES 

lr----

--
---

}
READ 
CYCLE 

}
WRITE 
CYCLE 

Figure 3.0-3 illustrates an I/0 read or I/0 write operation. Notice that during I/0 operations a single wait state is 
automatically inserted . The reason for this is that during I/0 operations, the time from when the IORQ signal goes 
active until the CPU must sample the WAIT line is very short and without this extra state sufficient time does not exist 
for an I/0 port to decode its address and activate the WAIT line if a wait is required. Also, without this wait state it is 
difficult to design MOS I/0 devices that can operate at full CPU speed. During this wait state time the WAIT request 
signal is sampled. During a read I/0 operation, the RD line is used to enable the addressed port onto the data bus just 
as in the case of a memory read . For I/0 write operations, the WR line is used as a clock to the I/0 port, again with 
sufficient overlap timing automatically provided so that the rising edge may be used as a data clock. 

Figure 3.0-3A illustrates how additional wait states may be added with the WAIT line . The operation is identical to 
that previously described. 

BUS REQUEST/ACKNOWLEDGE CYCLE 

Figure 3.0-4 illustrates the timing for a Bus Request/Acknowledge cycle. The BUSRQ signal is sampled by the CPU 
with the rising edge of the last clock period of any machine cycle. If the BUSRQ signal is active, the CPU will set its 
address, data and tri-state control signals to the high impedance state with the rising edge of the next clock pulse . At 
that time any external device can control the buses to transfer data between memory and I/0 devices . (This is generally 
known as Direct Memory Access [DMA] using cycle stealing). The maximum time for the CPU to respond to a bus 
request is the length of a machine cycle and the external controller can maintain control of the bus for as many clock 
cycles as is desired. Note , however, that if very long DMA cycles are used , and dynamic memories are being used, the 
external controller must also perform the refresh function. This situation only occurs if very large blocks of data are 
transferred under DMA control. Also note that during a bus request cycle, the CPU cannot be interrupted by either 
a NMI or an INT signal. 



80 

Tl T2 Tw * Ta Tl 

----' ~ r--L-~ ~ r--L 
AO - A7 X PORT ADDRESS x-
IORQ I I 

I I 

IN 
} 

Read 
Cycle 

RD 

DATA BUS 

- ----- r-----
=-r-'C~ 

f----- ---
- ----- r------ r------ ----WAIT 

I 

DATA BUS OUT 

I 
} 

Write 
Cyc le 

Tl 

-~ 
AO - A7 X 

IORQ 

DATA BUS 

RD 

-- ----
-- ----

DATA BUS 

WR 

INPUT OR OUTPUT CYCLES 
FIGURE 3.0-3 

* T2 Tw Tw 

~ ~ ~ 
PORT ADDRESS 

I 

I 
r-----

-_\.__J~= ;_]-\_~-= -----

OUT 

I 

Ta 

iL--

I 

IN 

I 
-----
-----

I 

* Automatically inserted WAIT state 

INPUT OR OUTPUT CYCLES WITH WAIT STATES 
FIGURE 3.0-3A 

~ 

X 

} 

READ 
CYCLE 

r----

----

} 

WRITE 
CYCLE 



BUSRQ 

BUSAK 

AO - AI5 

DO - D? 

MREQ .RD. 
~R.IORQ. 

RFSH 

- ~ 

BUSRQ 

Any M Cycle Bus Available States 

La st T State Tx T x 

~ ~ ~ ~ 
I '/ Sample__.. Sample 

I 

--- r-----

---------

---- -----
Floating 

BUS REQUEST/ACKNOWLEDGE CYCLE 
FIGURE 3.0·4 

T x 

~ 

J 

r------

-----

1-----

INTERRUPT REQUEST/ ACKNOWLEDGE CYCLE 

81 

T l 

~ 

i-{ 

1-\ 

h 

Figure 3.0-5 illustrates the timing associated with an interrupt cycle. The interrupt signal (INT) is sampled by the 
CPU with the rising edge of the last clock at the end of any instruction. The signal will not be accepted if the internal 
CPU software controlled interrupt enable flip-flop is not set or if the BUSRQ signal is active. When the signal is 
accepted a special Ml cycle is generated. During this special MI cycle the IORQ signal becomes active (instead of the 
normal MREQ) to indicate that the interrupting device can place an 8-bit vector on the data bus. Notice that two wait 
states are automatically added to this cycle . These states are added so that a ripple priority interrupt scheme can be 
easily implemented. The two wait states allow sufficient time for the ripple signals to stabilize and identify which 1/0 
device must insert the response vector. Refer to section 5.0 for details on how the interrupt response vector is utilized 
by the CPU. 

--
INT 

AO - AI5 

MREQ 

IORQ 

----~L~a~s~t~M~C~y~c~le ____ ~------------------------IMI-----------------------
of Instruction 

La st T State T * w 

---, I ,--------r----- r------
___ .l...._f-1.---------- ----- r------

X PC 

T * w 

----------

X REFRESH 

IL---~---+----+----~' 

\L___-+----+-'' 
DATA BUS--1---------1---------~--------~--------~--------~------4f1Nh~-----­

L..:.:..:. .1 

WAIT 

RD 

===-======--=-- -=--~---~-~=- -~----= 
-- ----- -----
------------

INTERRUPT REQUEST/ACKNOWLEDGE CYCLE 
FIGURE 3.0-5 



82 

Figures 3.0-SA and 3.0-SB illustrate how a programmable counter can be used to extend inte rrupt acknowledge 
time. (Configured as shown to add one wait state) 

LAST T STATE · o~ I 
LAST M CYCLE OF 

INSTRUCTION 

IORQ 

74S04 

+ 5V 

~ IORQ 

~Q-~-TE-~-1-P_H_E_R-AL) 

B WAIT 

,.-----+--0 7432 
Q-(-T_O_C_P_U_)_ 

_ 1.::\ 
MI--{)L:J 

EXTENDING INTERRUPT ACKNOWLEDGE TIME WITH WAIT STATE 
FIGURE 3 .0-5A 

AUTOMATIC WAIT-\-----~\ USER WAIT 

Tw * Tw • 

DATA BUS -------------_, _______________ -+-----~-----~~ 

WAIT 

NORMAL ACKNOWLEDGE 
TIME 

f.---ACKNOWLEDGE TIME WITH ONE 
ADDITIONAL WAIT STATE -----+ 

REQUEST/ACKNOWLEDGE CYCLE WITH ONE ADDITIONAL WAIT STATE 

FIGURE 3.0·5B 



83 

NON MASKABLE INTERRUPT RESPONSE 

Figure 3.0-6 illustrates the request/acknowledge cycle for the non maskable interrupt. This signal is sampled at the 
same time as the interrupt line, but this line has priority over the normal interrupt and it can not be disabled under soft­
ware control. Its usual function is to provide immediate response to important signals such as an impending power 
failure. The CPU response to a non maskable interrupt is similar to a normal memory read operation. The only differ­
ence being that the content of the data bus is ignored while the processor automatically stores the PC in the external 
stack and jumps to location 0066H . The service routine for the non maskable interrupt must begin at this location if 
this interrupt is used. 

HALT EXIT 

Whenever a software halt instruction is executed the CPU begins executing NOP's until an interrupt is received 
(either a non maskable or a maskable interrupt while the interrupt flip flop is enabled). The two interrupt lines are sam­
pled with the rising clock edge during each T4 state as shown in Figure 3.0-7. If a non mask able interrupt has been 
received or a maskable interrupt has been received and the interrupt enable flip-flop is set, then the halt state will be 
exited on the next rising clock edge. The following cycle will then be an interrupt acknowledge cycle corresponding to 
the type of interrupt that was received . If both are received at this time, then the non maskable one will be acknowl­
edged since it has highest priority. The purpose of executing NOP instructions while in the halt state is to keep the 
memory refresh signals active. Each cycle in the halt state is a normal M 1 (fetch) cycle except that the data received 
from the memory is ignored and a NOP instruction is forced internally to the CPU. The halt acknowledge signal is 
active during this time to indicate that the processor is in the halt state. 

NMI 

A0 - AI5 

Ml 

MREQ 

RD 

RFSH 

INT or 

NMI 

-
-
-

-- Last M Cycle Ml 

~ 
--~]_ 

Last T Time Tl T2 Ta T, 

~ ~ ~ ~ ~ 
u=.---- ------r------ ----- ------
----------- ------------ -----

X X 

\ I 

\ I 

\ J 

\ 

NON MASKABLE INTERRUPT REQUEST OPERATION 
FIGURE 3.0-6 

--MI----~-------------------MI------------------~-----MI 

HALT INSTRUCTION 
IS RECEIVED 
DURING THIS 
MEMORY CYC LE 

HALT EXIT 
FIGURE 3.0-7 

Tl 

~ 
~ 

----- -
----- -

X 

I 



84 

4.0 INSTRUCTION SET 

The Z-80A CPU can execute 158 different instruction types including all 78 of the 8080A CPU. The instructions 
can be broken down into the following major groups : 

• Load and Exchange 

• Block Transfer and Search 

• Arithmetic and Logical 

• Rotate and Shift 

• Bit Manipulation (set, reset , test) 

• Jump, Call and Return 

• Input/Output 

• Basic CPU Control 

4.1 INTRODUCTION TO INSTRUCTION TYPES 

The load instructions move data internally between CPU register~ or between CPU registers and external memory. 
All of these instructions must specify a source location from which the data is to be moved and a destination location. 
The source location is not altered by a load instruction . Examples of load group instructions include moves between 
any of the general purpose registers such as move the data to Register B from Register C. This group also includes load 
immediate to any CPU register or to any to Register B from Register C. This group also includes load immediate to any 
CPU register or to any external memory location. Other types of load instructions allow transfer between CPU registers 
and memory locations. The exchange instructions can trade the contents of two registers. 

A unique set of block transfer instructions is provided in the Z-80A. With a single instruction a block of memory of 
any size can be moved to any other location in memory. This set of block moves is extremely valuable when large 
strings of data must be processed. The Z-80A block search instructions are also valuable for this type of processing. 
With a single instruction, a block of external memory of any desired length can be searched for any 8-bit character. 
Once the character is found or the end of the block is reached, the instruction automatically terminates. Both the block 
transfer and the block search instructions can be interrupted during their execution so as to not occupy the CPU for 
long periods of time. 

The arithmetic and logical instructions operate on data stored in the accumulator and other general purpose CPU 
registers or external memory locations. The results of the operations are placed in the accumulator and the appropriate 
flags are set according to the result of the operation. An example of an arithmetic operation is adding the accumulator 
to the contents of an external memory location. The results of the addition are placed in the accumulator. This group 
also includes 16-bit addition and subtraction between 16-bit CPU registers. 

The rotate and shift group allows any register or any memory location to be rotated right or left with or without 
carry either arithmetic or logical. Also , a digit in the accumulator can be rotated right or left with two digits in any 
memory location. 

The bit manipulation instructions allow any bit in the accumulator, any general purpose register or any external 
memory location to be set , reset or tested with a single instruction. For example, the most significant bit of register H 
can be reset. This group is especially useful in control applications and for controlling software flags in general purpose 
programming. 

The jump, call and return instructions are used to transfer between various locations in the user's program. This 
group uses several different techniques for obtaining the new program counter address from specific external memory 
locations. A unique type of call is the restart instruction. This instruction actually contains the new address as a part of 
the 8-bit OP code . This is possible since only 8 separate addresses located in page zero of the external memory may be 
specified. Program jumps may also be achieved by loading register HL, IX or IY directly into the PC, thus allowing the 
jump address to be a complex function of the routine being executed. 



85 

The input/output group of instructions in the Z-80A allow for a wide range of transfers between external memory 
locations or the general purpose CPU registers, and the external I/0 devices. In each case, the port number is provided 
on the lower 8 bits of the address bus during any I/0 transaction. One instruction allows this port number to be speci­
fied by the second byte of the instruction while other Z-80A instructions allow it to be specified as the content of the 
C register. One major advantage of using the C register as a pointer to the I/0 device is that it allows different I/0 ports 
to share common software driver routines. This is not possible when the address is part of the OP code if the routines 
are stored in ROM. Another feature of these input instructions is that they set the flag register automatically so that 
additional operations are not required to determine the state of the input data (for example its parity). The Z-80A CPU 
includes single instructions that can move blocks of data (up to 256 bytes) automatically to or from any I/0 port 
directly to any memory location. In conjunction with the dual set of general purpose registers, these instructions pro­
vide for fast I/0 block transfer rates. The value of this I/0 instruction set is demonstrated by the fact that the Z-80A 
CPU can provide all required floppy disk formatting (i.e., the CPU provides the preamble, address, data and enables the 
CRC codes) on double density floppy disk drives on an interrupt driven basis. 

Finally, the basic CPU control instructions allow various options and modes. This group includes instructions such 
as setting or resetting the interrupt enable flip flop or setting the mode of interrupt response. 

4.2 ADDRESSING MODES 

Most of the Z-80A instructions operate on data stored in internal CPU registers, external memory or in the 1/0 
ports. Addressing refers to how the address of this data is generated in each instruction. This section gives a brief sum­
mary of the types of addressing used in the Z-80A while subsequent sections detail the type of addressing available for 
each instruction group. 

Immediate. In this mode of addressing the byte following the OP code in memory contains the actual operand. 

