
Personal Computer

IIIZ·OOODU
PASCAL LANGUAGE

MANUAL

SHARP

SHARP

Personal Computer

MZ-808

PASCAL Language Manual

August 1981

0802 71-01 0881

Printed in Japan ©SHARP CORPORATION

NOTICE

This manual is applicable to the SB-4515 PASCAL interpreter used with the SHARP

MZ-80B Personal Computer. The MZ-80B general-purpose personal computer is supported

by system software which is filed in software packs (cassette tapes or diskettes).

All system software is subject to revision without prior notice, therefore, you are

requested to pay special attention to file version numbers.

This manual has been carefully prepared and checked for completeness, accuracy and

clarity. However, in the event that you should notice any errors or ambiguities, please feel

free to contact your local Sharp representative for clarification.

All system software packs provided for the MZ-80B are original products, and all rights

are reserved. No portion of any system software pack may be copied without approval of

the Sharp Corporation.

ii

Begin

This manual describes the PASCAL programming language supported by the PASCAL
interpreter SB-4515. Read this manual thoroughly before using PASCAL.

The PASCAL interpreter, SB-4515, is .. supplied in the form of a cassette tape file.

The PASCAL language has a structure which is completely different from that of the
BASIC language.

Understanding and familiarizing yourself with PASCAL programming will cause you to
change your idea of programming in other languages as well.

Study this manual step by step, and the sophisticated programming technique of PASCAL
will be yours.

iii

Contents

Notice ii

Begin iii

Chapter 1 Introduction

The story of PASCAL
What is the difference between PASCAL BASIC?
Let's try structured programming
Recursion: A phenomenon which can be seen in everyday life

1

2
4
6
8

Event which do not constitute recursion 10
Recursive figures . 12

Chapter 2 Editing . 13

Operating the computer . 14
Load command .. ·. 14
GO command . 15
LIST command 15
Modifying PASCAL programs . 16
Correcting Part of a Program . 16
DELETE command . 16
KILL command . 17
INPUT command . 17
L(LAST), N (NEXT) command . 18
M(Memory Size), E(Limit) command 18

S (SAVE) command . 19
V command. 19
Q (MONITOR) command . 19
I command . 19
$ command . 19

F command. 20
R command. 20
Editor command table 21

Chapter 3 Basic Rules of PASCAL . 23

Syntax diagram . 24

PAS CAL program structure . 30

Variable and variable declaration . 27

iv

·Identifier · · · · · · · · · · · · · · · · 28

Integers and real numbers · · · · · · · · · · · · · · 29
Character constants and character strings · . 30

Separators · · · · · · · · · · · · · · · · 31

Variable declaration · · · · · · · · · · · · 32
Array declaration · · . · · · · · · · · · · · · · · · · 33
Write and read array data to/from cassette tape · · 35

Chapter 4 Data and Expressions · · · · · · · · · 37

Integer expressions · . · · · · · · · · · · · · · 38

Boolean expressions · · · · · · · · · · · · · · · · 40

Real expressions · · · · · · · · · · · · · · · · 42

CHAR expressions · 43
Standard functions · · · · · · · · · · · · · · · · 44

ODD ··.·· ················ 44

CHR · · · · · · · · · · · · · · · · 44
ORD · · · · · · · · · · · · · · · · 44

PRED · · ·. · 45
succ .. 45

TRUNC ·. · 45

FLOAT · ·. · 46

ABS · .. · 46

SQRT · 46
SIN ··.····················· 46
cos 47

TAN ·· ··· · ········ ·· ···· · ····· ·· ······ ·· 47
ARCTAN ························ 47
EXP ... 47

LN ·························· 47
LOG ··.················ ·· 47

RND · .. · · · · · · · · · · · · · · · · 47

PEEK ················ 48
CIN 48

INPUT 48
KEY ·· ··················· 48

CSRH : 48

CSRV .. 49

POSH .. 49

POSY 49

POINT .. . 49

v

Chapter 5 Statement . 51

Assignment statement 52
Compound statements . 53
IF statement (choice) 54
CASE statement (selection) 56
WHILE statement (repetition 1) . 57
REPEAT statement (repetition 2) 58
Writing PASCAL programs . 59
FOR statement (repetition 3) 60
Procedure declaration and procedure (calling) statement 62
Function declaration and function designator . 64

Sample program . 65
Global variable and local variable . 66
Recursion . 68
WRITE statement 70
READ statement 74

Graphic control statements 76
Character display control statements 78
Function key control and printer control statements 79
CALL statement . 80
COUT statement . 82
POKE statement : . 83
OUTPUT statement . 84
EMPTY statement 85
Statements and functions 86
Exercise . 87
MUSIC statement and TEMPO statement 88
COMMENT statement . 90

Chapter 6 Programming . 91

Programming . 92
Indentation 93

Link with color control system . 94
NS chart 96

Chapter 7 Summary 101

Syntax diagram I 02

Summary of syntax . 110

vi

Appendix .. 133

ASCII code table .. 134
Decimal/Hexadecimal conversion table 136
Error message table .. 137
PASCAL SB-4515 specifications . 139
Memory map ... 141
PASCAL SB-4515 configuration . 142

Sample Program . 149

SUPPLEMENT Complete Monitor SB-1 5 11 Assembly Listing

vii

Chapter 1

Introduction

2

The PASCAL programming language was invented in 1968

by Professor Niklaus Wirth of Ziirich. Wirth is the inventor of

not only PASCAL but also of other computer programming

languages.

The background for PASCAL's invention is a programming

language called ALGOL 60. ALGOL 60 uses Backus notation to

express algorithms in a clear and simple manner. The syntax

diagrams shown from page 24 on are based on the Backus nota­

tion concept used in ALGOL 60. Although it is necessary to

master PASCAL to understand the syntax diagrams, these

diagrams will not appear difficult after this book has been

thoroughly read.

PASCAL is named after Blaise Pascal (1623~1662), a

French mathematician and philosopher who is famous as the Professor Wirth

discoverer of Pascal's principle, which he proved when he was only 16 years old, and as the inventor of a practical calcu­

lator. Professor Wirth invented PASCAL to provide a new systematic, scientific programming technique which does not

require reliance upon intuition.

This idea did not occur to him by chance but was one of the inevitabilities of history. ALGOL 60 was established

by the International Federation for Information Processing (IFIP) in 1960. Its ability to express algorithms is superior

to that of FORTRAN, because of the use of Backus notation, but its input and output functions are not standardized;

therefore, programs written in ALGOL 60 are not executable on different types of computers.

In 1965, ALGOL 60 was reexamined and many proposals were made for revising it. Among them was one submit­

ted by Professor called ALGOL-W; this language is currently used by some computer systems. After much discussion,

ALGOL 68 established for use around the world, however, Professor Wirth continued the studies which led to ALGOL­

W and published PASCAL in 1971.

Programming is creative constructive work and

careful thinking is necessary for clear understanding

of the programming process. To achieve this, the

following steps should be taken: first, develop a

clear understanding of the nature of the problem to

be solved. Next, outline the steps required for its

solution . Finally, develop the details of each step.
Programming in this manner is called structured pro­

gramming and PASCAL makes it easy.

Structured programming is similar to building

a house, as shown at right. If you think that struc­

tured programming is easy after you look at these

drawings, you will master soon this elegant program­

ming technique.

Developing a plan
Estimates,

reckonning tables,
design drawings,

Schedules,

the structure

Thi s does it!

Now the house

can be used.

3

4

What is the difference between P-SGIL and BASIC?
Let us consider a simple problem, "read two integers and print that which is larger." BASIC and PASCAL program

solutions to this problem are shown below. You may think that PASCAL is difficult, since the PASCAL program uses

more lines and characters than does the BASIC program. However, if a more complicated problem is solved with the

two languages, it will become clear that programming·is easier with PASCAL than with BASIC. These examples merely

illustrate the differences between these two programming languages.

BASIC progrcun.
10 INPUT X,Y
20 IF X>Y THEN 50
.30 PR1NT l\X < Y"
40 GOTO 60
50 PRINT "X > Y"
60 END

PASCAL program
PROCBDVRE HIKAKU;
VAR :X:) Y; INTEGER;
BE& IN

READLNCX,Y);
IF X>Y THEN WRITELNC"X > Y")

ELSE WRITELN(''Y > X ")
END;

Note that the PASCAL program contains no GOTO statement. In

BASIC, it is almost impossible to write a long program without using

GOTO statements. The ability to write programs without GOTO state­

ments is a feature of PASCAL which will make itself clear as you become

familiar with the PASCAL programming language.

There is no real problem with GOTO statements in short programs

such as the one above. They have two disagreeable characteristics, how­

ever, that tend to make them a nuisance in long programs. The first of

these is that you must know the number of the program line to which

execution is to move before you can finish writing the statement. This is

no problem when you want to go to a section of the program which has

already been written, but it can be a headache in cases where the jump is

to be made to an address which is not yet known. The usual method of

getting around this is to use a dummy address or a symbol in each GOTO

statement, then to go back and replace them with the real addresses

when the program is completed. This is not difficult when there are not

many such addresses, but it can be a source of great confusion when the

program is a complicated one.

The other problem becomes apparent when an attempt is made to

read a program written in BASIC. Each time you come to a GOTO state­

ment you must jump to the indicated address to see what processing is

to be performed. You may have had the experience of going through

seemingly endless chains of GOTO statements and despaired that you

would ever be able to make heads or tails out of the mess. This type of

program is sometimes referred to as a "spaghetti" program; such ill-con­

ceived, hard to understand programs can result even when GOTO state­

ments are used quite innocently.

GOTO is, however, a convenient statement, and it tends to be
used to frequently. Since it only controls operation of the program,

and does not perform any calculations or display anything on the

display screen, the· computer can be used most effectively by doing

without it wherever possible.

The nature of BASIC is such that the number of unneeded

GOTO statements tends to increase as the length of the program
grows unless the greatest care is taken in writing the program. The

structured programming of PASCAL not only eliminates this prob­

lem, but reduces the likelihood that errors will occur when writing

the program by encouraging an organized approach to defining the

nature of problems. This makes programs easier to understand after

they have been written.

Another difference between BASIC and PASCAL is in the man­

ner in which variables are handled. Variable identifiers in BASIC are

limited to a maximum of two characters, while PASCAL allows eight

or more characters to be used to define a variable. The ability to use

more characters in variable identifiers means that the identifiers can

be more descriptive of their function in the program; for example,
HOUSE instead of H, COLOR instead of C, NUMBER instead of N.

HOUSE, COLOR and NUMBER all naturally convey concepts much

more effectively than do the letters H, C and N. Even though little

more labor may be involved in keying in such identifiers, it should be

obvious that this is more than made up for by doing away with the

need to have to try to remember which letter goes with which variable.

iOGOT020

These facts do not mean that PASCAL can be used to make wonderful programs without effort; the skills involved

in structured programming involve more than just familiarity with the programming language. Structured programs can

also be written in BASIC, (even using the GOTO statement), as long as a well organized approach is taken in developing
solutions. In fact, the effectiveness of any programming language approach taken by the user.

PASCAL makes structured programming easy. Using it leads to a natural understanding of this concept; however, it

is still possible to wind up with a tangled, difficult to understand mess if care is not taken. This can best be avoided by

obtaining a clear understanding of PASCAL's underlying principles.

PASCAL allows structured programming!

5

6

Let's try structured programming
Let's become a little more familiar with the concept of structured thinking.

Consider the case of stereo equipment; broadly speaking, there are two basic types of such equipment: component

units and music systems. As you know, in a component system, the tuner and amplifier are separate. In the more

sophisticated devices the preamplifier and the amplifier are also separated. In other words, the functions which com­

prise the stereo system are designed as separate units, which are then combined to suit the listening taste of the user.