OP Code } one or 2 bytes 

Operand 

Examples of this type of instruction would be to load the accumulator with a constant, where the constant is the byte 
immediately following the OP code. 

Immediate Extended. This mode is merely an extension of immediate addressing in that the two bytes following the 
OP codes are the operand. 

OP code 

Operand 

Operand 

one or 2 bytes 

low order 

high order 

Examples of this type of instruction would be to load the HL register pair (16-bit register) with 16 bits (2 bytes) 
of data. 



86 

Modified Page Zero Addressing. The Z-80A has a special single byte CALL instruction to any of 8 locations in page 
zero of memory. This instruction (which is referred to as a restart) sets the PC to an effective address in page zero. The 
value of this instruction is that it allows a single byte to specify a complete 16-bit address where commonly called sub­
routines are located, thus saving memory space. 

OP Code one byte 

b7 bo 
Effective address is (b 5 b4 b 3 000)2 

Relative Addressing. Relative addressing uses one byte of data following the OP code to specify a displacement from 
the existing program to which a program jump can occur. This displacement is a signed two's complement number that 
is added to the address of the OP code of the following instruction. 

f-O_P_C_o_de-----1 } Jump relative (one byte OP code) 

Operand 8-bit two's complement displacement added to Address (A+2) 

The value of relative addressing is that it allows jumps to nearby locations while only requiring two bytes of memory 
space. For most programs, relative jumps are by far the most prevalent type of jump due to the proximity of related 
program segments. Thus, these instructions can significantly reduce memory space requirements. The signal displace­
ment can range between +127 and - 128 from A+2. This allows for a total displacement of +129 to -126 from the 
jump relative OP code address. Another major advantage is that it allows for relocatable code. 

Extended Addressing. Extended Addressing provides for two bytes (16 bits) of address to be included in the instruc­
tion . This data can be an address to which a program can jump or it can be an address where an operand is located. 

f---O_P_C_o_d_e _ _ ___________ --1 } one or two bytes 

Low Order Address or Low order operand 

High Order Address or High order operand 

Extended addressing is required for a program to jump from any location in memory to any other location, or load and 
store data in any memory location. 

When extended addressing is used to specify the source or destination address of an operand, the notation (nn) will 
be used to indicate the content of memory at nn, where nn is the 16-bit address specified in the instruction . This means 
that the two bytes of address nn are used as a pointer to a memory location. The use of the parentheses always means 
that the value enclosed within them is used as a pointer to a memory location. For example , (1200) refers to the 
contents of memory at location 1200. 

Indexed Addressing. In this type of addressing, the byte of data following the OP code contains a displacement which 
is added to one of the two index registers (the OP code specifies which index register is used) to form a pointer to mem­
ory. The contents of the index register are not altered by this operation. 

OP Code } 
f--------------1 two byte OP code 

OP Code 

Displacement Operand added to index register to form a pointer to memory 



87 

An example of an indexed instruction would be to load the contents of the memory location (Index Register+ Dis­
placement) into the accumulator. The displacement is a signed two's complement number. Indexed addressing greatly 
simplifies programs using tables of data since the index register can point to the start of any table. Two index registers 
are provided since very often operations require two or more tables. Indexed addressing also allows for relocatable 
code. 

The two index registers in the Z-80A are referred to as IX and IY. To indicate indexed addressing the notation: 

(IX+ d) or (IY + d) 

is used. Here d is the displacement specified after the OP code. The parentheses indicate that this value is used as a 
pointer to external memory . 

Register Addressing. Many of the Z-80A OP codes contain bits of information that specify which CPU register is to be 
used for an operation. An example of register addressing would be to load the data in register B into register C. 

Implied Addressing. Implied addressing refers to operations where the OP code automatically implies one or more CPU 
registers as containing the operands. An example is the set of arithmetic operations where the accumulator is always 
implied to be the destination of the results. 

Register Indirect Addressing. This type of addressing specifies a 16-bit CPU register pair (such as HL) to be used as a 
pointer to any location in memory. This type of instruction is very powerful and it is used in a wide range of applica­
tions. 

I OP Code I } one or two bytes 

An example of this type of instruction would be to load the accumulator with the data in the memory location 
pointed to by the HL register contents. Indexed addressing is actually a form of register indirect addressing except that 
a displacement is added with indexed addressing. Register indirect addressing allows for very powerful but simple to 
implement memory accesses. The block move and search commands in the Z-80A are extensions of this type of address­
ing where automatic register incrementing, decrementing and comparing has been added. The notation for indicating 
register indirect addressing is to put parentheses around the name of the register that is to be used as the pointer. For 
example, the symbol 

(HL) 

specifies that the contents of the HL register are to be used as a pointer to a memory location. Often register indirect 
addressing is used to specify 16-bit operands. In this case , the register contents point to the lower order portion of the 
operand while the register contents are automatically incremented to obtain the upper portion of the operand. 

Bit Addressing. The Z-80A contains a large number of bit set, reset and test instructions. These instructions allow any 
memory location or CPU register to be specified for a bit operation through one of three previous addressing modes 
(register, register indirect and indexed) while three bits in the OP code specify which of the eight bits is to be manipul­
ated. 

ADDRESSING MODE COMBINATIONS 

Many instructions include more than one operand (such as arithmetic instructions or loads). In these cases, two 
types of addressing may be employed. For example, load can use immediate addressing to specify the source and 
register indirect or indexed addressing to specify the destination. 



88 

4.3 INSTRUCTION OF OP CODES AND EXECUTION TIMES 

The following section gives a summary of the Z-80A instructions set. The instructions are logically arranged into 
groups as shown on tables 4.3-1 through 4.3-11. Each table shows the assembly language mnemonic OP code, the actual 
OP code , the symbolic operation, the content of the flag register following the execution of each instruction, the num­
ber of bytes required for each instruction as well as the number of memory cycles and the total number of T states 
(external clock periods) required for the fetching and execution of each instruction. Care has been taken to make each 
table self-explanatory without requiring any cross reference with the test or other tables. 



Mnemonic 

LD r, r 

LD r, n 

LD r,(HL) 

LD r,(lX + d) 

LD r,(IY + d) 

LD (HL),r 

LD (IX + d), r 

LD (IY + d), r 

LD (HL),n 

LD (IX + d),n 

LD (IY +d),n 

LD A,(LlC) 

LD A, (DE) 

LD A,(n n) 

LD (BC),A 

LD (DE), A 

LD (nn ),A 

LD A, I 

LD A,R 

LD I, A 

LD R,A 

Symbolic Flags OP-Code No. \fo. :\o. 
of of M of T Comments 

Operation c z P/V s N H 76 543 210 Bytes Cycles States 

r~ - r • • • • • • 01 r r 1 1 4 r , r 

r..:- n • • • • • • 00 r 110 2 2 7 000 
~ n -· 001 

r~(HL) • • • • • • 01 r 110 I 2 7 ()1() 

011 
r~(IX + d) • • • • • • 11 011 101 3 5 19 

1()() 
01 r 110 

101 
~ d ~ 

Ill 

r~(IY + d) • • • • • • 11 Ill 101 3 5 19 

01 r 110 
~ d ~ 

(HL) ~ r • • • • • • 01 110 r 1 2 7 

(IX + d)~r • • • • • • 11 011 101 3 5 19 

01 110 r 
~ d ~ 

(IY + d)~r • • • • • • 11111 101 3 5 19 

01 110 r 
~ d ~ 

(HL) ~ n • • • • • • 00 110 110 2 3 10 
~ n ~ 

(IX + d)~n • • • • • • II 011 101 4 5 19 

00 110 110 
~ d ~ 

~ n ~ 

(IY + d) ~n • • • • • • 11 111 101 4 5 19 

00 110 110 
~ d ~ 

~ n ~ 

A~ (LlC) • • • • • • 00 001 010 I 2 7 

A~ (DE) • • • • • • 00 011 010 I 2 7 

A~(nn) • • • • • • 00 111 010 3 4 13 
~ n ~ 

~ n ~ 

(BC) ~A • • • • • • 00 000 010 1 2 7 

(DE)~A • • • • • • 00 010 010 I 2 7 

(nn) •- A • • • • • • 00 110 010 3 4 13 
~ n ~ 

~ n ~ 

A ~I • t 1FF2 t () 0 11 101 101 2 2 9 

01 010 111 

A~R • t 1FF2 t 0 0 11 101 101 2 2 9 

01 011 111 

I~A • • • • • • II 101 101 2 2 9 

01 000 111 

R~A • • • • • • 11 101 101 2 2 9 

01 001 111 

Notes: r, r' means any of the registers A, B, C, D, E, H, L 
IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag 

Flag Notation: • = flag not affected, 0 = flag reset, 1 =flag set, X= flag is unknown, 
:t = flag is affected according to the result of the operation. 

8-BlT LOAD GROUP 

TABLE 4.3-1 

89 

Reg. 

II 

c 
D 

E 

H 

L 

A 



90 

Symbolic Flags 01'-Code :\o. I\o. No . 
Mnemonic Opera tion 

of of )I ofT Comments c z 1' /V s N H 7(j 543 2t0 Bytes Cycles States 

LD dd,nn dd~nn • • • • • • 00 ddO OOt 3 3 tO dd Pair 

~ n -· 00 BC 
~ n ---> 

Ot DE 
LD IX,nn IX ~ nn • • • • • • 11 Ott t01 4 4 14 

00 100 001 
10 HL 

~ n ---> II S l' 

~ n ---> 

LD IY , nn IY~n n • • • • • • 11 111 t01 4 4 14 

00 100 OOt 
~ n ---> 

~ n ---> 

LD HL , (nn) H~(nn + l) • • • • • • 00 101 010 3 5 16 

L ~ (n n) ~ n ---> 

~ n ---> 

LD dd,(nn) ddu ~(nn + l) • • • • • • 11 101 lOt 4 6 20 

dd1. ~ (nn) 01 ddt 01t 
~ n ---> 

~ n ---> 

LD I X,(nn) !Xu ~(nn + l) • • • • • • 11 011 tOt 4 6 20 

IX1. ~(nn) 00 tot 010 
~ n ---> 

~ n ---> 

LD IY, (nn) IYu ~(nn + l) • • • • • • 11111 tO I 4 6 20 

IY1. ~(nn) 00 101 010 
~ n -· 
~ n ---> 

LD (nn) , HL (nn + l) ~H • • • • • • 00 100 010 3 5 16 
(nn) ~L ~ n -· 

~ n ---> 

LD (nn),dd (nn + l) ~dd 11 • • • • • • 11 101 101 4 6 20 

(nn) ~ddL Ot ddO 011 
~ n ---> 

~ n ---> 

LD (nn) , IX (nn + t) ~IXu • • • • • • 11 011 t01 4 6 20 

(nn) ~IXL 00 tOO 010 
~ n ---> 

~ n ---> 

LD (nn),IY (nn + 1) ~1Yu • • • • • • 11111 101 4 6 20 

(nn)~IYL 00 100 010 
~ n ---> 

~ n ---> 

LD SP,HL SP~HL • • • • • • 11 111 001 1 1 6 

LD SP,1X SP~IX • • • • • • 11 011 101 2 2 10 

11 111 001 

LD SP, IY SP•- IY • • • • • • 11 111 101 2 2 10 

11 111 001 



Symbolic Flags OP-Code Mnemonic 
Operation c z 1' /V s N H 76 543 210 

PUSH qq (SP-2) •- qq!. • • • • • • 11 qqO 101 

(SI'-1)•- qq II 

PUSH IX (SP - 2)~1X!. • • • • • • 11 011 101 

(SP - l)~IXu 11 100 101 

P USH IY (SP - 2)~IY 1. • • • • • • 11 Ill 101 
(SP-l)~IY 11 11 100 101 

POP qq qq 11 ~(SP + l) • • • • • • 11 qqO 001 

qq~, ~ (SI') 

POP IX IXH~(SP + l) • • • • • • 11 011 101 

IX~, ~(SP) 11 100 001 

POP IY IYu•- (SP+l) • • • • • • 11 111 101 

IY1. •- (SP) 11 100 001 

Notes: dd is any of the register pairs BC, DE, HL, SP 
qq is any of the register pairs AF, BC, DE, HL 

No. 1\o. Xo. 
of of ~I ofT Comments 

Bytes Cycles States 

I 3 11 qq Pair 

()() BC 
2 4 15 01 DE 

10 HL 
2 4 15 

11 AF 

1 :! 10 

2 4 14 

2 4 14 

(PAIR)H, (PAIR)L refer to high order and low order eight bits of the register pair respectively. 
E.g. BCL = C, AFH =A 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown, 
t flag is affected according to the result of the operation. 