The component approach in stereo systems is a form of structured thinking. First, a clear understanding is devel­

oped as to the overall functions and specifications required, then each of these functions is handled as a module. Mod­

ular construction and modular furniture is based on the same concept.

The building block system used in the manufacture of construction equipment is also based on structured thinking.

The overall functions of the equipment are broken down into appropriate parts (units or blocks) , each of which is then

designed with measurements and characteristics which will allow it to be combined with the others to obtain the

desired result .

What all of these have in common is that the first step involves defining an objective and then identifying the func­

tions, patterns or sequences which are involved in attaining it. The point is that the process starts with the overall situa­

tion , and then proceeds from top to bottom or from the outside in as details to the final solution are developed in

stages.

Let's try solving the following problem as an exercise in structured thinking. As none of the PASCAL instructions

have been explained yet, just follow the flow of thought.

Read inN Constants, Arrange Them in Ascending Order and Display Them.

Note that this problem can be broadly divided into three blocks.

This first step can be set forth as follows .

Step 1 shows the first stage of the approach which might be

taken in PASCAL. The variables are not yet defined as the precise

need for them has not yet been determined .
The for statement of PASCAL is introduced in step 2. This

statement has the meaning indicated in the flowchart at right.

Music system Component units

One possible procedure for arranging the values in order

is as follows.

Search for the smallest value X [M] in the elements in­

cluded in array X.

2 Exchange the value in X[l] with the value in X[M].

3 Search for the smallest value X[M] in the elements from

X[2] to X[N].

4 Exchange X [2] with X [M] .

5 Repeat the sequence in steps 3 and 4 for elements X [3]

to X[N] until the last element is reached.

This procedure constitutes the core of step 3 in solving

the problem.

--------------·-------
'Do..ta

1..

2.

3. @ !l2J
4. {ffJ ~· [@

The last problem remaining is that of locating the small­

est value X[M]. A method for accomplishing this can be

summarized as follows.

Assign the value in X[I] (the first element of the array)

to smallest value variable MINIMUM. Assign the identi­

fier of the first element to variable M.

2 Establish a new variable for looping, J, and repeat the

following for J for I+ 1 through N.

• IF X[J] is smaller than MINIMUM,

• Assign the value in X[J] to MINIMUM;

• Assign the current value of loop variable J toM.

• If X [J] is larger than MINIMUM, go on to the next data

element for comparison.

Step 4 consists of applying this procedure in a program.

As can be seen, the general procedure is to first develop an

overall grasp of the program, then to develop details of the

solution in stages. Although the number of steps involved

will vary according to the problem, the important point is

that this approach provides a clearer and more certain solu­

tion than can be attained intuitively.

VAR X:ARR YC10J or INTE6rER;
D,D,D,D,O:INT£(j£R;

BE& IN
~tJ;;-n:;:-!A=rA-:------,]

liiFl?AN{rt DATA ni ASC'E.Nl>Jgq o.RPER\
ll?l$PL.t\'ff.fiE ~TA I

END.
S e -2 ~-------,

VAR x:.ARRAYC1oJ oF INTBErBR.;
N, I,D,D,O:INTEErE'Ri

BEG TN ~lN 'JliE.NUMBER OF ITEM Df
READ CN); ¢=:'j?.ATA 'fO 13E 1'R.OCE$ED

FOR I==-1 TON PO READ(xUJ);
~erE 'THE :DATA ltiT .ASCEJ{J)n-!li ~
FOR I;_ 1 TD N PO WRITE(XnJ);

END.

-S ep-41'-------------,
VAR x=ARRAYC10J OF IWT£6£R;

M, N ,MTNIMUM,J,J :INTEG-ER:
B;s:G IN

REJ\II(N);
fOR 1::::1 TON PO READCX [IJ);
fOR 1:=1 TO N-1 "DO

BtGUJ
MJNIMV.f1:=XClJ ;M:;:;:r;

FOR J:=I+1 TON VO
lF X CJl<:MINIMVM THEN

BEGIN
MINIMfJM:=X[JJ;M:== 3

BNJ);
X n~J:='xCI] ;xrn :==MHllMUM

ENP;
fORJ:=1 TON DO WRITE(XCIJ)

BND.

7

8

Recursion:A phenomenon which can be seen in everyday life
Recursion is an idea which is frequently used in PASCAL

programs. We can see this phenomenon in everyday life; for

example, if you sit in front of a television set with a camera

which is connected to the set pointed at yourself, you would

see an image something like that shown in the drawing at
right. In other words, recursion is what happens when some­

thing includes itself as a part.

Let's take a look at a more concrete example.

In the 13th century, an Italian named Fibonacci con­

ceived a mathematical sequence which he stated as follows.

"One pair of rabbits bears a litter of two pups every

This is one example

month, and each pair of pups starts to bear its own litters of two pups each month after one month."

A mathematical sequence which increases according to this rule is called a Fibonacci sequence. This sequence is an

example of recursion because the total number of rabbits in each month is the sum of the number of rabbits in the two
preceding months.

Many occurrences of this sequence can be found in the natural world. For example , careful examination of a pine

cone will reveal that the scales are arranged in two types of spirals, one which winds to the left and one which winds to

the right. The seeds are located at the intersections of the spirals, and the number of spirals is 5 and 8. The seeds of

pineapples are located at the intersections of 8 and 13 spirals, those of English daisies at the intersections of 21 and 34

spirals and those of sunflowers at the intersections of 55 and 89 spirals.

The Fibonacci sequence is formally defmed as follows :

This can be expressed in PASCAL as shown below. As you will notice, the structure is such that an if statement is

included within another if statement. Of course, recursion may be used not only with instructions, but when a part of

a procedure or a function is called as is with different conditions and variables to perform an identical operation .

The structure of recursions appearing in PASCAL programs is expanded into expressions as appropriate according

to their type.

Here are some more examples of recursion so that you

can become more familiar with this concept .

0 Method for finding the factorial n!

0!;::: 1

1 ! 1 X @ !

2! 2 X 1 !

3! 3 X 2!

n!=n x (n-1)!

0 Method for finding the total of all integers toN

1+2+3 +N

(1 +2+3+ +N - 1)+N

((1+2+3 +N-2)+N - l)+N

0 Backus notation

(number } : : ;::: (digit } I (number } (digit }

< digit > : : ;::: 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

(number } and (digit } each indicates a concept. The symbol

: : = is used to show that the concept on the left is defined on the

right. The vertical bar I is used to indicate the concept 'or'.

Therefore, (digit >indicates one of the figures from 0 to 9 , and

(number } indicates either a (digit } or a (number } followed by

(digits }. Recursion occurs because the definition for (number}

includes (number} in its second half.

Since this definition indicates that (numbers } may consist of

just (digits } , the figures

0, 1, 2, 3, 4 , 5, 6, 7, 8, 9
are (numbers}. Since (numbers} can also consist of any of the

above followed by (digits},

012 , 3333 , 110 9876543210

are also (numbers }.

0 Logarithmic spiral of the golden section

A golden rectangle is a rectangle with dimensions such that ,

when it is divided with a line to form a square at one of its ends,

the rectangular section which is left over has dimensions of the

same relative proportions as the original. When this process is re­

peated many times in a fixed direction, a spiral is described which

does not change its shape no matter how large or small it becomes.

(This spiral is a logarithmic spiral which is drawn in the direction

in which the rectangle is subdivided.) The shells of mollusks such

as the nautilus have this form.

A logarithmic spiral

drawn in the direc-
tion of rotation of 1

the group of squares. , '

Golden section
I

I
I

I

, .f+/S /
. I

;2. 1 Golden rectangle
I

I

I
I

I

Another golden rectangle
results when one golden
rectangle is divided into
two sections so that

1---..,.a-q..,, one of the sections
',

9

10

Event which do not constitute recursion
0 Simulated recursion in a BASIC program

10 N=15

20 PRINT N

30 IF N=0 THEN RETURN

40 N=N-1

50 GOSUB 20

60 RETURN

The program example above does not constitute full recursion. The reason is that the loop is repeated without the

variable actually being reproduced. It is difficult to produce a program which includes full recursion , but it is easy to

simulate this process. This is done by storing the initial value of the variable used in the subroutine in an array before

recursion begins, then restoring the original value to the variable before returning from recursion.

A program such as the one shown below is possible if it is assumed that X is the only variable used in the sub­

routine. However, this still does not constitute a true example of recursion.

10 DIM X (15)

20 N=15 : X=0

30 P=0

40 X= X+ 1 : PRINT X

50 IF N=0 THEN 120

60 N=N-1

70 GOSUB 200

80 GOSUB 40

90 GOSUB 300

100 PRINT X

110 IF P=0 THEN STOP

120 RETURN

200 REM SAVE THE VARIABLE VALUE

210 X (P) =X

220 P=P+1

230 RETURN

300 REM RESTORE THE VARIABLE VALUE

310 P=P-1

320 X=X (P)

330 RETURN

Use of recursion in this manner can best be understood by looking

at it as a case in which a jump is made to a copy which is produced when

the recursive image is called. Of course, if recursion also occurs in the

copy, another copy is produced to which another jump is made.

Trying to visual this process mentally can be disturbing, since it is

easy to infer that duplication of images can occur infinitely.

Therefore, let us emphasize that recursion is not a type of infinite

loop. A recursive expression is one which defines an unlimited process

within a limited description. The important point is that the limitation

must be defined in the description; in actual use, the depth of recursion

must be limited so that infmite repetition is avoided.

Let's take another look at the examples to highlight processes which

do not constitute recursion.

0 Procedure for finding factorial n! :

Draw two different size squares adjacent to
each other, such as A and B. Then draw another
square, C, which has sides whose lengths are
equal to the total of the sides of sides A and B.
Next draw square D so that its sides are equal to
the total of the sides of B and C
Repeating this process results in a rectangle
whose dimensions approach those of a golden
rectangle as more and more squares are added;
that it, the ratio of its width to its height ap-

1 +.JS proaches {},where {} =---.
2

oo! = oo x (00 -1)! does not constitute recursion, since n must be a finite< number). The important point here

is that the definition of n! includes the factorial of a number (n-1)! which is one smaller than n. In other words,

the value of (n -1)! consists of two elements until the end of the sequence is reached at 0!, which does not need to

be defined as a factorial expession.

0 Backus notation:

The figures 12341234 1234 fall within the definition of <number > even if the sequence is repeated a

thousand times. However, an infinite string of 9's does not constitute a< number), nor does n, since both of these

continue without limit.

0 BASIC program simulation of recursion:

Even though the values of the variable are stacked in an array to simulate recursion , statements such as that on
line 40

40 N=N+1

do not occur in true recursion.

A real Hanoi Tower
has 64 rings. The num­
ber of steps required
to move all of them to (Move All the Rings to Another Peg)

another peg is 18,446,744,073,709,551,615 .

.. 1 2

Seven steps are required when there are 3 rings.

In general, 2n -1 steps are required when there are n rings.

Rules for moving rings:

Only one ring may be moved
at a time.
No larger ring may be placed

on top of a smaller ring.

11

12

Recu1sive figures
This section introduces Sierpinski curves, beautiful patterns which

are defined recursively. The illustration at right shows three different

levels sizes of these patterns drawn overlying one another.

Let's reduce this pattern to its basic form to learn how it is recur­

sively structured.

A Sierpinski curve of size n is defined with the following state­

ment:

S (n) : A (n) \ B (n) I C (n) '\ D (n) t

A (n), B (n), C (n) and D (n) express steps used to draw an n size

Sierpinski curve. In other words, \ indicates tha,t a pattern segment is

to be drawn downward at a 45° angle to the right. Thus, S (0) would be
Sierpinski curves of S (1) ~ S (3)

displayed in the sequence \ I'\ t , resulting in a tilted box as shown in Figure (a). A recursive pattern can be generated

as shown below by expanding this process using A (n) ~ D (n) for the recursive definition. (The bold face arrows indi-

cate segments whose lengths are twice that of other segments.)