16-BIT LOAD GROUP 
TABLE 4.3-2 

91 



92 

Symbolic Flags OP-Code No. I\o. No. 
Mnemonic of oDI ofT Comments Operation c z P/V s N H 76 543 210 Bytes CJ"Clcs Sta tes 

EX DE, HL DE-HL • • • • • • 11 101 011 I I 4 

EX AF, AF ' AF - AF ' • • • • • • 00 001 000 I I 4 

EXX 
(BC) (B C' ) 

• • • • • • 11 011 001 1 1 4 Registe r bank and au xili a ry 

DE - DE' register ba nk exchange 

HL HL' 

EX (S P) , HL H-(S P + 1) • • • • • • 11 100 011 i 5 19 
L-(S P) 

EX (SP),IX IXH-(SP + l) • • • • • • 11 011 101 2 6 2a 
IX~, -(S P) 11 100 011 

EX (SP),IY IYH-!S P + l) • • • • • • 11 111 101 2 6 23 
JY~, -(S P) 11 100 011 

CD 
LDI (DE) ~(HL) • • t • 0 0 11 101 101 2 4 16 Load (HL) int o (DE) , 

DE~DE+ 1 10 100 000 in crement the point e rs and 

HL~HL+ 1 dec r ement t he byte coun ter 

BC~BC- 1 (BC) 

LDIR (DE) ~(HL) • • 0 • 0 0 11 101 101 2 5 21 If BC* O 
DE •- DE + l 10 110 000 2 4 16 If BC= O 
HL~HL+ 1 

BC ~BC- 1 

Repeat un t il 

BC=O 

CD 
LDD (DE)~(HL) • • t • 0 0 11 101 101 2 4 16 

DE~DE- 1 10 101 000 
HL~HL- 1 

BC~BC- 1 

LDDR (DE)~(HL) • • 0 • 0 0 11 101 101 2 5 21 If BC* O 
DE~DE- 1 10 111 000 2 4 16 If BC= O 
HL~HL- 1 

BC ~BC- 1 

Repeat un t il 

BC= O 

® CD 
CPJ A - (HL) • t t t 1 t 11 101 101 2 4 16 

HL~HL+ 1 10 100 001 
BC~BC- 1 



Nln emonic 

CP IR 

CPO 

CPDR 

Symbolic Flags OP-Code No. No. No. 
of of M ofT Comments Operation c z P/V s N H 76 543 210 Bytes Cycles States 

I @ CD I I I I 
A-(HL) • I i I 1 i 11 101 101 2 5 21 If BC * O and A* (HL) 
HL•- HL + 1 10 110 001 2 4 16 If BC = O or A=(HL) 
BC•- BC - 1 

Repeat until 

A=(HL) or 

BC = O 

@ CD 
A-(HL) • I I I 1 I 11 101 101 2 4 16 
HL~HL-1 10 101 001 
BC ~BC- 1 

@ CD 
A - (HL) • I I I 1 I 11 101 101 2 5 21 If BC * O and A* (HL) 
HL~HL- 1 10 111 001 2 4 16 If BC = O or A = (HL) 
BC~BC-1 

Repeat until 

A=(HL) or 

BC=O 

Notes: !J P /V flag is 0 if the result of BC-1 = 0, otherwise P /V = 1 
® Z flag is 1 if A= (HL), otherwise Z = 0. 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X= flag is unknown, 
i = flag is affected according to the result of the operation. 

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP 
TABLE 4.3-3 

93 

I 



94 

Symbolic Flags OP-Code 1\o. i\o . :'o/o. 
Mnemonic of oDI ofT Comments Operation c z P/ Y s N H 76 543 210 Bytes Cy cles States 

ADD A,r A~A + r t t v t 0 t 10 [QQQ] r 1 1 4 r Reg. 

ADD A, n A~A + n t t v t 0 t 11 [@Q) 110 2 2 7 000 B 
~ n ...... 001 c 

ADD A,(HL) A~A + (HL) t I v t 0 t 10 100oi 110 1 2 7 010 D 

ADD A,(IX + d) A •- A + (IX + d) t t v t 0 t 11 011 101 3 5 19 011 E 

10 [QQQ] 110 100 H 

~ d ...... 101 L 

ADD A, (IY + d) A~A + (I Y + d) I t v t 0 t 
Ill A 

11 111 101 3 5 19 

10 IQQQ] 110 

~ d ...... 

ADC A,s A~A + s + CY t t v t 0 t [@!] s is any of r , n, ( HL) , (IX + 

SUB s A~A-s t t v t 1 t lliQJ d), (IY + d) as s hown for 

SBC A,s A~A -s-CY t t v t I t [QTI] ADD instruction 

AND s A~A /\ s 0 t p t 0 1 [QQ] The indi cated bits replace 

OR s A~Avs 0 t p t 0 0 [ITQ] 
the [QQQJ in the ADD set 

above. 
XOR s A~AVs 0 t p t 0 0 m 
CP s A- s t t v t 1 t [ill 
INC r r~r + 1 • t v t 0 t 00 r [@] 1 1 4 

INC (HL) (HL)<-{HL) + l • t v t 0 t 00 110 [QQ] 1 3 11 

INC (IX + d) (IX + d) ~ • t v t 0 t 11 011 101 3 6 23 

(IX + d) + l 00 110 [QQ] 
~ d ...... 

INC (IY + d) (IY + d)~ • t v t 0 t 11 111 101 3 6 23 

(IY+d) + l 00 110 [QQ] 
~ d ...... 

DEC m m~m- 1 • t v t 1 t I!Q!) m is any of r , (HL), (IX + d) , 

(IY + d) as shown for INC. 

Same format and st at es as 

INC. 

Replace ITQQ] with l!QI] in 

OP-code. 

Notes: The V symbol in the P/V flag column indicates that the P/V flag contains the overflow of the result of the 
operation Similarly the P symbol indicates parity. V = 1 means overflow, V = 0 means not overflow, P = 1 
means parity of the result is even, P = 0 means panty of the result is odd. 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X= flag is unknown, 
t = flag is affected according to the result of the operation. 

8-BIT ARITHMETIC AND LOGICAL GROUP 
TABLE 4.3-4 



Mn emoni c 

DAA 

CP L 

NEG 

CCF 

SCF 

NOP 

HALT 

Dl 

EI 

IM 0 

IM I 

IM 2 

Symbolic Flags OP-Code No. No. ~0. 
of of M of T Commen ts 

Operatio n c z P/V s N H 76 543 210 Bytes Cycles States 

Converts ace con· t t p t • t 00 100 Ill I I 4 Deci mal adjust accumulator 

tent into packed 

BCD follow in g add 

or sub tract with 

packed BCD ope· 

rands 

A~A • • • • I I 00 101 Il l I I 4 Compl ement accumulator 

(one's complement ) N 

A~A + I t t v t I t l1 101 101 2 2 8 Negate ace. ( two's 

01 000 100 complement ) 
- -

CY <-CY t • • • 0 X 00 Ill Ill I 1 4 Compl ement ca rry flag 

CY~I I • • • 0 0 oo no 111 

No ope rati on • • • • • • 00 000 000 

PC~PC + I 

CPU halt ed • • • • • • 01 110 110 

IFF<- 0 • • • • • • II 110011 

I FF~ I • • • • • • II Ill 011 

Sst int e rrupt • • • • • • 11 101 101 

mode 0 01 ooo no 
Set interrupt • • • • • • 11 101 101 

mode 1 01 010 110 

Set int errupt • • • • • • 11 101 101 

mode 2 01 Oil 11 0 

Notes: IFF indicates the interrupt enable flip-flop 
CY indicates the carry flip- flop. 

I 1 4 Set carry fl ag 

I 1 4 

I I 4 

I I 4 

I I 4 

2 2 8 

2 2 8 

2 2 8 

Flag Notation : • = flag not affected, 0 = flag reset, 1 = flag set, X= flag is unknown, 
t = flag is affected according to the result of the operation. 

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS 
TABLE 4 .3-5 

95 



96 

Mnemonic 

ADD HL.ss 

ADC HL,ss 

SBC HL,ss 

ADD IX,pp 

ADD IY,rr 

INC ss 

INC IX 

INC IY 

DEC ss 

DEC IX 

DEC IY 

Symbolic Flags OP-Code 
Operation c z P/ V s N H 76 543 210 

HL~HL+ ss t • • • 0 X 00 ss1 001 

HL~HL+ ss + CY t t v t 0 X 11 101 101 

01 ss1 010 

HL~HL- ss - CY t t v t 1 X 11 101 101 

01 ssO 010 

IX ~IX + pp t • • • 0 X 11 011 101 

00 ppl 001 

IY ~IY + rr t • • • 0 X 11 111 101 

00 rr1 001 

ss~ ss + l • • • • • • 00 ssO 011 

I X ~IX + l • • • • • • 11 011 101 

00 100 011 

IY~IY + I • • • • • • 11 Ill 101 

00 100 011 

ss~ss - 1 • • • • • • 00 sst 011 

IX ~IX - 1 • • • • • • 11 011 101 

00 101 011 

IY ~IY - 1 • • • • • • 11 111 101 

00 101 011 

Notes: ss is any of the register pairs BC, DE, HL, SP 
pp is any of the register pairs BC, DE, IX, SP 
rr is any of the register pairs BC, DE, IY, SP. 

:\o. No. No. 
of oDI ofT Comments 

Bytes Cycles States 

1 3 11 ss 

2 4 15 00 

01 

2 4 15 10 

11 

2 4 15 pp 

00 

01 

10 

11 

2 4 15 rr 

00 

01 

10 

11 

1 1 6 

2 2 10 

2 2 10 

1 1 6 

2 2 10 

2 2 10 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X= flag is unknown, 
i = flag is affected according to the result of the operation. 

16-BIT ARITHMETIC GROUP 
TABLE 4.3-6 

Reg. 

BC 

DE 

HL 

Sl' 

Reg. 

BC 

DE 

IX 

SP 

Reg. 

BC 

DE 

IY 

SP 



Mn emonic 

RLC A 

RL A 

RRC A 

RR A 

RLC r 

RLC (HL) 

RLC (I X + d) 

RLC (IY + d) 

RL s 

RRC s 

RR s 

S LA s 

SR A s 

SRL s 

RLU 

RRU 

S ymbolic Flags OP-Code No. i\ o. No. 
of of M of T Comments 

Oper a ti o n c z P/V s N H 76 543 210 Bytes Cycles Sta tes 

~ t • • • 0 0 00 000 Ill I 1 4 Rot ate left circul ar 

accum ulato r 

L!DH[hJ t • • • 0 0 00 010 111 1 1 4 Rot at e left accumul ato r 

~Yl t • • • 0 0 00 001 lll 1 1 4 Rot at e ri ght c ir cul ar 

accumu lat or 

~ t • • • 0 0 00 011 Ill 1 1 4 Rotat e right acc umul ator 

t t p t 0 0 11 001 011 2 2 8 Rotate left c ircul a r 

00 [Qill[J r r egis ter r 

t t p t 0 0 11 001 011 2 4 15 r Reg. 

00 [Qill[] 110 000 B 

~ t t p t 0 0 11 011 101 4 6 23 001 c 
s 

11 001 011 010 v 
- d ~ 011 E 

00 [Qill[] 110 100 H 

t t p t 0 0 11 111 101 
101 L 

4 6 23 
111 A 

11 001 011 - d ~ 

00 [Qill[] 110 

~ t t p t 0 0 [QlQ_] ln s t ru cti on form at and st ates 
s ar e as s how n for RLC, m. 

~ t t p t 0 0 [Qm To form new OP·code replace 

' ]QQ] of RLC, m wit h show n 

code. 

~~ t t p t 0 0 [[ill 
' 

~0 t l I' t 0 0 [!QQJ 
s 

~ l l p t 0 0 \ill] 

0~ t t p l 0 0 [ill 

~ 
Rot ate digit left and r ight 

• l p t 0 0 11 101 101 2 5 18 be t ween t he acc um ulato r and 

(.HL) 01 101 Ill location ( HL) . 

~ • t I' t 0 0 II 101 101 2 5 IR The cont ent of t he uppe r half 

01 100 lll of the accumul ator is 
( HL ) 

unaffec t ed. 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X= flag is unknown, 
t = flag is affected according to the result of the operation. 

ROTATE AND SHIFT GROUP 
TABLE 4 .3-7 

97 



98 

Mnemonic 

BIT b, r 

BIT b,(HL) 

BIT b, (IX+d) 

BIT b,(IY + d) 

SET b,r 

SET b,(HL) 

SET b,(IX+d) 

SET b, (IY + d) 

RES b,s 

Symbolic Flags OP-Code 1\o . ~o. No. 
of of Jl ofT Comments Operation c z P/V s N H 76 543 210 Bytes Cycles States 

Z+-rb • t X X 0 I 11 001 011 2 2 8 r Reg. 

01 b r 000 B 
- - t X X 0 I 11 001 011 2 3 12 001 c Z+- (HL)b • 

01 b 110 010 D 
- - t X 4 20 011 E Z+- (IX +d) b • X 0 I 11 011 101 5 

11 001 011 100 H 

~ d - 101 L 

01 b 110 111 A 

- - -
Z+-(IY+d)b • t X X 0 1 11 111 101 4 5 20 b Bit T ested 

11 001 011 000 0 
~ d - 001 1 
01 b 110 010 2 

rb ~1 • • • • • • 11 001 011 2 2 8 011 3 

!Til b r 100 4 

(HLh+---1 11 001 011 2 4 15 
101 5 • • • • • • 110 6 

!Til b 110 
111 7 

(IX + dh +---1 • • • • • • 11 011 101 4 6 23 

11 001 011 
~ d -

!Til b 110 

(IY + dh+---1 • • • • • • 11 111 101 4 6 23 

11 001 011 
+--- d -
!Til b 110 

s b+---0 [1]] To form new OP·code 
s = r,(HL), replace[!] of SET b, m 

(IX + d), with [!QJ. Fl ags and I ime 

(IY + d) states for SET in s tructi on. 

Notes: The notation sb indicates bit b (0 to 7) or location s. 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X= flag is unknown, 
t = flag is affected according to the result of the operation. 

BIT SET, RESET AND TEST GROUP 
TASLE 4.3-8 



Mnemonic 

JP nn 

JP cc, nn 

JR e 

J I{ C, e 

JR NC,e 

JR Z,e 

JR NZ,e 

JP (HL) 

JP (IX) 

JP (IY) 

DJNZ,e 

Symbolic 
Operation 

If condition cc is true 

PC - nn, otherwise 

continue 

rc~PC+e 

Flags OP-Code 

C Z P/V S N H 76 543 210 

• • • • • • 11 000 011 

• • • • • • 11 cc 010 

• • • • • • 00 011 000 

- e- 2 -

If C = O continue • • • • • • 00 Ill 000 

If C = l 

rc~PC+e 

If C = I continue 

If C = O 

PC~PC+ e 

- e-2 -

• • • • • • 00 110 000 

- e-2 -

If Z = O cont inue • • • • • • 00 101 000 

If Z = l 

PC~PC +e 

+-- e- 2 -

If Z = l continue • • • • • • 00 100 000 

If Z = O 

PC~PC+e 

PC~HL 

PC~IX 

PC~IY 

B~B - 1 

If B = O con t inue 

- e- 2 -

• • • • • • 11 101 001 

• • • • • • 11 011 101 

11 101 001 

e • • e e e II Ill 101 

11 101 001 

• • • • • • 00 010 000 

~ e-2 ~ 

No. No. !\o. 
of of l\1 ofT 

Bytes Cycles States 

3 

3 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

2 

2 

2 

2 

3 

3 

3 

2 

3 

2 

3 

2 

3 

2 

3 

1 

2 

2 

2 

3 

10 

10 

12 

7 

12 

7 

12 

7 

12 

7 

12 

4 

8 

8 

8 

Notes: e represents the extension in the relative addressing mode. 

e is a signed two's complement number in the range <-126, 129> 

e-2 in the op-code provides an effective address of pc +e as PC is 
incremented by 2 prior to the addition of e. 

cc 

000 

001 

010 

Comments 

Conditi on 

NZnon zero 

Z zero 

NCnon carry 

011 C carry 

100 PO parity odd 

101 PE parity even 

110 I' sign positive 

Ill M sign nega tive 

If condition not met 

If cond iti on is met 

If condition not met 

If condition is met 

If condition not met 

If condit ion is met 

If condi ti on not met 

If conditi on is met 

If B = O 

Flag Notation : • = flag not affected, 0 = flag reset, 1 = flag set, X= flag is unknown, 
t = flag is affected according to the result of the operation. 

JUMP GROUP 
TABLE 4.3-9 

99 



100 

Mne monic 

CALL nn 

CALL cc,nn 

RET 

RET cc 

RET! 

RETN 

RST p 

No. !'o. .\"o. Symbolic Flags OP-Code of of ~I ofT Comments 
Operation c z P/ V s N H 76 543 210 Bytes Cycles States 

(SP-l)~PC I I • • • • • • 11 001 101 3 5 17 

(SP - 2)~PCt. ~ n -
PC - nn ~ n -
If condition cc is fal se • • • • • • 11 cc 100 3 3 10 If cc is fa lse 

continu e, ot herwise ~ n -
same as CALL nn ~ n - 3 5 17 lf cc is true 

PC~, -(SP) • • • • • • 11 001 001 1 3 10 

PCu - (SP + 1) 

If condition cc is fa lse • • • • • • ll cc 000 1 1 5 lf cc is false 

continue, otherwise 1 3 11 If cc is true 

same as RET cc 

Return from • • • • • • ll 101 101 2 4 14 000 

int errupt 01 001 101 001 

Return from non • • • • • • ll 101 101 2 4 14 010 

mas kab le interrupt 01 000 101 011 

100 

101 

110 

Ill 

(SP - l) ~PCII • • • • • • II t 111 1 3 ll t 

(SP - 2) ~PCt. 000 
P C11 - 0 00 1 
PC~,~P 010 

011 

100 

101 

110 

11 1 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown 
t = flag is affected according to the result of the operation. 

CALL AND RETURN GROUP 
TABLE 4.3-10 

Conditi on 

NZ non ze ro 

'l zero 

NC non ca rry 

C carry 

PO pa rity odd 

I'E parity even 

I' sign positive 

M sign negatiH 

p 

OOH 

OSH 

10H 

ISH 

20H 

28H 

30H 

38H 



i\lnemonic 

IN A,(n) 

IN r,(C) 

INI 

INIR 

1ND 

INDR 

OUT (n),A 

OUT (C), r 

OUT! 

OTIR 

OUTD 

OTDR 

Symbolic Flags OP-Code No. r\o. 1\o. 
of of M ofT Commen.ts Operation c z P/V s N H 76 543 210 Bytes Cycles Stales 

A~(n) • • • • • • 11 011 011 2 3 11 n to Ao - A i 
~ n - Ace to As- Alc. 

r~(C) • t p t 0 0 11 101 101 2 3 12 C to Ao - A; 
If r = 110 only 01 r 000 B to A, ·- A1 :, 

the flags wi ll 

be affect ed CD 
(HL) ~(C) • t X X 1 X 11 101 101 2 4 16 C to An - A; 

B~B - 1 10 100 010 B to As - Alc. 

HL~HL+ 1 

(HL) ~(C) • 1 X X 1 X 11 101 101 2 5 21 C to An - A; 

B~B - 1 10 110 010 rifB • 11 B to As - Ala 

HL~HL+ 1 2 4 16 

Repea t until B = O CD 'If B- 11 

(HL) <-(C) • t X X 1 X 11 101 101 2 4 16 C to An - A7 

B~B -- 1 10 101 010 B to As - Al :, 

HL~HL-1 

(HL) +-(C) • 1 X X 1 X 11 101 101 2 5 21 C to Au - A; 

B~B- 1 10 111 010 ' ifB • 0 B to Ax- Alc. 

HL~HL- 1 2 4 16 

Repeat until B = O •If B ~ o 

(n)~A • • • • • • 11 010 011 2 3 11 n to Au - A; 

Ace to Ax- Al'> 

(C) <- r • • • • • • II 101 101 2 3 12 C to An - A; 

01 r 001 B to Ax- Ala 

CD 
(C)~(HL) • t X X 1 X 11 101 101 2 4 16 C to Au - A; 

B<-B - 1 10 100 011 B to Ax- Al:, 

HL~HL+ 1 

(C) <-(HL) • 1 X X I X 11 101 101 2 5 21 C to An - A; 

B~B - 1 10 110 011 •If B•O B to Ax- Ala 

HL~HL+ 1 2 4 16 

Re peat until B = O ·If BoO 

CD 
(C) - (HL) • t X X 1 X 11 101 101 2 4 16 C to An - A; 

B~B - 1 10 101 011 B to Ax - AL·· 

HL+-HL-1 

(C) ~(HL) • 1 X X 1 X 11 101 101 2 5 21 C to Ao - Ai 
B~B - 1 10 111 011 liB • 0 B to Ax- Alc. 

HL+- HL - 1 2 4 16 

Re peat unti l B= O ·If 1! - 0 

Notes: (D If the result of B-1 is zero the Z flag is set, otherwise it is reset. 

Flag Notation: • = flag not affected, 0 = flag reset, 1 = flag set, X= flag is unknown, 
t = flag is affected according to the result of the operation. 

INPUT AND OUTPUT GROUP 
TABLE 4.3-11 

101 



102 

4.4 FLAGS 

Each of the two Z-80A CPU Flag registers contains six bits of information which are set or reset by various CPU 
operations. Four of these bits are testable; that is, they are used as conditions for jump, call or return instructions. For 
example a jump may be desired only if a specific bit in the flag register is set. The four testable flag bits are: 

1) Carry Flag (C) - This flag is the carry from the highest order bit of the accumulator. For example , the carry 
flag will be set during an add instruction where a carry from the highest bit of the accumulator is generated. 
This flag is also set if a borrow is generated during a subtraction instruction. The shift and rotate instructions 
also affect this bit. 

2) Zero Flag (Z) - This flag is set if the result of the operation loaded a zero into the accumulator. Otherwise it is 
reset. 

3) Sign Flag (S) - This flag is intended to be used with signed numbers and it is set if the result of the operation 
was negative. Since bit 7 (MSB) represents the sign of the number (A negative number has a 1 in bit 7) , this 
flag stores the state of bit 7 in the accumulator. 

4) Parity /Overflow Flag (P /V) - This dual purpose flag indicates the parity of the result in the accumulator when 
logical operations are performed (such as AND A, B) and it represents overflow when signed two's comple­
ment arithmetic operations are performed. The Z-80A overflow flag indicates that the two's complement num­
ber in the accumulator is in error since it has exceeded the maximum possible (+127) or is less than the mini­
mum possible ( -128) number than can be represented in two's complement notation. For example consider 
adding: 

+120 011 I 1000 
+105 0110 1001 

C 0 1110 0001 = -31 (wrong) Overflow has occurred 

Here the result is incorrect. Overflow has occurred and yet there is no carry to indicate an error. For this case 
the overflow flag would be set. Also consider the addition of two negative numbers: 

-5 = 
-16 = 

c = 

11111011 
1111 0000 

11101011 = -21 correct 

Notice that the answer is correct but the carry is set so that this flag can not be used as an overflow indicator. 
In this case the overflow would not be set. 

For logical operations (AND, OR, XOR) this flag is set if the parity of the result is even and it is reset if it is 
odd. 

There are also two non-testable bits in the flag register. Both of these are used for BCD arithmetic. They are: 

1) Half carry (H) - This is the BCD carry or borrow result from the least significant four bits of operation. When 
using the DAA (Decimal Adjust Instruction) this flag is used to correct the result of a previous packed decimal 
add or subtract. 

2) Add/Subtract Flag (N) - Since the algorithm for correcting BCD operations is different for addition or sub­
traction, this flag is used to specify what type of instruction was executed last so that the DAA operation will 
be correct for either addition or subtraction. 

The Flag register can be accessed by the programmer and its format is as follows : 

I s I z I X I H I X I P/V N I c I 
X means flag is indeterminate. 



103 

Table 4.4-1 lists how each flag bit is affected by various CPU instructions. In this table a 'e' indicates that the 
instruction does not change the flag, an 'X' means that the flag goes to an indeterminate state, a '0' means that it is 
reset, a '1' means that it is set and the symbol 'i' indicates that it is set or reset according to the previous discussion. 
Note that any instruction not appearing in this table does not affect any of the flags. 

Table 4.4-1 includes a few special cases that must be described for clarity. Notice that the block search instruction 
sets the Z flag if the last compare operation indicated a match between the source and the accumulator data. Also, the 
parity flag is set if the byte counter (register pair BC) is not equal to zero. This same use of the parity flag is made with 
the block move instructions. Another special case is during block input or output instructions, here the Z flag is used to 
indicate the state of register B which is used as a byte counter. Notice that when the 1/0 block transfer is complete, the 
zero flag will be reset to a zero (i.e. B = 0) while in the case of a block move command the parity flag is reset when the 
operation is complete. A final case is when the refresh or 1 register is loaded into the accumulator, the interrupt enable 
flip flop is loaded into the parity flag so that the complete state of the CPU can be saved at any time. 



104 

lc P/ 
Instruction z v s N H Comments 

ADD A, s; ADC A, s t v 0 t 8-bit add or add with carry 
SUB s; SBC A, s; CP s; NEG t v t t 8-bit subtract, subtract with carry, compare and negate accumulator 
AND s 0 p t 0 1 } Logical operations 
OR s; XOR s 0 t p 0 0 And set's different flags 
INC s • v t 0 t 8-bit increment 
DECm • t v t 1 8-bit decrement 
ADD DD, ss • • • 0 X 16-bit add 
ADC HL, ss t v 0 X 16-bit add with carry 
SBC HL, ss t v X 16-bit subtract with carry 
RLA ; RLCA;RRA;RRCA; • • • 0 0 Rotate accumulator 
RL m; RLC m; RR m; RRC m t p 0 0 Rotate and shift location s 

SLAm; SRA m; SRL m 
RLD;RRD • t p 0 0 Rotate digit left and right 
DAA t p t • Decimal adjust accumulator 
CPL • • • • 1 Complement accumulator 
SCF 1 • • • 0 0 Set carry 
CCF t • • • 0 X Complement carry 
IN r, (C) • p 0 0 Input register indirect 
INI; IND; OUTI; OUTD • X X X } Block input and output 
INIR; INDR; OTIR ; OTDR • X X X Z = 0 if B 1' 0 otherwise Z = 1 
LDI; LDD • X t X 0 0 } Block transfer instructions 
LDIR;LDDR • X 0 X 0 0 P/V = 1 if BC 1' 0, otherwise P/V = 0 
CPI; CPIR; CPD; CPDR • t X X Block search instructions 

Z = 1 if A = (HL), otherwise Z = 0 
P/V = 1 if BC 1' 0, otherwise P/V = 0 

LD A, I; LD A, R • FF t 0 0 The content of the interrupt enable flip-flop (IFF) is copied into the 
P/V flag 

BIT b, s • X X 0 1 The state of bit b of location s is copied into the Z flag 
NEG v t t Negative accumulator 

The following notation is used in this table: 

Symbol Operation 

C Carry/link flag. C = 1 if the operation produced a carry from the MSB of the operand or result. 