A(n) A(n-1) \ B(n - 1).,. D(n-1) t A(n-1)

B(n) B(n-1)1C(n-1) .._ A(n-1)\B(n- 1)

C(n) C(n-1)'\ D(n-1) +- B(n-1)1 C(n - 1)

D(n) D(n-1) tA(n-1) 1" C (n-1)'\ D(n- 1)

This may appear confusing at first , but A (1), B (1), C (1) and D (1) simply indicate basic patterns as shown in

Figure (b). Curve S (1) is obtained as shown in Figure (c) as a natural result of the manner in which A (1) ~ D (1).

A (2) is also defined using A (1) ~ D (1).

A<2):A<l) ~
~

·····~
j

Thus, patternS (2) is reproduced recursively by using A (2) ~ D (2) as shown in Figure (e). Increasing n by 1 and

halving the length of the basic pattern, makes it possible to display multiple levels of the pattern on top of each other.

This is the procedure which was used to draw S (1) through S (3) , the three overlying patterns shown in the illustration
at the top of this page.

0
(a) 8(0)

A C 1) "'----J

8(1) (

CC 1) ~

0 (1))

(b) AC 1)~DC 1) (c) 8C 1)

AC2)

AC 1) AC 1)

B C 1l~)
(d) AC2)

(e) 8(2)

Chapter 2

Editing

Editing is the process of creating or modifying a program, or of inserting or deleting characters in a

program.

13

14

Operating the computer
Seeing is believing! Let's start our adventure in the world of PASCAL by going over procedures for operating the

computer {the MZ-80B) under control of PASCAL interpreter SB-4515 series and loading, storing and modifying
PASCAL programs. PASCAL syntax will be explained in the next chapter.

PASCAL SB-4515 is stored {along with Monitor SB-1511) on a cassette tape file in the same manner as the BASIC

interpreter, arid must undergo initial program loading whenever it is to be used. Simply place the PASCAL cassette fJ.le

in the cassette tape deck and turn on the power, the IPL automatically loads both the PASCAL interpreter SB-4515

and the Monitor SB-1511 (photo at left). Upon completion of loading, the MZ-80B displays the message illustrated in

the photo at right and the PASCAL interpreter being to operate.

Instead of "xxxxx", the number of unused bytes of memory in the computer may be indicated.

0 (Append)

Load the program stored in the first file of the PAS CAL

Application Tape. (A listing of this program is shown in
Sample Programs.)

Key in 11], then I CR 1. This corresponds to the LOAD

command in BASIC.

The computer then requests that the name of the file to
be loaded be input by displaying "Filename?" on the CRT

screen. Key in Hanoi Tower, then !CR 1- (Alternatively, just

key in I CR 1.) The program first encountered is loaded if

only I CR I is keyed in. It is not necessary to enclose the file

name in double quotation marks.

The cursor appears again and begins to flicker after the

program has been loaded. The computer is now ready to exe­

cute the program.

A command is an instruction which controls

operation of the computer system.

Note: If the load command is executed while a program is already stored in memory, the program loaded is stored

starting at the first memory location following the existing program. Tliis function is convenient for loading

large programs.

Program execution starts with the program first loaded when the G command (G: Go) is entered.

/9.o command / 0
Key in @] , then I CR I to execute the program load­

ed. This command corresponds to the RUN command in

BASIC. It takes a moment for display to begin because

the computer first checks for syntax errors.

The display screen is then cleared, a starry sky ap­

pears and a message is displayed (photo at right).

Interrupt program execution by pressing the /BREAK! key.

0 or 0 (for printer)

Key in W, then lcRI . The program listing is then displayed on the CRT screen. This command corresponds to

the LIST command in BASIC. Key in [!!] , then /CR/ to print out the program listing on the printer. (The program

listing is not displayed on the CRT screen in this case .) Pressing the space bar while the program listing is being output
stops operation; pressing it again restarts output.

The numbers followed by periods at the left of each row of the listing are line numbers. Line numbers are always

incremented in units of one.

Listing a specified line:

P line number or H line number (for printer)

Key in [I], the line number and /CRI. For example, to display the contents of line 5, key in [f], [I] and lcR/.
No period, ".",is required.

Listing lines within a specified range:

P < starting line number > - < ending line number >

For example, to display lines 5 through 12, key in [E), [}] , Q, ITJ, [I] and I CR I· To print out the lines on
the printer, key in ffiJ <starting line number> - <ending line number>.

Listing up to a specified line:

P - <ending line number> or H - <ending line number> (for printer)

Lines are listed from the start of the program to the specified line. For example, keying in [!], Q , [I),~ , and

I CR/ lists all lines up to line 20.

Listing all lines from a specific line to the end of the program:

P <starting line number> - or H <starting line number> -(for printer)

Lines are listed from the specified line to the end of the program.

Listing lines without line numbers

(only applicable for the printer): #
A program listing without line numbers can be obtained on the printer by keying in [!]and lcRI before entering

the list command.

You may notice that some of the program lines are indented. Indentation is characteristic of the manner in which

PASCAL programs are written. Indentation will be explained later.

15

16

Modifying PASCAL programs
Practice the below operations and become familiar with them. This will help you to understand explanations in the

following sections.

Enter P, 3, 6, CR to display line 36 of the program. Replace 64 with 135 in the same manner as in BASIC. Press

the CR ·key.

36. UFO : =CHR (64) ;

36. UFO : =CHR (135);

Execute P36 again to check the result. Try executing the program if the revision has been correctly made. The

UFO which moves from left to right on the screen should now appear in rectangular.

When there are many lines to be corrected, it is convenient to specify listing of a range of lines. This technique is

the same as that used in BASIC.

Let's try an interesting experiment at this point. Enter P, 3, 0, -~ 4, 4, CR to list lines 30 through 44, then remove

the indentations so that the program appears as shown at right; now try executing the program. As you can see, its

operation is not affected; thus it is natural to wonder what purpose indentation serves. Although this will be explained
in more detail later, briefly it serves to make the program

easier to read.

~ Partial Program Deletion

The program delete command is used to delete one or

more lines of a program.

Deletion of one specific line D < line number >

P3B-44
3B.procedure UFOMOVE;< UFO)
31.var N:integer;UFO:ohar;

§§:~Yi~<"c:J");
34.for No=1 to 39 do write("¢");
3:5.for N o=1 to 4 do write<";>");
36.UFO =chr<13:5l;
§~:~~t~~~i0t~)39 do

~~:~~[A~ w=u:n ·
41. write<" 4-. 4-~" , UFO ' 1)

~§:~~i.e<" 4- H;>;>;>;>;>;>H;>;>;>HH")
44.end;

Try deleting line 9 of the program. Enter D, 9, CR. Line 9 is deleted and all following lines are moved up one line.

List the program to confirm this.

Deleting a specific group of lines:

D <starting line number> - <ending line n11mber >

Key in D, 5, -, l, 0, CR. This causes the program entries on lines 5 through 10 to be deleted and all following lines

of the program to be moved up six lines. In other words, program lines 11 and on are moved up to close the gap.

Deleting all lines up to a specific line number:

D - < ending line number >

Keying in D, - , 5, CR causes all lines from the beginning of the program up through line 5 to be deleted and lines 6

and on to be moved to the front of the program.

Deleting all lines after a specific line number:

D < starting line number> -

Keying in D, 8, -, CR causes all lines from 8 on to be deleted.

Note: It is possible to delete a line by enterging <line number> CR ; this method should not be used, however,

since difficulty may occur depending on whether the cursor is located at the position of a character on the

screen. The D command should always be used when deleting program lines.

Entering K, 1, CR will cause the entire program to be erased. This corresponds to the NEW command in BASIC.

This command is used when a program is to be entered from the key­

board.

Inputting programs

Enter the program shown at right with the sequence described below.

Be sure to enter K, I, CR before beginning.

1. Key in B J . "0." is displayed and input of the program awaited . The
symbol "J" indicates a carriage return.

2. Enter BEGIN J . "1." is displayed and the next entry awaited.
3. Enter WRITE ("©ABC") J . "2." is displayed and the next entry awaited. (© is entered by pressing li6~E~ and

\SHIFT\ at the GRPH mode.)

4. Enter END.J "3." is displayed and the next entry awaited.

5. Since this is the end of the program, enter only I CRI . This causes command entry to be awaited without any line
numbers being displayed.

6. Confirm that the program entries are correct by entering P J to execute the list command.lf entries have been

correctly made, execute the program by entering G J . The screen should be cleared and then "ABC" displayed.

Try changing the characters enclosed in quotation marks and reexecuting the program.

Insert command: <line number> ~

Let's try making an insertion in the program entered above. The insertion is to be made between lines 1 and 2.

1. 2 ~ WRITE ("DEF") J . No other entries are required. Now list the program to confirm that the entry

has been made correctly. (~ is entered by pressing \SHIFT I and IT AB I keys simultaneously.)

2. When this program is executed, the error message *Err 18 *Line 2. is displayed and execution halts. The

reason for this is that the entry made in step 1 results in a syntax error. Correct the program as indicated below.

3. Add a semicolon (;) to the end of write ("©ABC") to separate it from the next statement and execute the pro­

gram; now "ABCDEF" should be displayed. The error resulted because the computer did not know where the com­

mand on line 1 ended. It does not matter whether a semicolon is included at the end of line 3 for reasons which
will be explained later.

Try making all program entries on one line and executing the program as shown below; the result should be
the same.

begin write(" ©ABC") ; write ("DEF") end.

4. When more than one program line is to be inserted, execute <first insertion line number >~J. Line numbers are

displayed and program input (program input J) awaited; then the next line number is displayed for entry of

another statement. As many program lines can be entered as necessary.

5. The input command is terminated by entering only a carriage return when the next line number if displayed.

17

18

Making an insertion at the beginning of the program: B

This command is used to make an insertion at the beginning of the program. Entering B ..J causes "0." to be dis­

played and entry of the insertion to be awaited. This allows q new line to be entered at the beginning of a program. The

entry is terminated with CR .

Making an insertion at the end of the program: Z

This command is used to make an insertion at the end of the program. Entering Z ..J causes the line number follow­
ing that of the last line of the program to be displayed. For example, when the number ofthe last line of the program is

35, "36." is displayed and entry of the insertion awaited. The insertion is added to the end of the program when the

entry is completed by entering CR .

Assignment of line numbers is not fixed as in BASIC, but change as insertions and deletions are made. In the pro­

cess of programming, you will often find that you have called up a line other than the one which you wanted to review

or that you want to review the lines before and after a specific line. The L (Last) and N (Next) commands explained

below are useful in such situations. -

I L < number of lines to be reversed > I
When line 10 of a program is listed by executing P 10 ..J., line 8 can also be reviewed by entering L 2 ..J . If

L 3 ..J is entered next, line number 5 will be listed.

When c:!S'..J is entered after an L command is executed, insertions can be made in the program from the line dis­

played by the command. In other words, this command can be used in the same manner as the insert command.

Line 0 will be displayed if the number of lines specified in the command is greater than the number of lines in the

program.

I N < number of lines to be advanced >
This command functions in a manner similar to the L command. If N 5 ..J is entered after P10..J is executed,

line number 15 will be listed. An insertion can be made after line 15 by enteringc:!S..J . The number of the line follow­

ing the last line of the program will be displayed if .the number of lines specified in the command is greater than the

number of lines in the program.

The number of unused bytes of memory in the computer can be displayed by entering M ..J . This corresponds to

PRINT SIZE in BASIC.