Z Zero flag. Z = I if the result of the operation is zero. 

S Sign flag. S = I if the MSB of the result is one. 

P/V Parity or overflow flag. Parity (P) and overflow (V) share the same flag. Logical operations affect this flag with the parity 
of the result while arithmetic operations affect this flag with the overflow of the result. If P/V holds parity, P/V = 1 if the 
result of the operation is even, P/V = 0 if result is odd. If P/V holds overflow, P/V = I if the result of the operation produced 
an overflow. 

H Half-carry flag. H = I if the add or subtract operation produced a carry into or borrow from into bit 4 of the accumulator. 

N Add/Subtrac t flag. N = 1 if the previous operation was a subtract. 

H and N flags are used in conjunction with the decimal adjust instruction (DAA) to properly correct the resu lt into packed 
BCD format following addition or subtraction using operands with packed BCD format. 

The flag is affected according to the result of the operation. 
• The flag is unchanged by the operation. 
0 The flag is reset by the operation. 
I The flag is set by the operation. 
X The flag is a "don't care." 
V P /V flag affected according to the overflow result of the operation. 
P P /V flag affected according to the parity result of the operation. 

Any one of the CPU registers A, B, C, D, E, H, L. 
Any 8-bit location for all the addressing modes allowed for the particular instruction. 

ss Any 16-bit location for all the addressing modes allowed for that instruction. 
ii Any one of the two index registers IX or IY. 
R Refresh counter. 
n 8-bit value in range < 0, 255 > 
nn I6-bit value in range < 0, 65535 > 
m Any 8-bit location for all the addressing modes allowed for the particular instruction. 

SUMMARY OF FLAG OPERATION 

TABLE 4.4-1 



105 

5.0 INTERRUPT RESPONSE 

The purpose of an interrupt is to allow peripheral devices to suspend CPU operation in an orderly manner and 
force the CPU to start a peripheral service routine. Usually this service routine is involved with the exchange of data, or 
status and control information, between the CPU and the peripheral. Once the service routine is completed, the CPU 
returns to the operation from which it was interrupted. 

INTERRUPT ENABLE- DISABLE 

The Z-80A CPU has two interrupt inputs, a software maskable interrupt and a non maskable interrupt. The non 
maskable interrupt (NMI) can not be disabled by the programmer and it will be accepted whenever a peripheral device 
requests it. This interrupt is generally reserved for very important functions that must be serviced whenever they occur, 
such as an impending power failure. The maskable interrupt (INT) can be selectively enable or disabled by the program­
mer. This allows the programmer to disable the interrupt during periods where his program has timing constraints that 
do not allow it to be interrupted. In the Z-80A CPU there is an enable flip flop (called IFF) that is set or reset by the 
programmer using the Enable Interrupt (EI) and Disable Interrupt (Dl) instructions. When the IFF is reset , an interrupt 
can not be accepted by the CPU. 

Actually , for purposes that will be subsequently explained, there are two enable flip flops, called IFF 1 and IFF 2 . 

Actually disables interrupts 
from being accepted. 

Temporary storage location 
for IFF 1 • 

The state of IFF 1 is used to actually inhibit interrupts while IFF2 is used as a temporary storage location for IFF 1 . 

The purpose of storing the IFF 1 will be subsequently explained . 

A reset to the CPU will force both IFF 1 and IFF2 to the reset state so that interrupts are disabled . They can then 
be enabled by an EI instruction at any time by the programmer. When an EI instruction is executed , any pending inter­
rupt request will not be accepted until after the instruction following EI has been executed. This single instruction 
delay is necessary for cases when the following instruction is a return instruction and interrupts must not be allowed 
until the return has been completed. The EI instruction sets both IFF 1 and IFF2 to the enable state. When an interrupt 
is accepted by the CPU, both IFF 1 and IFF 2 are automatically reset , inhibiting further interrupts until the programmer 
wishes to issue a new EI instruction. Note that for all of the previous cases, IFF 1 and IFF 2 are always equal. 

The purpose of IFF2 is to save the status of IFF 1 when a non- maskable interrupt occurs. When a non maskable 
interrupt is accepted, IFF 1 is reset to prevent further interrupts until reenabled by the programmer. Thus, after a non 
maskable interrupt has been accepted, maskable interrupts are disabled but the previous state of IFF 1 has been saved so 
that the complete state of the CPU just prior to the non maskable interrupt can be restored at any time. When a Load 
Register A with Register I (LD A, I) instruction or a Load Register A with Register R (LD A, R) instruction is exe­
cuted, the state ofiFF2 is copied into the parity flag where it can be tested or stored. 

A second method of restoring the status of IFF 1 is thru the execution of a Return From Non Maskable Interrupt 
(RETN) instruction. Since this instruction indicates that the non maskable interrupt service routine is complete, the 
contents of IFF 2 are now copied back into IFF 1 , so that the status of IFF 1 just prior to the acceptance of the non 
maskable interrupt will be restored automatically. 



106 

Figure 5.0-1 is a summary of the effect of different instructions on the two enable flip flops . 

Action IFF 1 IFF2 

CPU Reset 0 0 

DI 0 0 

EI 

LDA,I • • IFF 2 ~ Parity flag 

LDA,R • • IFF2 ~Parity flag 

Accept NMI 0 • 
RETN IFF2 • IFF2 ~IFF I 

"•" indicates no change 

FIGURE 5.0-1 
INTERRUPT ENABLE/DISABLE FLIP FLOPS 

CPU RESPONSE 

Non Maskable 

A nonmaskable interrupt will be accepted at all times by the CPU. When this occurs , the CPU ignores the next 
instruction that it fetches and instead does a restart to location 0066H. Thus, it behaves exactly as if it had received a 
restart instruction but, it is to a location that is not one of the 8 software restart locations. A restart is merely a call to 
a specific address in page 0 of memory. 

Maskable 

The CPU can be progr:tmmed to respond to the maskable interrupt in any one of three possible modes. 

ModeO 

This mode is identical to the 8080A interrupt response mode. With this mode , the interrupting device can place 
any instruction on the data bus and the CPU will execute it. Thus, the interrupting device provides the next instruction 
to be executed instead of the memory. Often this will be a restart instruction since the interrupting device only need 
supply a single byte instruction. Alternatively , any other instruction such as a 3 byte call to any location in memory 
could be executed. 

The number of clock cycles necessary to execute this instruction is 2 more than the normal number for the instruc­
tion. This occurs since the CPU automatically adds 2 wait states to an interrupt response cycle to allow sufficient time 
to implement an external daisy chain for priority control. Section 3.0 illustrates the detailed timing for an interrupt 
response . After the application of RESET the CPU will automatically enter interrupt Mode 0. 

Mode I 

When this mode has been selected by the programmer, the CPU will respond to an interrupt by executing a restart 
to location 0038H. Thus the response is identical to that for a non maskable interrupt except that the call location is 
0338H instead of 0066H. Another difference is that the number of cycles required to complete the restart instruction 
is 2 more than normal due to the two added wait states. 



107 

Mode 2 

This mode is the most powerful interrupt response mode. With a single 8 bit byte from the user an indirect call can 
be made to any memory location . 

With this mode the programmer maintains a table of 16 bit starting addresses for every interrupt service routine . 
This table may be located anywhere in memory. When an interrupt is accepted, a 16 bit pointer must be formed to 
obtain the desired interrupt service routine starting address from the table . The upper 8 bits of this pointer is formed 
from the contents of the I register. The I register must have been previously loaded with the desired value by the pro­
grammer, i.e . LD I, A. Note that a CPU reset clears the I register so that it is initialized to zero. The lower eight bits of 
the pointer must be supplied by the interrupting device. Actually, only 7 bits are required from the interrupting device 
as the least significant bit must be a zero. This is required since the pointer is used to get two adjacent bytes to form a 
complete 16 bit service routine starting address and the addresses must always start in even locations. 

Interrupt 
Service 
Routine 
Starting 
Address 
Table 

low order } 
~ 

high order 

desired starting address 
pointed to by: 

IREG 7 BITS FROM 
CONTENTS PERIPHERAL 

0 

The first byte in the table is the least significant (low order) portion of the address. The programmer must obviously 
fill this table in with the desired addresses before any interrupts are to be accepted. 

Note that this table can be changed at any time by the programmer (if it is stored in Read/Write Memory) to allow 
different peripherals to be serviced by different service routines. 

Once the interrupting devices supplies the lower portion of the pointer, the CPU automatically pushes the program 
counter onto the stack, obtains the starting address from the table and does a jump to this address . This mode of res­
ponse requires 19 clock periods to complete (7 to fetch the lower 8 bits from the interrupting device, 6 to save the 
program counter, and 6 to obtain the jump address.) 

Note that the Z-80A peripheral devices all include a daisy chain priority interrupt structure that automatically 
supplies the programmed vector to the CPU during interrupt acknowledge. Refer to the Z-80A-PIO, manual for details . 



108 

A.2 Technical Data of Z 80A-PIO 

1.0 INTRODUCTION 

The Z-80A Parallel I/0 (PIO) Circuit is a programmable , two port device which provides a TTL compatible inter­
face between peripheral devices and the Z-80A-CPU. The CPU can configure the Z-80A-PIO to interface with a wide 
range of peripheral devices with no other external logic required. Typical peripheral devices that are fully compatible 
with the Z-80A-PIO include most keyboards, paper tape readers and punches, printers , PROM programmers, etc. The 
Z-80A-PIO utilizes N channel silicon gate depletion load technology and is packaged in a 40 pin DIP. Major features of 
the Z-80A-PIO include: 

• Two independent 8 bit bidirectional peripheral interface ports with 'handshake' data transfer control 

• Interrupt driven 'handshake' for fast response 

• Any one of four distinct modes of operation may be selected for a port including: 

Byte output 

Byte input 

Byte bidirectional bus (Available on Port A only) 

Bit control mode 

All with interrupt controlled handshake 

• Daisy chain priority interrupt logic included to provide for automatic interrupt vectoring without external logic 

• Eight outputs are capable of driving Darlington transistors 

• All inputs and outputs fully TTL compatible 

• Single 5 volt supply and single phase clock are required. 

One of the unique features of the Z-80A-PIO that separates it from other interface controllers is that all data 
transfer between the peripheral device and the CPU is accomplished under total interrupt control. The interrupt logic of 
the PIO permits full usage of the efficient interrupt capabilities of the Z-80A-CPU during I/0 transfers . All logic neces­
sary to implement a fully nested interrupt structure is included in the PIO so that additional circuits are not required. 
Another unique feature of the PIO is that it can be programmed to interrupt the CPU on the occurrence of specified 
status conditions in the peripheral device. For example, the PIO can be programmed to interrupt if any specified peri­
pheral alarm conditions should occur. This interrupt capability reduces the amount of time that the processor must 
spend in polling peripheral status. 



109 

2.0 ARCHITECTURE 

A block diagram of the Z-80A-PIO is shown in Figure 2.0-1 . The internal structure of the Z-80A-PIO consists of 
a Z-80A-CPU bus interface, internal control logic, Port A 1/0 logic, Port B I/0 logic, and interrupt control logic. The 
CPU bus interface logic allows the PIO to interface directly to the Z-80A-CPU with no other external logic. However , 
address decoders and/or line buffers may be required for large systems. The internal control logic synchronizes the CPU 
data bus to the peripheral device interfaces (Port A and Port B). The two I/0 ports (A and B) are virtually identical and 
are used to interface directly to peripheral devices. 

{ 

DATA :US 
CPU 
INTERFACE --=6'-f--Dt 

PIO CONTROL 
LINES 

3 

INTERRUPT CONTROL LINES 

FIGURE 2.0-1 
PIO BLOCK DIAGRAM 

Kf--'8'-f--1> DATA OR CONTROL 

1----1>} HANDSHAKE 

PERIPHERAL 
INTERFACE 

The Port I/0 logic is composed of 6 registers with "handshake" control logic as shown in Figure 1.0-2. The 
registers include : an 8 bit data input register, an 8 bit data output register, a 2 bit mode control register, an 8 bit mask 
register, an 8 bit input/output select register , and a 2 bit mask control register. 

MASK 

MODE 
CONTROL 
REG 
(2 BITS) 

CONTROL 1----.........._ 
REG 
(2 BITS) 

INPUT/ OUTPUT 
SELECT REG 
(8 BITS) 

DATA 

OUTPUT 
ENABLE 

OUTPUT 1----, 

MASK 
REG 
(8 BITS) 

REG 
(8 BITS) 

'..,------1 PNAPTUAT 

REG 
_../L...,., "'N P""U-:=T'"'D:-:A-:=T-:-A -1 ( 8 BITs) 

FIGURE 2.0-2 

HANDSHAKE 
CONTROL 
LOGIC 

PORT 1/0 BLOCK DIAGRAM 

8 BIT 

PERIPHERAL 
DATA OR 
CONTROL BUS 

READY 
___ } HANDSHAKE 
STROBE LINES 



110 

The 2-bit mode control register is loaded by the CPU to select the desired operating mode (byte output, byte 
input, byte bidirectional bus, or bit control mode). All data transfer between the peripheral device and the CPU is 
achieved through the data input and data output registers . Data may be written into the output register by the CPU or 
read back to the CPU from the input register at any time . The handshake lines associated with each port are used to 
control the data transfer between the PIO and the peripheral device . 