I E$ < hexadecimal address> I

Specifies the maximum amount of memory which can be used by a program. The full memory will be available

unless otherwise specified with this command. For example, if E$AOOO is entered, the limit is set at·address $AOOO.

Since the address is specified in hexadecimal notation, "$" is mandatory. The specifiable range is from $8000 to

$FFFF.

This corresponds to the LIMIT instruction in BASIC.

This command is used to save a program on cassette tape. It corresponds to SAVE in BASIC. Let's try this.

Enter the program shown below after executing the K/ command.

begin

write ("ABC")

end.

Next , enterS J , "Filename?" will be displayed on the screen to prompt assignment of a me name, so a suitable

name must be given to the me. The me name is composed of a string of up to 16 characters. If no me name is specified,

the above program me will have no name and later identification will be difficult.

This command compares the program contained in the text area with its equivalent text (file name: file name) in

the cassette tape just saved by S command. It corresponds to VERIFY in BASIC.

If the program and tape me coincide, "OK" will appear on the screen; otherwise, "Error" is displayed .

Ocommand

Entering Q/ J causes program control to be returned from the PASCAL editor to the monitor program. And wait

input of a command at the Monitor SB-lSlllevel. This corresponds to MON in BASIC. The entries used to return con­

trol from the Monitor to the PASCAL are;

*J
J-adr. $1300 Cold start

$1301 Hot start

A cold start is one made when all programs are completely cleared and the stack pointer, etc. is initialized. This is

the same as the status just after loading the interpreter.

A hot start is one made when control is passed to the PASCAL interpreter without programs being cleared or the
registers initialized.

This command activates the MZ-80B System IPL (Initial Program Loader). This corresponds to BOOT in BASIC.

[!] (indentation command)

Indentation is commonly used for list representation in PASCAL programs to improve readability. The $ com­

mand , once executed, causes the editor to automatically align the current subsequent lines with the start of the preced­

ing line.
Entering the $ command again disables the indentation mode.

19

20

This command displays a complete list of string defmitions for defmable function keys, thereby enabling you to

determine how individual definable function keys are defined. This corresponds to KLIST in BASIC.

The string definitions of each defmable function keys are initially defined by the PASCAL interpreter as follows.

This command includes the syntax structure represented by the syntax diagram below.

'

Provided that

0 ~ digit 1 < digit 2 ~ 24
and

digit 2 - digit 1 ~ 2.

The operand of the R command (R: range) determines which of three functions shown below are activated.

1) Changing the character display mode

C80 Sets the character display mode to "80 characters/line" .

C40 Sets the character display mode to "40 characters/line" .

2) Changing the character and graphic display mode

R Sets the character and graphic display mode to reverse mode.

N Sets the character and graphic display mode to normal mode.

3) Fixing the scrolling area

S digit 1, digit 2 digit 1 and digit 2 fix the scrolling area. The top line refers to line 0 of display and

the bottom line to line 24.

Editor command table

Append command

Go command

List command

(to CRT display)

List command

(to printer)

Delete command

Kill command

Input command

A)

G)

P)
P (line number>)

P <starting line number) -

<ending line number))

H)

H <line number>)

H <starting line number>­

<ending line number>)

#)

D <line number>) or

<line number>)

D (starting line number) -

<ending line number))

K/)

B)

z)

Appends a program from the cassette tape to the program in memory.

Executes the program.

Outputs the entire program listing.

Outputs a specified line of the program listing.

Outputs a specified range of lines of the program listing.

Outputs the entire program listing.

Outputs a specified line of the program listing.

Outputs a specified range of lines of the program listing.

Executing #once eliminates the line numbers from the output program

listing. Executing it again restores the line numbers.

Deletes a specified line of the program.

Deletes a specified range of lines of the program.

Erases the en tire program.

Used to enter a program starting at line 0. If another program already

exists, the new entries are inserted in front of it.

Used to enter a program starting at the first unused line following an

existing program.

Displays the number of the line at which the pointer is located and allows

insertions to be made at the indicated line.

~ <statement>) Allows entry of one program line at the line indicated by the pointer.

<line number>!:=:=) Allows insertion of program entries starting at the specified line.

<line number>!:=:= <statement)) Used to insert one program line at the specified line number.

$) Enables the editor to enter a program with indentation.

Pointer shift command L (number of lines))

N (number of lines>)

Save command S)

Verify command V)

System commands RC80) (or C40)

RR) (or N)

RS Is, le)

F)

M)
E$ <address>)

Q/)
I/)

Note:) indicates pressing the CR key.

Moves the pointer back by the specified number of lines.

Advances the pointer by the specified number of lines.

Saves the program in memory on the cassette tape.

Compares the program contained in the text area with its equivalent text

in the cassette tape just saved by S command.

Sets character display mode to 80 char./line (or 40 char./line).

Sets display mode to reverse mode (or normal mode).

Fixes the scrolling area to line Is through line le.

Displays a complete list of string definitions for function keys.

Displays the amount of unused memory area in bytes.

Specifies the limiting address of memory available for program use in

hexadecimal.

Transfers control to the monitor.

Activates the MZ-80B System IPL (Initial Program Loader).

21

Chapter 3

Basic Rules of PASCAL

23

24

Syntax diagram
All programs must be coded according to PASCAL's own syntax. PASCAL syntax is represented by syntax dia­

grams, which are summarized in Chapter 7. This paragraph uses some examples to show how syntax diagrams are used.

The syntax diagrams explained in the paragraphs of this and succeeding chapters are shown at the end of each

paragraph.

Example I Syntax Diagram for Identifiers

Various identifiers are used in a PASCAL program. For example, variables, procedures and functions are all as­

signed identifiers. An identifier must begin with a letter and may be followed by any combination of letters and digits.

This is represented by the syntax diagram below.

'-------- .----.) \.....__ ______ ______ ..1
v v

This syntax diagram is a kind
of gate which does not pass
identifiers which do not match
the defined syntax.

First gate Second gate

tain a symbol other than a

letter or a digit.

No identifier can
pass until all its
components are
checked.

Rectangular Boxes and Round-ended Boxes

Round-ended boxes enclose elements which cannot be divided in a grammatical manner. For example,(letter) re­

presents a letter from A to Z and (digit) a digit from 0 to 9.

Rectangular boxes enclose elements which can be divided further and which are defined elsewhere. For example,

I identifier I is defmed elsewhere with another syntax diagram.

Look at the syntax diagram on the preceding page again.

(1) 0 is the entrance to the syntax diagram. The first letter indicates that the first element of the identifier must be a

letter.

(2) The section between points ® and @) is the part of the syntax diagram used to check the second and succeeding

elements. Identifiers can pass through this section once all their elements have been checked. Therefore, an identi­

fier consisting just one letter can immediately pass through this section.

(3) All elements after the first letter take either the upper or lower loops, depending on whether the character being

checked is a letter or a digit.

In any other case, cannot pass the syntax diagram. All identifiers are checked in the above manner, and ones which

are grammatically correct pass the syntax diagram. For example, Rand R2G3 are correct identifiers but R2 #4, 1234
and rr are incorrect identifiers.

Example 2 Syntax Diagram for Unsigned Numbers

The following syntax diagram is for checking unsigned numbers. Confirm that the unsigned number 3.2E6 passes

the syntax diagram. (3.2E6 represents 3.2 x 106). Does 2E2 pass?

r::~~~ l digitscanbe~
Syntax diagram for
unsigned integers.

25

26

PASCAL program structure
PASCAL programs have a certain structure which conforms to certain rules. Each PASCAL program consists of 3

sections: the variable declaration section; the procedure and function declaration section and ; the executable section.

These sections must be arranged in this order.

(1) Variable declaration section

(2) Procedure declaration section

(3) Executable statements

(?~§©~11. CORPORATION

Calculate the area

Sample Program: Computing the Area of a Circle

0. var PAl, RADIUS, AREA: real ;
l. procedure CALCULATE (X: real)
2. begin AREA : =PAl*X*X end ;
3 . begin
4 . PAl : =3 . l4l59 ;
5. readln (RADIUS) ;
6. whileRADIUS<> 0.0 do
7. begin
8 . CALCULATE (RADIUS)
9 . writeln ("S= ",AREA)

lO . readln (RADIUS)
ll. end
l2. end .

J Variable declaration section J Procedure declaration section

Executable statements

This program reads the value of the radius of a circle from the keyboard, calculates the area of the circle and

displays the result on the CRT screen. The program stops when "0" is keyed in.

Words shown in bold face type are special words with fixed meanings. It is not necessary to distinguish between

the two type faces when you are keying in entries.

Reserved words are listed on page 129. In PASCAL programs, integers expressed as real numbers must be followed

by a decimal point and 0 (.0) ; for example, 3 is expressed as 3.0 and 12 is expressed as 12.0. This is not necessary for

data which is read from the keyboard by the read statement, since it is automatically converted to the correct format

by the computer. In the above program, PAl: = 3.14159 cannot be replaced with n : = 3.14159 because 1r cannot be

used as an indentifler.

Variable and variable declaration
Variables discussed here are different from the variables used in arithmetic expressions. They can be easily under­

stood by considering them as a kind of box in which digits or characters are placed as shwon below. The types of

variables are as shown below. Only the defmed types of digits or characters can be assigned to each type of variables.

Each variable must be given an identifier called a variable identifier. Declarations of variable identifiers and the

types of values to be assigned to them are made at the beginning of each PASCAL program.

Prepare INTEGER

variables A, B and C.

Integers are 0, 1 ,
2, 3, -4 , 5 and

so forth .

Prepare REAL
variables X, Y and Z.

Prepare CHAR

variables S, T
and U.

Prepare BOOLEAN
variables E, F and G.

Characters are 'A', 'B', '1', '2'

and so forth. Only one character
can be assigned to each CHAR

BOOLEAN variables have
one of the two values,

TRUE or FALSE .

27

28

Identifier
Various identifiers are used in PASCAL programs, and they must conform to the following rules.

(1) The first character of each identifier must be a letter (A through Z).

(2) The second and subsequent characters may be any combination of letters and digits.

(3) Reserved words cannot be used as identifiers.

(4) The maximum number of characters which can be used in each identifier is 32.

Reserved words are special words which are used for PASCAL instructions (such as BEGIN, FOR, VAR, READ,

WRITE, etc.).

PASCAL interpreter SB-4515 recongnizes only lower case character for the PASCAL reserved words, statements,

standard procedures, and standard functions. Although you may key them in upper case, the interpreter will display

them in lower case.

Only upper case alphanumeric characters are allowed, however, for variable names, array names, user procedure

names, and user function names.

The first character must be a letter . Up to 32 characters can be used but

Your name is already

reserved.
characters do I use?

simple ... clear

Integers and real numbers
Mathematically speaking, integers are included in the group of real numbers. In PASCAL programs, however, they

are treated separately. No real number can be assigned to an integer variable, and vice versa.

integer

real

0 -5 -25 3000

0.0 1.0 -5.0 -25.0 3E3 8E-8 8.3E3

Syntax Diagrams for Integers and Real Numbers

The following are syntax diagrams for integers and real numbers. With the integer syntax diagram, +5, 3 and -25

are accepted, but 5., .5 and -3.2 are not. With the real syntax diagram, 5E10, +3.2 and -4.6 are accepted, but +5, .3

and 6 are not.

-----------------------------·--------------·------------------------------~
integer

r--
real

29

30

Character constants and character strings
Character Constants (char type data)

It may be necessary to assign a character value to a character variable or to compare one character with another
one. Such a character value is called a character constant. Any of the characters shown in the ASCII code table on page

134 except the single quotation mark (') can be used as character constants. Such character data consists of a single
character enclosed in single quotation marks.

Ex) 'A', 'B', '* ',' ' Allowed

'' ' , 'AB', 'Al' Not allowed

Let me ride too!

Character String

A character string is a set of characters enclosed in double quotation marks ' " '. All characters shown in the

ASCII code table on page 134 except for the double quotation mark can be used in character strings, including a single

character.

Ex) "SHARP" " C ~..!].. ** PASCAL * * "
"TEL06621-1221" "X" Allowed

"INPUT" YES OR NO" " . Not allowed (Double quotation marks used) .

Separators
Separators are placed between variable identifiers, numbers and instructions to allow the computer to determine

where each ends and begins.

Separators used in PASCAL programs are as follows :

(1) Space

(2) Comma (,)

(3) Semicolon (;)
At least one separator must be placed between any two

instructions, identifiers and numbers. A semicolon (;) is

used to indicate the end of an instruction statement ; an

instruction statement may be written on more thart one

line, and only a semicolon (;) can be used to indicate the

end of one. An identifier or expression, however, cannot be

written on more than one line.

Ex) var .-/

}Allowod AREA .-/

: integer ,_;
;_./

va

}Not .Uowod R AR .-/
EA : inte .-/

ger ; .-/

VA R 0 ARE A : REAL ;
At least one space is required. Two or more spaces may
be used:

VA R ODD AREA 0: ORtAL;

I f 0 A= 5 OTH EN

(Sp•~•)

This sample is
incorrect.

®
NAME

VAR AREA: INTt=C:rE~

permissable.

VARDABC:/NTEGER; ---~ Declares variable ABC.

VA R 0 A, 8, C: INTEGER;~
VAR 0 AD BOC: INTEGER;-----?

~1}

Declares three variables: A, B and C.

A space cannot be used to separate two variables.

VAR J
.. ARE:'A

In PASCAL programs a carriage return lCR)
does not indicate the end of a statement. In other words, the

statement on the
left is the same as
that on the right.

31

32

Variable declaration
All variables used in a PASCAL program must be declared with the var declaration.

The var declaration begins with var, followed by a space. Variable identifiers and types follow these.

var D A : integer ;

1 1 L variable type

variable identifier

variable declaration

A: precedes variable type declaration.
D indicates a space.

var A: integer ;

var A, B,C: real;

Declares A as an integer type variable.

Declares A, B and C as real type variables.

var A, B: integer; X, DATA: real; Declares A and B as integer type variables and X and DATA as real type

variables.

var CH, SYMBOL: char ;

var Y, Z: boolean ;

Declares CHand SYMBOL as char type variables.

Declares Y and Z as boolean type variables.

Note: char is an abbreviation for character.

File Declaration

It is possible to write data from variables onto cassette

tape, or to enter data from cassette tape into variables, by

specifying in the variable declaration that the variable is the

counter part of a cassette tape file. This specification is called

a file declaration.

Pages 35 and 36 explain the transfer of data between

variable and cassette tape files, as well as the read and write

statements.

(1) var X, Y : file of integer ;

LL Type

File declaration

Identifiers

(2) var DATA: file of real; A, B: char;

The same identifier may not specified
twice even for different types of
variables.

var declaration (1) specifies tha variables X and Yare of the integer type and that they are counter parts of cassette

tape files. var declaration (2) specifies that the variable DATA is of the real type and that it is the counter part of a cas­

sette tape flle; it also specifies that variables A and B are of the char type and have no relation with cassette tape files.

Array declaration
An array of variables is declared with an array declaration in the var declaration; this corresponds to the DIM state­

ment in BASIC. There is no limit on the number of dimensions of array variables in PASCAL, except for the memory

capacity. BASIC only provides for one and two-dimensional arrays.

One-dimensional array

qA[o~~[jAr2~ (]ACIOO~ A [100) One-dimensional array with 101 elements

Two-dimensional array

0Aro,o~l l!Ac1,3JI GAc2,o] ···--····· 0Acw,@j
,- "" .

. GAro,,~ ~ GA(2,11J ··········· GAuO,lJ/
A [10, 10) 11 x 11 two-dimensional array

Three-dimensional array

A [3, 3, 3) Three-dimensional array.

33

34

Array Declaration

An array variable is specified in the var declaration as follows .

var < array identifier > : array [index] of < element type > ;

Ex) var A :array [5] of integer;
Specifies A as a one-dimensional array of integer variables with elements 0 through 5.

var TABLE: array [10 , 10] of char ;
Specifies TABLE as a two-dimensional array of 11 x 11 char variables.

var DATA: array [10 , 5, 5] of real;
Specifies DATA are a three-dimensional array of real variables with 11 x 6 x 6 elements.

As shown in the above examples, the number of dimensions is determined by the number of indexes. An n-dimen­

siona1 by specifying n indexes separated with commas. The size of arrays which can be specified differs according to the

data type.
A sample program is shown below. In this program, the first two lines declare arrays and the third line declares

variables .

var A : array [5] of integer; TABLE: array [10, 10] of char;

DATA: array [10, 5, 5] of real;

X, Y : real ; Z : boolean ;
When the size and type of more than one array are the same, they are declared as follows.

var X, Y , Z, DATA: array [15] of real,

Files may be declared for arrays just as they may be for individual variables .

var DATA : file of array [50] of real; -1- r t='----Element type
Index

File declaration
Array identifier

Now that array can be used with me.

Array declaration

Write and read array data to/from cassette tape
Let us code and execute a program which processes an array. The programming example is divided into two parts.

The first part writes data in the array, then saves it in the cassette tape file; the second part reads the data from the cas­

sette tape file back into an array and substitutes data from the array into variable X for display for each array element.

First input the following. Instructions for the second part will be given later.

Ql . var DATA : file of array [25] of char;
l . N , X : integer;
2 . begin
3 . X: =65 ;
4 . for N : = 0 to 25 do
5 . begin
6 . DATA [N] : = chr (X)
7 . X: =X+ l

··· ·· · · ·· ··· · ·· · · Assigns data to the array.

8 . end;
9 . !name (11 ALPHABET 11

)

lQJ . write (DATA[]) ;
ll. close

· · · · · · · · · · · · · ·· · · · · · · · · · ·· ······ Saves the contents of the array in the cassette tape file.

l2 end

Run the program. If any errors exist, an error message will be displayed to request corrections.

(1) The [name statement opens the cassette file "ALPHABET" to allow array data to be written on the cassette tape.
(2) The write statement at line 10 automatically saves the contents of the array DATA [] in the cassette tape flle.

(3) The cassette tape stops when recording is completed. The close statement closes the cassette flle. The system

displays "Ready." on the CRT screen when the program terminates after recording is completed.

Rewind the cassette tape and clear the program executed. Then, input the following program.

Ql . var DATA : file of array [25] of char;
l . N : integer ; X : char;
2 . begin
3 .
4.
5.
6 .
7 .
8 .
9 .

lQJ.

!name (11 ALPHABET 11
) ;

read (DATA []) ; ·······Reads data from the cassette tape into th
1

e array.
c ose;
for N: =0 to 25 do

begin

X : = DAT A[N] ; ·· ····· ······ ······ ········· ·· ·Assigns data to X.
write (X : 4) ···· ·· · · · · ·· ·· · · ·· ··· · ·· ··· ·· ····· Displays data in X.

end
ll. end

When the above program is executed.

(1) The[name statement opens the cassette flle "ALPHABET", enabling the system to read data from the cassette tape.

(2) The read statement at line 4 automatically reads data, and assigns it in succession to the array elements.
(3) After data has been read, the tape stops.

(4) The letters A through Z are displayed on the CRT screen.

35

36

As shown in the example on the preceding page, a data flle can be created by using the flle declaration. A distinct

name to indicate its contents must be given to each data flle.
Pay attention to the following when inputting or outputting array data to or from the cassette tape flle. To write

array data in the me, use

write (< array identifier> [])

and to read array data from the me, use

read (< array identifier> [])

The symbols " [" and "] " must be entered without any intervening spaces or characters. As indicated above, it is

impossible to write or readjust one element into an array from the cassette flle with specifications such as write (DATA

[5]) or read (DATA [5]).

File arrays are written on or read from the cassette file in blocks of the size specified for each array.

The following does not illustrate a normal situation, but it may be used.

Consider a one-dimensional array which has undergone the file declaration, A [59]. This array can be written on
the cassette tape with write (A []).

Now consider a two-dimensional array, B [19, 2] , which has 20 x 3 elements. Both arrays have the same number of
elements, so array data written in the cassette flle from array A can be read into array B with read (B []). The data

type of both arrays must be the same.

Data can be transferred between arrays in this manner if the number of elements of both arrays is the same and
both array variable types are the same.

Array X [5] is assigned with char data as follows, then written in the cassette tape file.

X [0] = 'A' X [1] = 'B' X [2] = 'C'
X [3] = 'D' X [4] = 'E' X [5] = 'F'

When this data is read into two-dimensional array [2, 1], it is assigned as follows.

Y [0,0] 'A' Y [1,0] 'B' Y [2 , 0] = 'C'

Y [0, 1] = 'D' Y [1, 1] = 'E' Y [2, 1] = 'F'

0 0

•
•

What's this?

Chapter 4

Data and Expressions

The basic types of data used in PASCAL programs are

integer,

real,

boolean, and

char.

Any combination of data and operators is called an expression.

37

38

Integer expressions
The following are the five integer operators. All integer expressions are formed of integer operators and integer

data.

Precedence Operator Operation Format Example

1 * Multiplication A*B 5*2

1 div Division with truncation A div B 5 div 2

1 mod Modulus A mod B 5 mod 2

2 + Sum A+B 5+2

2 - Subtraction A-B 5-2

div gives a truncated integer result. For example,

X:

X :

10 div 3

15 div 7

10-;- 3

15 -;- 7

3 with the remainder 1.

2 with the remainder 1.

3 is assigned to X.

2 is assigned to X.

mod gives the remainder. For example,

X: = 10 mod 3

X : 17 mod 7

10 -;- 3 = 3 with the remainder 1.

17 -;- 7 2 with the remainder 3.

Note the following when writing an integer expression.

1 is assigned to X.

3 is assigned to X.

(1) A+ B is a correct expression, and the following expressions are also correct:

A + B, A+ B, A +B and A + B.

(2) A- B is a correct expression, and the following expressions are also correct :

A - B, A- B, A -B and A - B.

(3) A div B is a correct expression, but AdivB, A divB and Adiv B are incorrect.

A div B is correct.

(4) A mod B is a correct expression, but AmodB, A modB and Amod B are incorrect.

A mod B is correct.

Be sure to insert a space before and after div (or mod).

Result

10

2

1

7

3

Precedence of Operators

The precedence of operators in an arithmetic expression is shown in the figure below.

'*', DIV and MOD have
equal precedence, there- . ,---<:<AiJ--''"

fore, they are executed,
in the order in which

+ and - have equal pre­
cedence, therefore, they
are executed in the order
in which they appear.

they appear.

The following are examples of integer operations; familiarize yourself with how these are performed.

[
3+5 div 2 gives 5.

(3 + 5) div 2 gives 4.

[
60-6*8+2 gives 14.

(60-6)*8+2 gives 434.

[
6+(6*(3-1)) gives 18.

(6+6)*3-1 gives 35.

[
9-7 mod 2 gives 8.

9 *7 mod 5 gives 3.

[
80 mod 9 div 5 gives 1.

80 div 9 mod 5 gives 3.

[
3+6*(9 div 2) mod 2 gives 3.

(3 + 6)* 9 div 2 mod 3 gives 1.

A -sign appearing in an integer expression is always executed as a -operator. Thus, -28 div -3 is incorrec·,:

because two integer operators, div and -, appear consecutively. -28 div (-3) is a correct expression and gives the

same result as -(28 div (-3)).