The 8-bit mask register and the 8-bit input/output select register are used only in the bit control mode . In this 
mode any of the 8 peripheral data or control bus pins can be programmed to be an input or an output as specified by 
the select register. The mask register is used in this mode in conjunction with a special interrupt feature. This feature 
allows an interrupt to be generated when any or all of the unmasked pins reach a specified state (either high or low). 
The 2-bit mask control register specifies the active state desired (high or low) and if the interrupt should be generated 
when all unmasked pins are active (AND CPU status checking of the peripheral by allowing an interrupt to be automat­
ically generated on specific peripheral status conditions. For example, in a system with 3 alarm conditions, an interrupt 
may be generated if any one occurs or if all three occur. 

The interrupt control logic section handles all CPU interrupt protocol for nested priority interrupt structures. The 
priority of any device is determined by its physical location in a daisy chain configuration. Two lines are provided in 
each PIO to form this daisy chain. The device closest to the CPU has the highest priority. Within a PIO, Port A inter­
rupts have higher priority than those of Port B. In the byte input, byte output or bidirectional modes , an interrupt can 
be generated whenever a new byte transfer is requested by the peripheral. In the bit control mode an interrupt can be 
generated when the peripheral status matches a programmed value. The PIO provides for complete control of nested 
interrupts. That is , lower priority devices may not interrupt higher priority devices that have not had their interrupt 
service routine completed by the CPU. Higher priority devices may interrupt the servicing of lower priority devices . 

When an interrupt is accepted by the CPU in mode 2 , the interrupting device must provide an 8-bit interrupt vector 
for the CPU. This vector is used to form a pointer to a location in the computer memory where the address of the inter­
rupt service routine is located. The 8-bit vector from the interrupting device forms the least significant 8 bits of the 
indirect pointer while the I Register in the CPU provides the most significant 8 bits of the pointer. Each port (A and B) 
has an independent interrupt vector. The least significant bit of the vector is automatically set to a 0 within the PIO 
since the pointer must point to two adjacent memory locations for a complete 16-bit address . 

The PIO decodes the RETI (Return from interrupt) instruction directly from the CPU data bus so that each PIO 
in the system knows at all times whether it is being serviced by the CPU interrupt service routine without any other 
communication with the CPU. 



111 

3.0 PIN DESCRIPTION 

A diagram of the Z-80A-PIO pin configuration is shown in Figure 3 .0-1. This section describes the function of each 
pin. 

D7 -D0 Z-80A-CPU Data Bus (bidirectional, tristate) 
This bus is used to transfer all data and commands between the Z-80A-CPU and the Z-80A-PIO. D0 is the 
least significant bit of the bus. 

B/ A Sel Port B or A Select (input, active high) 
This pin defines which port will be accessed during a data transfer between the Z-80A-CPU and the Z-80A­
PIO. A low level on this pin selects Port A while a high level selects Port B. Often Address bit A0 from the 
CPU will be used for this selection function. 

C/D Sel Control or Data Select (input, active high) 
This pin defines the type of data transfer to be performed between the CPU and the PIO. A high level on this 
pin during a CPU write to the PIO causes the Z-80A data bus to be interpreted as a command for the port 
selected by the B/ A Select line. A low level on this pin means that the Z-80A data bus is being used to trans­
fer data between the CPU and the PIO. Often Address bit A1 from the CPU will be used for this function. 

CE Chip Enable (input, active low) 
A low level on this pin enables the PIO to accept command or data inputs from the CPU during a write cycle 
or to transmit data to the CPU during a read cycle. This signal is generally a decode of four 1/0 port numbers 
that encompass port A and B, data and control. 

4 MHz System Clock (input) 
The Z-80A-PIO uses the standard Z-SOA system clock to synchronize certain signals internally. This is a 
single phase clock. 

M1 Machine Cycle One Signal from CPU (input, active low) 

IORQ 

RD 

This signal from the CPU is used as a sync pulse to control several internal PIO operations. When M I is active 
and the RD signal is active , the Z-80A-CPU is fetching an instruction from memory. Conversely, when M 1 is 
active and IORQ is active , the CPU is acknowledging an interrupt. In addition, the M1 signal has two other 
functions within the Z-SOA-PIO. 

1. M 1 synchronizes the PIO interrupt logic. 

2. When M1 occurs without an active RD or IORQ signal the PIO logic enters a reset state. 

Input/Output Request from Z-80A-CPU (input, active low) 
The IORQ signal is used in conjunction with the B/A Select, C/D Select, CE, and RD signals to transfer com­
mands and data between the Z-80A-CPU and the Z-80A-PIO. When CE, RD and IORQ are active, the port 
addressed by B/A will transfer data to the CPU (a read operation). Converse!:,', whenCE and IORQ are active 
but RD is not active, then the port addressed by B/ A will be written into from the CPU with either data or 
control information as specified by the C/D Select signal. Also, if IORQ and M 1 are active simultaneously, 
the CPU is acknowledging an interrupt and the interrupting port will automatically plac~ its interrupt vector 
on the CPU data bus if it is the highest priority device requesting an interrupt. 

Read Cycle Status from the Z-80A-CPU (input, active low) 
If RD is active a MEMORY READ or 1/0 READ operation is in progress. The RD signal is used with B/A 
Select, C/D Select, CE , and IORQ signals to transfer data from the Z-80A-PIO to the Z-SOA-CPU. 



112 

lEI Interrupt Enable In (input, active high) 
This signal is used to form a priority interrupt daisy chain when more than one interrupt driven device is 
being used. A high level on this pin indicates that no other devices of higher priority are being serviced by a 
CPU interrupt service routine. 

lEO Interrupt Enable Out (output, active high) 
The lEO signal is the other signal required to form a daisy chain priority scheme. It is high only if lEI is high 
and the CPU is not servicing an interrupt from this PIO. Thus this signal blocks lower priority devices from 
interrupting while a higher priority device is being serviced by its CPU interrupt service routine. 

INT Interrupt Request (output, open drain, active low) 
When INTis active the Z-80A-PIO is requesting an interrupt from the Z-80A-CPU. 

A0 - A7 Port A Bus (bidirectional, tristate) 
This 8 bit bus is used to transfer data and/or status or control information between Port A of the Z-80A-PIO 
and a peripheral device. A0 is the least significant bit of the Port A data bus. 

A STB Port A Stroh~ Pulse from Peripheral Device (input, active low) 

1) Output mode: The positive edge of this strobe is issued by the peripheral to acknowledge the receipt 
of data made available by the PIO. 

2) Input mode : The strobe is issued by the peripheral to load data from the peripheral into the Port A 
input register. Data is loaded into the PIO when this signal is active . 

3) Bidirectional mode : When this signal is active, data from the Port A output register is gated onto Port 
A bidirectional data bus. The positive edge of the strobe acknowledges the receipt of the data. 

4) Control mode: The strobe is inhibited internally. 

A RDY Register A Ready (output, active high) 
The meaning of this signal depends on the mode of operation selected for Port A as follows: 

1) Output mode: This signal goes active to indicate that the Port A output register has been loaded and 
the peripheral data bus is stable and ready for transfer to the peripheral device. 

2) Input mode: This signal is active when the Port A input register is empty and is ready to accept data 
from the peripheral device. 

3) Bidirectional mode: This signal is active when data is available in the Port A output register for trans­
fer to the peripheral device . In this mode data is not placed on the Port A data bus unless A STB 
is active. 

4) Control mode : This signal is disabled and forced to a low state. 

B0 - B7 Port B Bus (bidirectional, tristate) 
This 8 bit bus is used to transfer data and/or status or control information between Port B of the PIO and a 
peripheral device . The Port B data bus is capable of supplying 1.5ma@ l.SV to drive Darlington transistors. 
B0 is the least significant bit of the bus. 

B STB Port B Strobe Pulse from Peripheral Device (input, active low) 
The meaning of this signal is similar to that of A STB with the following exception: 

In the Port A bidirectional mode this signal strobes data from the peripheral device into the Port A 
input register. 

B RDY Register B Ready (output, active high) 

The meaning of this signal is similar to that of A Ready with the following exception: 

In the Port A bidirectional mode this signal is high when the Port A input register is empty and ready 
to accept data from the peripheral device. 



113 

Do 
19 15 

Ao 

01 

0 2 

20 14 

I 13 
A1 

A2 

CPU 0 3 ~--
12 A3 

DATA 
BUS o. 

Ds 

0 6 

39 10 

38 9 

3 8 

A4 

As 
PORT A 
1/ 0 

A6 

0 7 2 7 
A7 

PORT B/ A SEL 
6 18 

A ROY 

CONTROL/ DATA SEL 
5 Z80A·PIO 

16 
A STB 

PIO 
CHIP ENABLE CONTROL 

Ml 

4 27 

37 28 
8 o 

81 

IORQ 
36 29 

8 2 

RD 
35 30 

8 3 
31 

8 4 

+ 5V 

GND 

26 
32 

33 
II 

34 

8 5 PORT B 
1/ 0 

8 6 

8 7 

<I> 
25 

21 
B RDY 

INT 
INTERRUPT { 
CONTROL INT ENABLE IN 

INT ENABLE OUT 

17 
23 

24 

22 

B STB 

FIGURE 3.0-1 
PIO PIN CONFIGURATION 



114 

4.0 PROGRAMMING THE PIO 

4.1 RESET 

The Z-80A-PIO automatically enters a reset state when power is applied. The reset state performs the following 
functions : 

1) Both port mask registers are reset to inhibit all port data bits. 

2) Port data bus lines are set to a high impedance state and the Ready "handshake" signals are inactive (low). 
Mode 1 is automatically selected. 

3) The vector address registers are not reset. 

4) Both port interrupt enable flip flops are reset. 

5) Both port output registers are reset. 

In addition to the automatic power on reset , the PIO can be reset by applying an M 1 signal without the presence of 
a RD or IORQ signal. If no RD or IORQ is ·detected during M 1 the PIO will enter the reset state immediately after the 
M1 signal goes inactive. The purpose of this reset is to allow a single external gate to generate a reset without a power 
down sequence. This approach was required due to the 40 pin packaging limitation. 

Once the PIO has entered the internal reset state it is held there until the PIO receives a control word from the 
CPU. 

4.2 LOADING THE INTERRUPT VECTOR 

The PIO has been designed to operate with the Z-80A-CPU using the mode 2 interrupt response. This mode re­
quires that an interrupt vector be supplied by the interrupting device. This vector is used by the CPU to form the 
address for the interrupt service routine of that port. This vector is placed on the Z-80A data bus during an interrupt 
acknowledge cycle by the highest priority device requesting service at that time . (Refer to the Z-80A-CPU Technical 
Manual for details on how an interrupt is serviced by the CPU). The desired interrupt vector is loaded into the PIO by 
writing a control word to the desired port of the PIO with the following format : 

D7 D6 Ds D4 D3 D2 Dl Do 

v7 v6 Ys v4 v3 v2 VI 0 
I 

Z signifies this control word is an interrupt vector 

D0 is used in this case as a flag bit which when low causes V 7 thru V 1 to be loaded into the vector register. At interrupt 
acknowledge time , the vector of the interrupting port will appear on the Z-80A data bus exactly as shown in the format 
above . 



115 

4.3 SELECTING AN OPERATING MODE 

Port A of the PIO may be operated in any of four distinct modes: Mode 0 (output mode) , Mode 1 (input mode) , 
Mode 2 (bidirectional mode) , and Mode 3 (control mode) . Note that the mode numbers have been selected for mne­
monic significance; i.e. 0 =Out, 1 =In , 2 =Bidirectional. Port B can operate in any of these modes except Mode 2. 

The mode of operation must be established by writing a control word to the PIO in the following format: 

Ds 

X X 

mode word signifies mode word 
to be set 

Do 

X= unused bit 

Bits D7 and D6 form the binary code for the desired mode according to the following table: 

07 06 Mode 

0 0 0 (output) 

0 1 1 (input) 

0 2 (bidirectional) 

3 (control) 

Bits D5 and D4 are ignored . Bits D 3-D0 must be set to 1111 to indicate "Set Mode" . 

Selecting Mode 0 enables any data written to the port output register by the CPU to be output to the port data 
bus. The contents of the output register may be changed at any time by the CPU simply by writing a new data word to 
the port. Also, the current contents of the output register may be read back to the Z-80A-CPU at any time through 
execution of an input instruction. 

With Mode 0 active , a data write from the CPU causes the Ready handshake line of that port to go high to notify 
the peripheral that data is available . This signal remains high until a strobe is received from the peripheral. The rising 
edge of the strobe generates an interrupt (if it has been enabled) and causes the Ready line to go inactive . This very 
simple handshake is similar to that used in many peripheral devices . 

Selecting Mode 1 puts the port into the input mode. To start handshake operation , the CPU merely performs an 
input read operation from the port. This activates the Ready line to the peripheral to signify that data should be loaded 
into the empty input register. The peripheral device then strobes data into the port input register using the strobe line . 
Again , the rising edge of the strobe causes an interrupt request (if it h::rs been enabled) and deactivates the Ready signal. 
Data may be strobed into the input register regardless of the state of the Ready signal if care is taken to prevent a data 
overrun condition . 