-28 mod -3 is also an incorrect expression. -28 mod (-3) is correct, and gives the same result as -(28 mod
(-3)).

Familiarize yourselfwith the following:

(-15) div 8 gives -1.

(-28) div (-3) gives 9.

56 div (-9)

-10 div 15

gives -6.

gives 0.

Relational Operators

(-15) mod 8

(-28) mod (-3)

56 mod (-9)

-HI mod 15

gives -7.

gives -1.

gives 2.

gives -10.

Relational operators are used for comparing two data values. The relational operators

used in integer expressions are shown below.

checks whether the left member is equal to the right member.

< > checks whether the left member is inequal to the right member.

< = checks whether the left member is equal to or less than the right member.

> = checks whether the left member is equal to or greater than the right member.

< checks whether the left member is less than the right member.

> checks whether the left member is greater than the right member.

FALSE .

The result is always true or false. For example, A> B gives true when A is greater than B. This is shown by the
flow chart at right.

Only one relational operator can be used in an expression; X< > Y = Z is an incorrect expression because it con­

tains two relational operators.

39

40

Boolean expressions
Boolean expressions are used for making decisions, YES or NO. The only two values which may be given by a

Boolean expression are true and false. Four Boolean operators are provided for use in Boolean expressions.

These are also called logical operators.

Precedence Operator Meaning Example

1 not Logical NOT not (f\ =B) gives true when A is not equal to B.

2 and Logical AND (A> B)and(A>C) gives true when A is greater than both Band C.

3 or Logical OR (A> B)or(A>C) gives true when A is greater than B or C.

(A> B)xor(A>C) gives false when A is greater than both Band C, or

3 xor Exclusive OR when A is less than both B and C, and gives true when A is greater

than Band less than C, or when A is less than Band greater than C.

not A is true if A is false ; otherwise it is false.
A and B is true if both A and Bare true; otherwise it is false .
A or B is true if either or both A and Bare true; otherwise it is false.
A xor B is true if A and B have different Boolean values; otherwise it is false.

These operations may not be familiar, but they are necessary when using computers.

An exercise follows .

Obtain the results of not A, A and B, A or B and A xor B where

(1) both A and Bare true .
(2) A is true and B is false.
(3) A is false and B is true, and

(4) both A and Bare false .

The answers are given on the next page .

Expressions such as notA, AandB, AorB and AxorB are incorrect.

Precedence

The precedence of Boolean operators is as follows.

Highest not

and

Lowest or xor

Relational operators can be used in conjunction with Boolean operator in an expressions. The precedence of rela­

tional operators is lower than that of Boolean operators. Two or more Boolean operators may be used in an expression.

For example, A xor B and C is a correct expression. In this case, and is applied before xor because of the precedence,

that is, first B and C is executed, then its result and A are subjected to the exclusive OR operation. Thereforer, when it

is necessary to first apply xor to A and B, the expression must be written as (A xor B) and C.
Since or and xor have equal preceedence, the one which appears earliest is applied first.

In the case of A and not B, not B is executed frrst because it has higher precedence, then its result and A are

subjected to and.

Great care must be taken when combining relational operators and Boolean operators, or an unexpected result may

be obtained .

A > 0 and A < 100 is not correct.

Use parentheses as follows.

(A> 0) and (A< 100)

Solutions for exercise

(1) (2)

not A false false

A and B true false

A or B tnte true

A xor B false true

(3) (4)

tnte true

false false

tnte false

tnte false

OR

A+B~L
or AVB=L
OR. _..j

.A:B+AB=L
o-r A-'V'B=L

41

42

Real expressions
The four operators shown below are used in real expressions. Constants and variables used in real expressions all

must be real.

Precedence Operator Meaning Example

1 * Multiplication A*B

1 I Division A/B

2 + Addition A+B

2 - Subtraction A-B

The operators div and mod used in integer expressions are not used in real express~ons. ~ power used in BASIC is

not provided in PASCAL.

All constants or variables processed by real expressions must be real; therefore the result cannot be assigned to any

integer variable even if it has the form of an integer (e .g. 2 or 3) since it is real (2.0 or 3.0).

When var A: integer; B: real; is declared in the var declaration, the following expressions cannot be excuted.

A+B A*B
In practice, however, it may be necessary to assign an integer value to a real variable, or vice versa. Instruction

which convert one type of value into the other are porvided for this purpose. These instructions will be explained in the

section on "Standard Functions."

* and I have equal
precedence and so do
+and-.

All relational operators, =, < >, < =, > =, <, > may be used in real expressions; their meanings are the same as
they are in integer expressions. Both members of the expression must be real.

When variable A and Bare real, neither A and B nor A orB can be executed. However, the following can be execut­
ed because expressions using relational operators give Boolean results.

not (A>B)

(A> B) and (A>C)

(A> B) or (A>C)

(A> B) xor (A> C)

}

A space is not always required between a Boolean operator

and the parentheses surrounding relational expressions.

CHAR expressions
char variables are similar to the string variables of BASIC, but only logical operations using relational operators

can be applied to them.

If CHA and CHB are declared as char variables and 'A' is assigned to CHA and 'B' is assigned to CHB, when

CHA=CHB

is executed, the character code for A is compared with that for B. Since their codes are 65 and 66 , respectively (see the

code table on page 134), false results . Any of the relational operators,=,<>,<=, >=,< ,> , may be used in such

expressions.

Logical operators cannot be applied directly to char variables.

When CHA, CHB and CHC are char variables,

,B->'Y~

e code for a

.
.

CHA and CHB . cannot be executed

(CHA > CHB) and (CHA > CHC)

not (CHB < = CHC)

(CHA = CHB) xor (CHAR> CHC)

Special instructions relating to char data will be explained later.

can be executed because the expressions in

parentheses give Boolean results.

43

44

Standard functions
A function performs a prescribed task and returns a result when data is applied to it. A function which performs

a task which is predefined is called a standard function. Several standard functions are provided in PASCAL.

When a variable used in a function is enclosed in parentheses, it is called a formal parameter; the value assigned to

a formal parameter is called an actual parameter. No file identifier can be used as a parameter in any standard function.

The standard functions in PASCAL are described below.

1 . ODD CX)
The parameter specified in this function must be an integer value and a boolean result is obtained.

This function gives trne if the parameter is odd, otherwise it givesfalse.

A:= odd (5)

A: =odd (6)

true is assigned to variable A.

false is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

2. CHR CX)
The parameter specified in this function must be an integer

value and a char value is obtained as the result.

This function gives the character whose code value is specified

in the parameter. It corresponds to CHR$ (X) in BASIC.

A : = chr (80) The character 'P' .is assigned to variable A.

Any constant, variable or expression may be used as the para­

meter.

3. ORO CX)
The palameter specified in this function must be a char value

and an integer value is obtained as the result.

This function gives the integer value corresponding to the

code for the character specified in the parameter.

A : = ord ('X') 88 (the code for 'X') is assigned to variable A.

Any constant, variable or expression may be used as the para­

meter.

CH R is an abbreviation

for character.

ORD is an abbreviation
for order.

4. PRED CX)
The parameter specified in this function must be a char value

and a char value is obtained as the result.

This function gives the character which has the same code

value as that of the character specified in its parameter minus 1.

A : = pred ('Y') The character 'X' is assigned to variable

A.

Any constant, variable or expression may be used as the para­

meter.

5. SUCC CX)
The parameter specified in this function must be a char vaue

and a char value is obtained as the result.

This function gives the character which has the same code

vaue as that of the character specified in its parameter plus 1.

A : = succ ('Y') The character 'Z' is assigned to variable

A.

Any constant, variable or expression may be used as the para­

meter.

Inverse Functions

RE
PRED is an abbreviation

for predecessor.

~UCC is an abbreviation

for successor.

Of these functions, chr is the reverse of ord and pred is the reverse of succ. It is said that one is the inverse

function of the other.

The relationship between inverse functions can be understood from the following examples.

chr (ord ('X'))= X

pred (succ ('Y')) = Y

ord (chr (88)) = 88

succ (pred ('Z')) = Z

ord ('X') gives 88 and chr (88) gives 'X'.

succ ('Y') gives 'Z' and pred ('Z') gives 'Y'.

chr (88) gives 'X' and ord ('X') gives 88.

pred ('Z') gives 'Y' and succ ('Y') gives 'Z'.

6. TRUNC CX)
The parameter specified in this function must be a real value and

an integer value is obtained as the result.

This function converts real data values into integer data values.

A : = trunc (3.14)

A : = trunc (-2.8)

The integer value 3 is assigned to variable

A.

The integer value -2 is assigned to vari­

able A.

Any constant, variable or expression may be used as the parameter.

45

46

7. FLOAT CX)
The parameter specified in this function must be an integer value

and a real value is obtained as the result.

The function is the inverse of the trunc function ; it converts

integer data values to real data values.

A :=float (15) real value 15.0 is assigned to variable A.

A:= float (-8) real value -8.0 is assigned to variable A.

B :=float (trunc (3.14))

real value 3.0 is assigned to variable B.

Any constant , variable or expression may be used as the parameter.

8. ABS CX)
The result is a real value when value specified in the parameter is real; the result is an integer value when the value

specified in the parameter is an integer value.
This function gives the absolute value of the value specified in the parameter, just like the ABS (X) function in

BASIC.

A:= abs (-3.5)

B: = abs (-365)

real number 3.5 is assigned to variable A.

integer number 365 is assigned to variable B.

Any constant, variable or expression may be used as the parameter.

9. SORT CX)
The parameter specified in this function must be a real value which is greater than or equal to zero. The result is a

real value.

This function gives the square root of the value specified in the parameter. Any constant , variable or expression

may be used as the parameter.

10.SINCX)

The parameter specified in this function must be a real value

(expressed in radians) and a real value is obtained as the result. This

function gives the sine of the value specified in the parameter.

To obtain the sine of a value stated in degrees, first convert the

value to radians. For exmaple, to obtain sin 30°, specify

A: = sin (30.0* 3.1415927/180.0)

Any constant, variable or expression may be used as the parameter.

The above expression gives
the relationship between
values stated in degrees and
radians. This relationship is
important when using the
functions SIN (X). COS(X).
TAN(X) and ARCTN(X) .

1 1 . COS (X)
The parameter specified in this function must be a real value (in radians) and a real value is obtained as the result.

A: = cos (200.0 * 3.1415927/180.0) The value of cos 20{f is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

12. TAN (X)
The parameter specified in this function must be a real value (in radians) and a real value is obtained as the result.

A: = tan (30.0* 3.1415927/180.0) The value of tan 30° is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

13. ARCTAN (X)
The parameter specified in this function must be a real value .and a real value between -rr/2 ~ rr/2 (in radians) is

obtained as the result.

A : =arctan (X) The value of tan - 1 X in radians is assigned to variable A.

A : = 180.0/3.1415927 * arctan (X) The value of tan- 1 X in degrees is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

14. EXP (X)
The parameter specified in this function must be a real value and a real value is obtained as the result. This

function gives the value of ex, where e=2.7182818.

A : = exp (1.0)

A : = exp (0.0)
2.7182818 is assigned to variable A.

1.0 is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

15. LN (X)
The parameter specified in this function must be a real value and a real value is obtained as the result. This function

gives the value of loge X, where X >0.

A: =In (3.0) 1.0986123 is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

1 6. LOG (X)
The parameter specified in this function must be a real value and a real value is obtained as the result. This func­

tion gives the value of log10X, where X >0.

A: =log (3.0) 0.47712125 is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

17.RND(X)
The parameter specified in this function must be a real value and a real value is obtained as the result.

This function generates pseudo-random numbers between 0.000000~1 and 0.99999999, and works in two manners

depending on the value specified as the parameter.

When the value specified as the parameter is larger than 0, the function gives the pseudo-random number next to

the one previously given in the pseudo-random number group. When the value is 0 or negative, the function generates

a pseudo-random number group and gives its initial value.

47

48

A: = md (1.0)

A: = md (3.0)

A: = md(0.0)
B : = md (-3.0)

]
A pseudo-random number which has no relation to the parameter value is assigned to varia­

ble A.

J The same value is assigned to both variables A and B.

Any constant, variable or expression may be used as the parameter.

18. PEEl< CX)
The parameter specified in this function must be an integer value and a char value is obtained as the result.

This function gives a code (l:r-255) which corresponds to data stored in the address specified (in decimal) by the

parameter.

A : = peek (4608) The data code stored in address 4608 is assigned to variable A.

Any constant, variable or expression may be used as the parameter. Use the ord function to obtain the result as an

integer value, as in B: = ord (peek (4608)).
This function is corresponding to PEEK(X) in BASIC.

1 9. C IN
This function has no parameter, and a char value is obtained as the result. This function gives the ASCII code

which corresponds to the character in the position on the CRT screen at which the cursor is located.

A: = cin The ASCII code of the character displayed at the cursor position is assigned to variable A.

20. INPUT CX)
The parameter specified in this function must be an integer value and a char value is obtained as the result.
This function reads data on the port specified by the parameter. For port specification, refer to the explanation of

the output statement on page 84.

This function executes machine language, $ED78, (i.e. IN A, (C)). The value of X is loaded in the BC register and

data is read into the accumulator.

Any constant, variable or expression may be used as the parameter.

A : = input (255)

21. I<EY

Data on port 255 ($FF) is read into variable A. To obtain data of type integer, use

A: = ord (input (255)).

This function has no parameter, and a char value is obtained as the result. This function gives the ASCII code

corresponding to that of the key being pressed. If no key is pressed when this function is executed, the code corre­

sponding to zero is obtained,

A: =key The ASCII code co~responding to the being pressed is assigned to variable A. When no key

is depressed, the code corresponding to zero is assigned to A.

(ord (key) gives zero when no key is depressed.)

22.CSRH
This function has no parameter, and an integer value is obtained as the result. The integer value indicates the

current location of the cursor on the horizontal axis. The cursor position changes each time the cursor, write, writeln,

read or readln statement is executed, and its X-coordinate is given by this function.

The value of this function takes stays within the following range for each character display mode:

80-character mode: 0 ;£ csrh ;£ 79

40-character mode: 0 ;£ csrh ;£ 39

23.CSRV
This function has no parameter, and an integer value is obtained as the result in the same manner as the csrh func­

tion. The value indicates the current location of the cursor on the vertical axis and takes stays within the following

range for both character modes mentioned above:

0 ~ csrv ~ 24

24.POSH
This function has no parameter, and an integer value is obtained as the result . The integer value indicates current

location on the horizontal axis of the position pointer in the graphic display area. The position pointer moves each time

the position or pattern statement is executed, and its X-coordinate is given by this function.

The value takes stays within the following range:

0 ~posh~ 319

25.POSV
This function has no parameter, and an integer value is obtained as the result in the same manner as the posh func­

tion. The value indicates the current location on the vertical axis of the position pointer in the graphic display area and

takes stays within the following range:

0 ~ posv ~ 199

2 6 . P 0 I NT C X , Y)
This function has two parameters which must be integer values, and an integer value is obtained as the result. The

value is indicating whether the dot (X, Y) in the graphic display area is set or reset.

Result of the point function

0
1

2

3

Point information

Points in both graphic areas 1 and 2 are reset.

Only point in graphic area 1 is set.

Only point in graphic area 2 is set.

Points in both graphic areas 1 and 2 are set.

49

Chapter 5

Statements

A Statement is an unit of execution of a PASCAL program. There are two types of statement.

Simple Statement Statement which cannot be grammatically divided

Structured Statement A statement which consists of multiple simple statements.

51

52

Assignment statement
An assignment statement assigns a value to a variable, function identifier or array. This statement cannot be gram­

matically divided, so it is called a simple statement.

Variable.: =<expression> ;
Ex) X : =A+ B ; The value previously assigned to A is added to the value previously assigned to B and the

result is placed in X.

: = is called the assignment operator. The type of the left member must be the same as that of the right member.

A : =5 ; Assigns 5 to variable A. A must be an integer variable.

B : =5 .0; Assign 5.0 to variable B. B must be a real variable .

C : =true ; Assigns the logical value true to C. C must be a boolean variable.

D : ='A' ; Assigns 'A' to D. D must be a char variable.

E : =(X> 0) AND (Y > 0) E must be a boolean variable and X and Y must be integer values. true is assigned

toE when both X andY are positive, otherwise false is assigned to E.

Pay attention to the data type, especially when assigning a constant value to a variable. Review the data types of

constants with the following examples.

integer constants real constants

0 0.0

5 5.0

-15 -15.0

123 123.0

1000 1000.0 or IE+ 3

- 0.35

- 0.01 or IE+2

Assignment statement

Function identifier ---------------------

Compound statements
A PASCAL program section consisting of several statements which are surrounded with begin and end is called

a phase. A compound statement is formed of a phase, begin and end.

The executable section of a PASCAL program ~ ~
always consists of a combination of compound state­

ments. The following sample program gives the

Fahrenheit value of a temperature stated in degrees

Centigrade using the equation, F = 1.8C+ 32.

0 . var TEMPF , TEMPC : real;
1. begin

l_-------v------~J
PHASE

2.
3.
4.
5.

~=-~~--~--~ ··· · ·· · ······ · Reads a temperature stated in degree Centigrade.
··· · ·· · ······· Calculates the Fahrenheit equivalent
· · · · · · · ·······and outputs the result.

'------Phase

A phase may include another phase as shown below. This is referred to as block structure. There is no limit on

the number of levels of phases.

0 · var TEMPC , TEMPF : real;
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

The above program operates as indicated in the flowchart
at right.

(1) Line 2 is a dummy entry which starts the loop.
(2) Line 5 reads data from the keyboard.

(3) Line 6 calculates the Fahrenheit temperature.

(4) Line 7 outputs the result .

(5) When the data read is other than 0.0, lines 5 through 7 are

executed again; when it is 0.0, END is displayed and
the program ends.

,-------------·--------·---·-----·---------~

I Compound statement I
I i
I i
t -(begin) (•I S<o<•m'"' I J •(••d) • I
I . ~ . i
I \.V• i
L---·-·-·--·--·-· ·-·-·-·---·---·-·--·---·---·---·_j

53

54

IF statement <choice)
An if statement chooses one of two different actions to be taken after examining the specified expression. There

are two types of if statements.

Type 1 : if < Boolean expression > then < statement > ;

This type of the if statement executes the statement following then when the

Boolean expression gives true, otherwise, the next statement is executed.

if A=0 then A:=A+l; c [assignment statement

Boolean expression

The assignment statement is executed when A is 0 ; otherwise the following state­
ment is executed. This type of PASCAL if statement is the same as the BASIC IF state­

ment.

Only one statement can be placed after then. If two or more statements are required,
they must be grouped as a single compound statement.

Examine the difference between the following examples.

if A > B then X : = W0 ; Y : = 5 ;

if A > B then begin X : = 100 ; Y : = 5 end ;

TRUE I so
X:= f 00

IF A> B TEEN X:=100; f:=5; IF A>B THEN BEGIN X:=]00;Y:=5 END;

In the first example, the if statement ends with X:= 100 and Y : = 5 is executed separately. In the second ex­

ample, the if statement consists of the whole line.

Type 2 : if< Expression > then < statement I >else< statement 2 > ;

This type of the if statement executes statement 1 when the Boolean expression gives true, otherwise it executes

statement 2.

if odd (A) then write ("ABC") else write ("EFG") ;

When A is odd, the above statement executes write ("ABC"), then
the statement following write ("EFG"). When A is even, it executes
write ("EFG"), then following statement.

then and else can each be followed by only one statement. To spec­

ify multiple statements, combine them into a compound statement

using begin and end.

An if statement may appear after then or else, but take note of the
following.

if A > 9 then if A < 100 then Y : = Y + I else X : =X+ I ;

FAGSE

The meaning of this statement differs according to whether else corresponds to the frrst if or the second if. In the

statement above, else corresponds to the second if according to the rules of PASCAL (see Figure 5.1). To make else

correspond to the first if, the statement must be written as follows. (See Figure 5.2).

if A>9 then begin if A< 100 then Y :=Y+l end else X :=X+l;

Figure 5.1 Figure 5.2

In Figure 5.1, X: =X+ 1 is executed when A is 100 or more andY : = Y + 1 is executed when A is 10 tlrrough 99.

In Figure 5.2, X : =X+ 1 is executed when A is 9 or less and Y : = Y + 1 is executed when A is 10 through 99.

if statement

55

56

CASE statement <selection)
The case statement executes one of several different statements after examining the' specified expression, which

may be of any type.

case I of ij' J : X : = A+ B ;
T ''" ·

Expression .·.'.· .. ·.·_'.· .2 : .· X : = A- B ;
:. _3 : X : = A*B

end ; Case labels

In the above example, when I is 2, X:= A-B is ex­

ecuted; when it is 3, X : = A*B is executed,

When the value of I is not specified (after of), the

statement following the case statement is immediately

executed. The constant values after of (which determine the statement to be executed) are called case labels.

case I of 4: X:= A*A;

5,6: X: =A*A*A
end;

In the above example, when the value of integer variable I is 4, X : =A *A is executed; when I is 5 or 6, X :

=A* A *A is executed; otherwise, the statement following the case statement is executed.

case CH of 'A' : write ("CHARACTER CODE A IS 65") ;

'B' : write ("CHARACTER CODE B IS 66")
end;

When the value of character variable CH is 'A', "CHARACTER CODE A IS 65" is displayed and when it is B,

"CHARACTER CODE B IS 66" is displayed; otherwise the statement following the case statement is executed.

case X>= 0.0 of true·

false

end;

write (sqrt (X)),

write ("IMPOSSIBLE TO CALCULATE")

When the value of real variable X is greater than or equal to zero, write (sqrt (X)) is executed; when it is negative,

"IMPOSSIBLE TO CALCULATE" is displayed.

integer values which can be used as case labels range from 0 ~ ±32767. char values which may be used are those

shown in the ASCII Code Table. Each case label used in a case statement must be unique.

case ==----·---------·-·--------·----·--·l
Expression

I
• t

-~------·---J

WHILE statement ~renetition J) ,

There are three means provided for repeating a statement or phase until a given condition is satisfied; these are

the while, repeat and for statements.

The basic format of the while statement is as follows.

while < Boolean expression> do< statement > ;

While the Boolean expression is true, the specified
statement is repeated. The statement will not be executed

at all, however, if the initial state of the Boolean expression

is false.

while A > 0 do A : = A -1 ;

FALSE

In the above example, A:= A-1 is executed when the value of variable A is greater than 0; this is repeated until

A becomes E), at which time the next statement is executed. When A is negative to start with, the specified statement

is not executed at all.

To repeat several statements, group them as a compound statement using begin and end.

The following sample program gives the sum of integers 1 through 100.

0. var N, S : integer;
l . begin
2. N: =0;
3. s: =0;
4. while N<l00 do
5 begin N: =N+l; S: =S+N end;
6 write (11 S = 11

, S : 4)
7 end

while statement

while

57

58

REPEAT statement ~repetition 2>
The repeat statement executes a statement or a phase, then checks the value of the expression; if it is true, the

next statement is executed, otherwise the statement or phase is repeated. Its basic format is as follows.

repeat< statement 1 > ; < statement 2 > ; ... ; < statement n > until < Boolean expression> ;

0 . var X , Y : real ;
l. begin
2. X:=l . 0;
3. repeat
4. y : = sqrt (X)
5. writeln ("ROOT", X: 3, "= ", Y : l!J)
6. X := Y+l . 0
7 . until X = ll . 0
8. end.