Mode 2 is a bidirectional data transfer mode which uses all four handshake lines. Therefore only Port A may be 
used for Mode 2 operation . Mode 2 operation uses the Port A handshake signals for output control and the Port B 
handshake signals for input control. Thus, both A RDY and B RDY may be active simultaneously . The only operation­
al difference between Mode 0 and the output portion of Mode 2 is that data from the Port A output register is allowed 
on to the port data bus only when A STB is active in order to achieve bidirectional capability. 

Mode 3 operation is intended for status and control applications and does not utilize the handshake signals. When 
Mode 3 is selected , the next control word sent to the PIO must define which of the port data bus lines are to be inputs 
and which are outputs. The format of the control word is shown below: 

Ds Do 

1/0s 1/0 0 



116 

If any bit is set to a one, then the corresponding data bus line will be used as an input. Conversely, if the bit is reset, 
the line will be used as an output. 

During Mode 3 operation the strobe signal is ignored and the Ready line is held low. Data may be written to a port 
or read from a port by the Z-80A-CPU at any time during Mode 3 operation. When reading a port, the data returned to 
the CPU will be composed of input data from port data bus lines assigned as inputs plus port output register data from 
those lines assigned as outputs. 

4.4 SETTING THE INTERRUPT CONTROL WORD 

The interrupt control word for each port has the following format : 

used in Mode 3 only signifies interrupt control word 

If bit D7 = 1 the interrupt enable flip flop of the port is set and the port may generate an interrupt. If bit D7 = 0 the 
enable flag is reset and interrupts may not be generated. If an interrupt is pending when the enable flag is set , it will 
then be enabled onto the CPU interrupt request line. Bits D6 , D5 , and D4 are used only with Mode 3 operation. How­
ever, setting bit D4 of the interrupt control word during any mode of operation will cause any pending interrupt to be 
reset. These three bits are used to allow for interrupt operation in Mode 3 when any group of the I/0 lines go to certain 
defined states. Bit D6 (AND/OR) defines the logical operation to be performed in port monitoring. If bit D6 = 1, an 
AND function is specified and if D6 = 0, an OR function is specified. For example, if the AND function is specified, all 
bits must go to a specified state before an interrupt will be generated while the OR function will generate an interrupt 
if any specified bit goes to the active state. 

Bit D5 defines the active polarity of the port data bus line to be monitored. If bit D5 = 1, the port data lines are 
monitored for a high state while if D5 = 0 they will be monitored for a low state. 

If bit D4 = 1 the next control word sent to the PIO must define a mask as follows : 

D7 Ds 

MB 7 MB 5 MB0 

Only those port lines whose mask bit is zero will be monitored for generating an interrupt. 



117 

5.0 TIMING 

5.1 OUTPUT MODE (MODE 0) 

Figure 5.0-1 illustrates the timing associated with Mode 0 operation. An output cycle is always started by the 
execution of an output instruction by the CPU. A WR *pulse is generated by the PIO during a CPU 1/0 write operation 
and is used to latch the data from the CPU data bus into the addressed port's (A or B) output register. The rising edge 
of the WR * pulse then raises the Ready flag after the next falling edge of <P to indicate that data is available for the 
peripheral device . In most systems the rising edge of the Ready signal can be used as a latching signal in the peripheral 
device if desired. The Ready signal will remain active until: (I) a positive edge is received from the strobe line indicating 
that the peripheral has taken the data , or (2) if already active, Ready will be forced low 116 <P cycles after the leading 
edge of IORQ if the port's output register is written into. Ready will return high on the first falling edge of <P after the 
trailing edge of IORQ. This guarantees that Ready is low when port data is changing. The Ready signal will not go 
inactive until a falling edge occurs on the clock (<I>) line . The purpose of delaying the negative transition of the Ready 
signal until after a negative clock transition is that it allows for a very simple generation scheme for the strobe pulse. 
By merely connecting the Ready line to the Strobe line, a strobe with a duration of one clock period will be generated 
with no other logic required. The positive edge of the strobe pulse automatically generates an INT request if the inter­
rupt enable flip flop has been set and this device is the highest priority device requesting an interrupt. 

If the PIO is not in a reset state, the output register may be loaded before mode 0 is selected. This allows the port 
output lines to become active in a user defined state. 

PORT OUTPUT---.....,-''-----,f----f----->,,.---­
(5 BITS) 

FIGURE 5.0-1 READY 

MODE 0 (OUTPUT) TIMING 

INT 

WR = RD · CE ·C/ D·IORQ 

5.2 INPUT MODE (MODE 1) 

Figure 5.0-2 illustrates the timing of an input cycle. The peripheral initiates this cycle using the strobe line after 
the CPU has performed a data read. A low level on this line loads data into the port input register and the rising edge of 
the strobe line activates the interrupt request line (INT) if interrupt enable is set and this is the highest priority request­
ing device. The next falling edge of the clock line (<P) will then reset the Ready line to an inactive state signifying 
that the input register is full and further loading must be inhibited until the CPU reads the data . The CPU will, in the 
course of its interrupt service routine, read the data from the interrupting port. When this occurs, the positive edge 
of the CPU RD signal will raise the Ready line with the next low-going transition of <P , indicating that new data can 
be loaded into the PIO. If already active, Ready will be forced low one and one-half <P periods following the leading 
edge of IORQ during a read of a PIO port. If the user strobes data into the PIO only when Ready is high, the forced 
state of Ready will prevent input register data from changing while the CPU is reading the PIO. Ready will go high again 
after the trailing edge of the IORQ as previously described . 

FIGURE 5.0-2 
MODE 1 (INPUT) TIMING 

RD = RD ·CE ·C/ D · IORQ 



118 

5.3 BIDIRECTIONAL MODE (MODE 2) 

This mode is merely a combination of Mode 0 and Mode 1 using all four handshake lines. Since it requires all four 
lines, it is available only on Port A. When this mode is used on Port A, Port B must be set to the Bit Control Mode. The 
same interrupt vector will be returned for a Mode 3 interrupt on Port B and an input transfer interrupt during Mode 2 
operation of Port A. Ambiguity is avoided if Port B is operated in a polled mode and the Port B mask register is set to 
inhibit all bits. 

Figure 5.0-3 illustrates the timing for this mode. It is almost identical to that previously described for Mode 0 and 
Mode 1 with the Port A handshake lines used for output control and the Port B lines used for input control. The differ­
ence between the two modes is that, in Mode 2, data is allowed out onto the bus only when the A strobe is low. The 
rising edge of this strobe can be used to latch the data into the peripheral since the data will remain stable until after 
this edge. The input portion of Mode 2 operates identically to Mode 1. Note that both Port A and Port B must have 
their interrupts enabled to achieve an interrupt driven bidirectional transfer. 

<I> 

A ROY 

A STB 

B ROY 

WR~ RD· CE·C/ D· IORQ 
FIGURE 5.0-3 

PORT A, MODE 2 {BIDIRECTIONAL) TIMING 

The peripheral must not gate data onto a port data bus while A STB is active. Bus contention is avoided if the peri­
pheral uses B STB to gate input data onto the bus. The PIO uses the B STB low level to latch this data . The PIO has 
been designed with a zero hold time requirement for the data when latching in this mode so that this simple gating 
structure can be used by the peripheral. That is, the data can be disabled from the bus immediately after the strobe 
rising edge . 

5.4 CONTROL MODE (MODE 3) 

The control mode does not utilize the handshake signals and a normal port write or port read can be executed at 
any time. When writing, the data will be latched into output registers with the same timing as Mode 0. A RDY will be 
forced low whenever Port A is operated in Mode 3. B RDY will be held low whenever Port B is operated in Mode 3 
unless Port A is in Mode 2. In the latter case, the state of B RDY will not be affected. 

When reading the PIO , the data returned to the CPU will be composed of output register data from those port data 
lines assigned as outputs and input register data from those port data lines assigned as inputs. The input register will 
contain data which was present immediately prior to the falling edge of RD. See Figure 5 .04. 

Rb· 

DO · DI ~)---------

Timing Diagra m Refers to Bi t M ode Rea d L DATA WORD I PLACED ON BUS 

FIGURE 5.0-4 



119 

An interrupt will be generated if interrupts from the port are enabled and the data on the port data lines satisfies 
the logical equation defined by the 8-bit mask and 2-bit mask control registers. Another interrupt will not be generated 
until a change occurs in the status of the logical equation. A Mode 3 interrupt will be generated only if the result of a 
Mode 3 logical operation changes from false to true. For example, assume that the Mode 3 logical equation is an "OR" 
function. An unmasked port data line becomes active and an interrupt is requested. If a second unmasked port data line 
becomes active concurrently with the first, a new interrupt will not be requested since a change in the result of the 
Mode 3 logical operation has not occurred. 

If the result of a logical operation becomes true immediately prior to or during Ml, an interrupt will be requested 
after the trailing edge of M 1. 

6.0 INTERRUPT SERVICING 

Sometime after an interrupt is requested by the PIO, the CPU will send out an interrupt acknowledge (Ml and 
IORQ). During this time the interrupt logic of the PIO will determine the highest priority port which is requesting an 
interrupt. (This is simply the device with its Interrupt Enable Input high and its Interrupt Enable Output low). To 
insure that the daisy chain enable lines stabilize, devices are inhibited from changing their interrupt request status when 
Ml is active. The highest priority device places the contents of its interrupt vector register onto the Z80 data bus during 
interrupt acknowledge. 

Figure 6.0-1 illustrates the timing associated with interrupt requests. During Ml time, no new interrupt requests 
can be generated. This gives time for the Int Enable signals to ripple through up to four PIO circuits. The PIO with lEI 
high and lEO low during INTA will place the 8-bit interrupt vector of the appropriate port on the data bus at this time. 

INT 

IORQ 

Ml 

lEO 

lEI 

LAST T I T I T STATE I 2 

r-----
} 

IORQ AND Ml INDICATE 
INTERRUPT ACKNOWLEDGE (I NT A) 

FIGURE 6.0-1 
INTERRUPT ACKNOWLEDGE TIMING 

If an interrupt requested by the PIO is acknowledged, the requesting port is 'under service'. lEO of this port will 
remain low until a return from interrupt instruction (RETI) is executed while lEI of the port is high. If an interrupt 
request is not acknowledged, lEO will be forced high for one Ml cycle after the PIO decodes the opcode 'ED'. This 
action guarantees that the two byte RETI instruction is decoded by the proper PIO port. See Figure 6.0-2. 

Figure 6.0-3 illustrates a typical nested interrupt sequence that could occur with four ports connected in the daisy 
chain. In this sequence Port 2A requests and is granted an interrupt. While this port is being serviced, a higher priority 
port (!B) requests and is granted an interrupt. The service routine for the higher priority port is completed and a RETI 
instruction is executed to indicate to the port that its routine is complete. At this time the service routine of the lower 
priority port is completed. 



120 

Ml 

D0- 0 7----(~)------~GJI--------

---------r--------------
lEI _________ j 

lEO 

FIGURE 6-0-2 
RETURN FROM INTERRUPT CYCLE 

HIGHEST PRIORITY PORT 

+ PORT1A PORT1B PORT 2A PORT 28 
HI 

lEO 

1_ PRIORITY INTERRUPT DAISY CHAIN BEFORE ANY INTERRUPT OCCURS_ 

+ UNDER SERVICE 
LO 

lEI lEO 

2. PORT 2A REQUESTS AN INTERRUPT AND IS ACKNOWLEDGED. 

+ UNDER SERVICE 

lEO 

3. PORT 18 INTERRUPTS, SUSPENDS SERVICING OF PORT 2A. 

+ SERVICE COMPLETE SERVICE RESUMED 
HI HI 

lEO 

4. PORT 18 SERVICE ROUTINE COMPLETE, "RETI" ISSUED, PORT 2A SERVICE RESUMED. 

+ 

lEO 

5. SECOND "RETI" INSTRUCTION ISSUED ON COMPLETION OF PORT 2A SERVICE ROUTINE . 

FIGURE 6.0-3 
DAISY CHAIN INTERRUPT SERVICING 



121 

7.0 APPLICATIONS 

7.1 EXTENDING THE INTERRUPT DAISY CHAIN 

Without any external logic, a maximum of four Z-80A-PIO devices may be daisy chained into a priority interrupt 
structure. This limitation is required so that the interrupt enable status (lEO) ripples through the entire chain between 
the beginning of Ml, and the beginning of IORQ during an interrupt acknowledge cycle. Since the interrupt enable 
status cannot change during M 1, the vector address returned to the CPU is assured to be from the highest priority 
device which requested an interrupt. 

If more than four PIO devices must be accommodated, a "look-ahead" structure may be used as shown in Figure 
7.0-1. With this technique more than thirty PIO's may be chained together using standard TTL logic. 

DATA BU.S 

FIGURE 7.0-1 
A METHOD OF EXTENDING THE INTERRUPT PRIORITY DAISY CHAIN 

7.2 1/0 DEVICE INTERFACE 

In this example, the Z-80A-PIO is connected to an 1/0 terminal device which communicates over an 8 bit parallel 
bidirectional data bus as illustrated in Figure 7 .0-2. Mode 2 operation (bidirectional) is selected by sending the follow­
ing control word to Port A: 

Ds 

0 X X 

Mode Control 



122 

A ROY 

ASTB ~ 
B ROY 

"-' 

B STB 

Z-80A DATA B US'-, Z-BO A 
C P U 

I 
ADDRESS BUS 

IORQ PIO 

MT I<" P ORT DATA B US 

INT 

BA C' D CE 

'oo"e'~~ BUS 
DECODER 

FIGURE 7.0-2 
EXAMPLE 1/0 INTERFACE 

D D D D 
5 R R A 
T 0 c v 

> B v 
D 

1/ 0 
TERMINAL 

Next, the proper interrupt vector is loaded (refer to CPU Manual for details on the operation of the interrupt). 

0 

Interrupts are then enabled by the rising edge of the first M 1 after the interrupt mode word is set unless that M 1 defines 
an interrupt acknowledge cycle. If a mask follows the interrupt mode word, interrupts are enabled by the rising edge of 
the fi rst M 1 following the setting of the mask. 

Data can now be transferred between the peripheral and the CPU. The timing for this transfer is as described in 
Section 5.0. 



123 

7.3 CONTROL INTERFACE 

A typical control mode application is illustrated in Figure 7.0-3. Suppose an industrial process is to be monitored. 
The occurrence of any abnormal operating condition is to be reported to a Z-80A-CPU based control system. The 
process control and status word has the following format: 

Ds 

Special Turn Power Halt 
On Failure Process-Test Power Alarm ing 

ZSOA-CPU 

D7-DO 

I 
AO-A IS "'-., ADDRESS 

DECODER 

Temp. 
Alarm 

> 

Turn 
Heaters 
On 

Pressur- Pressure ize 
System Alarm 

PORT A 
BUS 

A7 
ZSOA-PIO As ~---v 

A5 v 
A4 

A3 v 
A2 

A, v~ 
Ao v 

B"A C'D CE 

I 
t 

FIGURE 7.0-3 
CONTROL MODE APPLICATION 

~SPEC. TEST 

TURN ON PWR 

PWR. FAIL AL M 

HALT INDUSTRIAL 
PROCESSING 

TEMP. ALM. SYSTEM 

HTRS.ON 

PRESS.SYS 

PRESS. ALM 

The PIO may be used as follows. First Port A is set for Mode 3 operation by writing the following control word to Port 
A. 

X X 

Whenever Mode 3 is selected, the next control word sent to the port must be an 1/0 select word . In this example we 
wish to select port data lines AS , A3 and AO as inputs and so the following control word is written : 

Do 

0 0 0 0 0 

Next the desired interrupt vector must be loaded (refer to the CPU manual for details); 

0 



124 

An interrupt control word is next sent to the port: 

0 0 

Enable OR Active Mask 
Interrupts Logic High Follows Interrupt control 

The mask word following the interrupt mode word is: 

Do 

0 0 0 

Selects AS, A3 and AO to be monitored 

Now, if a sensor puts a high level on line A5 , A3 , or A0 , an interrupt request will be generated. The mask word may 
select any combination of inputs or outputs to cause an interrupt. For example , if the mask word above had been: 

0 0 0 0 

then an interrupt request would also occur if bit A7 (Special Test) of the output register was set. 

Assume that the following port assignments are to be used: 

EOH =Port A Data 

ElH =Port B Data 

E2H = Port A Control 

E3H =Port B Control 

All port numbers are in hexadecimal notation. This particular assignment of port numbers is convenient since A0 of the 
address bus can be used as the Port B/A Select and A1 of the address bus can be used as the Control/Data Select. The 
Chip Enable would be the decode of CPU address bits A7 thru A2 (1110 00). Note that if only a few peripheral devices 
are being used, a Chip Enable decode may not be required since a higher order address bit could be used directly. 



8.0 PROGRAMMING SUMMARY 

8.1 LOAD INTERRUPT VECTOR 

8.2 SET MODE 

Ml Mo X X 

Ml Mo Mode 

0 0 Output 

0 Input 

1 0 Bidirectional 

I Bit Control 

When selecting Mode 3, the next word must set the I/0 Register : 

I/0 1 I 1/0o 

1/0 = 1 Sets bit to Input 
1/0 = 0 Sets bit to Output 

8.3 SET INTERRUPT CONTROL 

Int AND/ High/ Mask 0 I Enable OR Low Follows 

Used in Mode 3 only 

1 I 

If the "mask follows" bit is high , the next control word written to the port must be the mask : 

MBo 

MB = 0 , Monitor bit 
MB = I, Mask bit from being monitored 

125 

Also , the interrupt enable flip flop of a port may be set or reset without modifying the rest of the interrupt control 
word by using the following command : 

I 
Int 

Enable X X X 0 0 



126 

A. 3 Specifications 

1. MZ-808 GENERAL SPECIFICATIONS 

CPU SHARP LH0080A (Z80A-CPU) Key layout 92 keys 

Clock 4MHz 
ASCII standard main keyboard 

Iii\' . m'r: 
Numeric pad 

Memory · ROM 2K bytes (initial program loader) Special function keys 
ROM 2K bytes (character generator) :!, Cursor control keys 
RAM 32K bytes (dynamic RAM) Cassette tape deck control keys 

Can be expanded to 64K bytes. 
Editing Cursor control; up, down, left, right, 

(option) ,. home, clear 
Display 9" CRT (green display) 

';!· 
Deletion, insertion 

Character display 
Clock function Built-in 

8 x 8 dot matrix 
1) Characters; 1000 'Power .suppl'(, Local supply rating voltage 

' 
(40 characters x 25lines) 

:Temp~raturl!.' Operating temp; 0° to 35°C 
2) Characters; 2000 

Storage temp; -15° to 60°C 
(80 characters x 25 lines) ,~n H' 

1 ) , 2): software change-over Humidity 
'.'''· 

Lower than 80% 
Graphic display (option) 

Weight II! Approx. 16 kg 
320 x 200 dots 

,, Two graphic areas 'Dimensions n,Mi' Width; 450mm 

Cassette Standard audio cassette tape 
Depth; 520mm 

Data transfer speed; 1800 bits/sec. 
Height; 270mm 

Data transfer system; SHARP PWM 
Automatic or manual control 

i\'ii!. 

Sound output Max. 400 mW ( 440 Hz) 

2. CPU BOARD SECTION SPECIFICATIONS 

CPU SHARP LH0080A (Z80A-CPU) 1 pc. Programmable 8253 I pc . 

PIO SHARP LH0081A (Z80A-PIO) 1 pc. 
counter 

ROM IPL ROM (2K bytes) 1 pc. 
Progra,mmabl~ 8255 1 pc. 

Character generator ROM (2K bytes) [it periiJ,~eral ,' 
1 pc. 

interface · 

RAM Standard ; 16K bits dynamic RAM 
(SHARP LH4116) 16 pes. 

Video RAM (2K bytes) 1 pc. 
I ' ,,i::ii:, . ',, 

3. POWER SUPPLY SECTION SPECIFICATIONS 

INPUT Use a power source with the voltage :• OUTPUT ·i( 5V, -5V, 12V (stabilizing), 
shown on rating name plate. 

;;: 

12V (non-stabilizing) 



4. DISPLAY SECTION SPECIFICATIONS 

Size 

Vertical 
horizontal 
frequency 

Power source 

Picture tube 

ICs 

9" 

60Hz (vertical), 
15.75kHz (horizontal) 

DC 12V, l.lA ±10% 

E2728B3; 9" 90° deflection 
explosion proof type 

Heater; 12V, 75mA 

2 pes. 

Transistors 7 pes. 

Working 
temperature 

Video output · 

N~n-linearity 
distortion 

Geometrical 
distortion 

High voltage 

W~rking range . 

Verticalr 
lock-in range · 

127 

40Vp-p standard (35Vp-p limit) 

Horizontal *The pattern of the left in the 
~ center of the picture must 
~ be clear. 

Horizontal; ±8% (±14% max.) 
Vertical ; ±8% (±12% max.) 

Pincushion dist.; 1% (2% max.) 
Barrel dist.; 1% (2% max.) 
Trapezoidal dist.; 1% (2% max.) 
Parallelogram dist.; 1 o (2.5° max.) 

Zero beam; ll.OkV 
(lO.OkV, min ., 12.0kV, max.) 

-12Hz (-6Hz limit) 

Audio 440Hz (OdB) 
frequency -1 OdB ±4dB at 1OOHz 
charaCteristic' -12dB ±4dB at 1OkHz 

5. CASSETTE TAPE DECK SECTION SPECIFICATIONS 

System 

Power source 

Semiconduc­
tors 

Tape 

Tape speed 

Track 

PWM recording 

5V±5% 
12V ±5% (stabilizing) 
9.5V~l6.5V (non-stabilizing) 

22 transistors 
13 ICs 
9 diodes 

From C30 to C60 

4.75 em/sec. 

2-track monaural 

DC system 

DC system 

667 JJ.Sec. to 333 JJ.Sec . (standard) 

Specifications and design subject to change without prior notice for product improvement . 
In such cases, items mentioned may be partially different from the product. 



128 

A.4 Caring for the system 

• Power cable 
Don't place heavy objects such as desks or chairs, on the power cable and do not damage the covering of the power 
cable or a severe accident may occur. Be sure to pull the plug (not the cable) when disconnecting the unit from the 
AC outlet. 

• Line voltage 
The correct line voltage is shown on rating name plate. Extremely high or low line voltages may cause trouble or 
result in incorrect operation . Contact your dealer if such trouble occurs. 

• Ventilatiofr 
Ventilation holes are provided in the cabinet. Never place the unit on a carpet or the like because the holes on the 
bottom plate of the cabinet will be covered. Place the set in a well ventilated location. 

• Moisture and dust 
Place the unit in a location which is free from moisture and dust. 

• Temperature 
Do not expose the unit to direct sunlight and do not place it near heaters to prevent its temperature from rising. 

• Water and other foreign substances 
Operating the unit when it is wet or contains foreign articles such as clips, pins or other metallic items is dangerous. 
If water or other liquid enters the unit , immediately pull the power plug and contact your dealer. 

• Shock 
If the unit is subjected to shock the sensitive electronic parts may be damaged. 

• Trouble 
If any trouble occurs , stop operating the unit immediately and contact your dealer. 

• Long periods of disuse 
When the unit is not operated for a long time, be sure to pull the power plug from the AC outlet. 

• Connection of peripheral devices 
When connecting peripheral devices, use only parts and devices designated by the Sharp Corporation. Use of parts 
and devices other than those designated (or modification of the set) may result in trouble. 

• Stains 
Remove stains from the cabinet with a soft cloth moistened with water or detergent. Never use solvents such as 
benzine, or discoloration will result . 

• Noise 
When the unit is used in locations where there are high electrical noise levels induced in the AC line, use a line filter 
to remove the noise. Keep the signal cables away from power cables and other electric equipment. 

• Use and storage 
Do not use or store the unit with the upper cabinet open, or trouble may occur. 

• Radio wave interference 
When a radio or TV set is used near the MZ-80B, noise may interfere with broadcast reception. Equipment causing 
a strong magnetic field may interfere with operation of the MZ-80B. 
Keep such equipment at least 2 to 3 meters away from the MZ-80B. 



129 

• Power switch operation 
Once the power switch is turned off, wait at least 10 seconds before turning it on again. This ensures correct opera­
tion of the microprocessor. Never insert the power plug into an AC outlet with the power switch set to ON. 

• Cassette deck maintenance 
Dirty cassette deck recording and reproducing heads may result in incorrect data recording the reproduction. Be 
sure to clean the heads every month. Commercially available cleaning tape is convenient. 

• Discoloration of CRT screen 
If a ce rtain spot of the CRT screen is lit an external period of time the spot may become discolored. (If it is neces­
sary for certain spot to be lit for an extended time , turn down the brightness control on the display control unit.) 





SHARP CORPORATION 
TINSE0022PAZZ 
080211-0 10981 


	Sharp_MZ-80B_Owners_Manual_Sep1981_front
	184637
	184647
	184653
	184656
	184702
	184706
	184712
	184716
	184722
	184725
	184732
	184735
	184741
	184744
	184751
	184754
	184801
	184804
	184810
	184814
	184820
	184823
	184829
	184833
	184839
	184842
	184848
	184852
	184858
	184902
	184908
	184911
	184917
	184921
	184927
	184930
	184936
	184940
	184946
	184950
	184956
	184959
	185005
	185009
	185015
	185018
	185024
	185028
	185035
	185038
	185044
	185047
	185054
	185057
	185103
	185107
	185113
	185116
	185123
	185126
	185132
	185136
	185142
	185151
	185253
	185304
	185310
	185313
	185319
	185323
	185329
	185332
	185338
	185342
	185348
	185351
	185358
	185401
	185407
	185411
	185417
	185420
	185427
	185430
	185436
	185440
	185446
	185450
	185456
	185459
	185505
	185509
	185515
	185518
	185524
	185528
	185534
	185538
	185544
	185547
	185553
	185557
	185603
	185606
	185612
	185616
	185622
	185626
	185632
	185635
	185642
	185645
	185651
	185655
	185701
	185704
	185710
	185714
	185720
	185724
	185730
	185733
	185739
	185743
	185749
	185752
	185759
	185804
	185811
	185814
	185820
	185824
	185830
	185833
	185839
	185846
	Sharp_MZ-80B_Owners_Manual_Sep1981_back