The above sample gives the square roots of the numbers 1 through 10. Since all variables are real, the constants

must also be real. X : 3 and Y : 10 on line 5 indicate the display location, this will be explained in the explanation of
the write statement.

There must be at least one statement between repeat and until ; it is not necessary to group multiple statements
using begin and end.

Note : The difference between the repeat statement and the while statement is that the specified statement(s) is always
executed at least once with the repeat statement.

I'
I
I
I
I
I
I
I
I
L

repeat statement

.. (..._ __ r_ep_e_a_t __ _,)l-~~--~ 1-__,.-----o•-f(until

·------·------..

H Express ion 1-1-----i .. ~

Writing PASCAL programs
In the various sample programs which have been described so far, you may have noticed the difference in the

manner in which PASCAL and BASIC programs are written.

0 . var R , AREA : real ;
l · begin
2. readln (R) ;
3. while R< > 0 .0 do
4.
5 .
6.
7.
8.
9. end .

begin
AREA : =3 .l4*R*R/ 4 . 0 ;
writeln (AREA)
readln (R)

end

~0-VAR R,AREA:REAL;
~ l-BEGIN
~ 2. READLN(R) ; i 3. WHILE R <> 0. 0 DO
~ 4-BEGIN
~ 5. AREA: = 3. l4*R*R/ 4. 0;
~ 6 . WR I TELN (AREA) ;
~ 7 . READLN(R)
~8-END
~ 9. END.

The sample programs above are the same except for the style in which they are written. Execute them and note
that they give the same results. The sample on the left is written so that the program structure is apparent. As shown

above, indenting program phases appropriately makes it easier to read and understand the structure of a program.

One of (he most convenient features of PASCAL is that 'indentation can be used in program coding. The number

of spaces preceding each statement is not limited, but typically 2 spaces are used.

Each statement ends in a semicolon (;), and not with a carriage return code; therefore, statements could be

written as shown below.

var R , AREA : real ;

0 . var
l . R ,
2. AREA :
3. real;
4 . begin

Note that there is no semicolon (;) at the end of lines 7 and 8 in the sample program at the top of this page.

This is because end serves to mark the end of statements in place of the semicolon (;).
Exercise: Write the following program using indentation. The key to doing this correctly is to determine which

if corresponds to which else. Be sure to use semicolons(;) where needed.

VARA,X: INTEGER
BEGIN READ (A)

IF A < 10 THEN X : = 1 ELSE IF A < 100 THEN X : = 2 ELSE IF A < 1000 THEN X : = 3 ELSE X : = 4

WRITE (X : 8) END

The solution is given on page 97.

This program reads a positive value from the keyboard and displays "1" when the value read is one digit, "2" when

two digits, "3" when 3 digits and "4" when 4 digits.

59

60

FOR statement <repetition 3)
This statement repeats a loop a specified number of times. It is similar to the FOR"' NEXT statement of BASIC.

There are two types of for statement provided in PASCAL.

Type 1 : for <control variable>:=< starting value> to< ending value> do <statement> ;

The control variable, starting value and ending value must be either integer val­

ues or char values. The control variable stores the starting value plus the number of

repetitions performed. The starting value is first assigned to the variable and com­

pared with the ending value. When it is less than or equal to the ending value, the

statement following do is executed and the control variable is incremented by one.
The next statement is executed when the control variable value becomes greater
than the ending value.

0. var N : integer;
l. CH: char;
2. begin
3. for N : =32 to 255 do
4. begin
5. CH : = chr (N) ;
6 · writeln (11 CHARACTER FOR CODE 11

, N : 3 ,
IS II. CH : 2)

7. end
8. end .

The above sample program displays characters corresponding to ASCII codes

32 through 255.

0. var CODE : integer ;
l. CH: char;
2. begin
3 . for CH : = ' A ' to ' Z ' do
4. begin
5. CODE: =ord (CH) ;

FOR N: =S TO E DO<S'-ta.temet~i>

E~,C,·]

6. writeln (11 CHARACTER
IS II , CODE : 3)

7. end
8 ·end .

CODE FOR II ' CH: 2.

R~
The ending value'·~::~,~
hasn't been reached '«,"
yet. 0

The above sample program displays the ASCII codes corresponding to characters A through Z. Note that the con­

trol variable, the starting value and the ending value are all char values. The character codes are displayed in the order
in which letters are listed in the ASCII code table.

When it is necessary to execute several statements, group them as a compound statement and place them after do.

Type 2 : for < control variable > : = < starting value> down to < ending value > do < statement> ;

This type of for statement differs from type 1 in that the value of the control variable is decremented by one each

time a loop is made. Otherwise it is the same as type 1.

0 . var N : intege r ;
l. CH : char ;
2 . beg in
3 . for N : = 32 down to 255 do
4. begin
5 . CH : = chr (N) ;
6. writeln (11 CHARACTER FOR CODE 11

, N : 3,
"IS" , CH : 2)

7 · end
8. end

The sample program shown above is a modification of that shown in the des­

cription of the type 1 for statement , with to replaced by downto. Nothing happens

when this program is executed , because the starting value is not greater than the

ending value.
Replace 32 with 255 and vice versa and execute the program for the type 1

for stateJUent.

The control variable F===(
is decremented by
one each time a
loop is made.

FOR N: = S DOWNTO E DO

<ste<.ieyne-n.t >

A PASCAL program and a BASIC program are compared below. Notice that a FOR loop can include another FOR

loop in both PAS CAL and BASIC. But there is no limit on the number of nested levels of such loops in PASCAL.

PASCAL
VAR X,Y: I NT EG E R;
BEGIN

FOR X : =1 TO 9 DO

END.

FOR Y:=1 TO 9 DO
WR IT EL N CIIX * Y= ", X* Y : 2)

1 0
20
30
40
50

BAS I C
FOR X= 1 T O g

FOR Y=1 TO g

PR INTII X* Y= " ; X* Y
NEXT y

NEX T X

61

62

Procedure declaration and procedure <calling) statement
A procedure is a particular set of actions which may be used several times in a program. It corresponds to a sub­

routine in BASIC. A procedure must be declared in the procedure declaration section. There are two types of procedure

declarations.

Type 1 : procedure < identifier > ; < compound statement > ;

The identifier corresponds to the subroutine name.

procedure SUM ;

begin }
Z : =X+Y BLOCK

end;

Procedure SUM assigns the sum of X and Y to Z.

The following is a sample of a complete program which includes this procedure.

Variable declaration section 0. var Z, X, Y: integer;
l. procedure SUM;
2. begin
3. Z: =X+Y
4.
5 .
6.
7.
s.
9.

end ; l Procedure declaration section

l0.

begin l
read in (X) ; Executable statements
readln (Y) ;
~~~]~··(~)··········· ·· ··········· ···~ ··Procedure statement 

end. 

In the above sample, program execution starts at line 5. 

Key-in data is assigned to X at line 6. 

At line 7, other key-in data is assigned toY. 

Program control is transferred to procedure SUM at line 8 without any change in the values of X and Y. After the 

sum of X and Y has been assigned to Z by the procedure, program control is returned to line 9. 

The value of Z is output at line 9. 

The program terminates at line Hl. 

The last end in a program must always be followed by a period ( . ), not by a comma ( , ) or a semicolon ( ; ). 



Type 2 : procedure <identifier> ( < formal parameter identifier> , .. , , < formal parameter identifier> : 

<type>) ; <variable declaration statement> ; < compound statement > ; 

A procedure's action is based on the data assigned to its formal parameters when it is called. For type 1, values can 

be assigned only to the variables used within the procedure. For type 2, values can be assigned to any variables declared 
in the var declaration since the variables are assigned to the formal parameters specified for the procedure when each 

call is made. 

0 . var X, Y, SUM, D IF : real 
1 . procedure CALCULATION (A, B : real) 
2. begin 
3 . SUM : =A+ B ; 
4. DIF: =A-B 
5. end ; 
6. begin 
7 . readln (X) ; 
8 . readln (Y) ; 
g. CALCULATION (X,Y); 

10. writeln ( 11 X+Y= 11
, SUM) 

11. writeln ( 11 X-Y= 11 ,DIF) ; 
12. CALCULATION (SUM,DIF) 
13. writeln ( 11 (X+Y)+(X-Y)= 11 ,SUM) 
14. writeln ( 11 (X+Y)-(X-Y)= 11 ,DIF) 
15. end . 

Flow of program execution 
1. Program execution starts at line 6. 
2. Data values for X and Y are read from the key­

board at lines 7 and 8. 
3. Procedure CALCULATION is called at line 9 

with variables X and Y assigned to formal para­
meters A and B, respectively. (X~ A, Y ~B) 

4. A+B and A-B are performed by procedure 
CALCULATION and the results are assigned to 
variables SUM and DIF, then program control is 
returned to line 10. 

5. The results are displayed at lines 10 and 11. 
6. Procedure CALCULATION is called again at line 

12. At this time, variables SUM and DIF are as­
signed to formal parameters A and B, respective­
ly. Calculations are performed and the results are 
assigned to variables SUM and DIF, respectively. 
Program control is then returned to line 13. 

7. The results are displayed at lines 13 and 14. 

Let's review the meaning of the parameters. In the above program, A and B in line 1 are variables and are called 

formal parameters. Variables assigned to these formal parameters are called actual parameters. 
It is not necessary to declare formal parameters. Identifiers of variables which are declared in the var declaration 

may be used as formal parameters. The number of formal parameters is not limited. 

Note the following when using formal parameters. 

1. The number of actual parameters used when a procedure is called must be the same as the number of formal 

parameters. For example, specifying CALCULATION (X) or CALCULATION (X, Y, Z) when calling the pro­

cedure declared by CALCULATION (X, Y : real) will result in an error. 

2. The type of the actual parameters must be the same as the type of the formal parameters. In the above ex­

ample, only real data can be assigned. 

3. Formal parameters must be variables (expressions are not allowed). 

Thus, procedure (X+ Y: real) is not a valid procedure declaration. 

4. FILE identifiers cannot be used as formal parameter. 

~ --------------------------------------! 
1 

Procedure declaration 

l~""'"" 
l 

I 

Variable declaration statement Compound statement I 
·----·---- ____________________ _J 

Parameter list 

63 



64 

Function declaration and function designator 
If the expression defined in a function includes parameters, the values of variables assigned to the parameters are 

used to perform the calculation. A function is different from a procedure in that the result of the calculation is assigned 

to a "function identifier", rather than to a variable, then control is returned to the statement which designates the func­

tion. 

A function must be defmed in advance by a function declaration. 

There are two types of function declaration. 

Type 1 : function < function identifier > : < result type > ; <variable declaration statement > ; 

<compound statement> ; 

Type 2 : function < function identifier> (<formal parameter> , ... , < formal parameter> : <type>) : 

< result type > ; <variable declaration statement> ; < compound statement > ; 

The following example defmes a function which gives the area of a triangle, S = ah/2. 

0 · function AREA (A, H: real) real; 
1 . begin 
2 · AREA: = A*H/ 2 .0 
3. end; 

AREA is both the function identifier and a variable. The following sample program includes this function declara­

tion. 

0 . var X , Y : real : 
1 . function AREA (A , H : real) : real; 
2. 
3 . 
4. 
5. 
6. 
7 . 
s. 
g, 

10. 
u. 
12. 

begin 
AREA : =A*H/ 2 .0 

end; 
begin 

write ( 11 BASE A= 11 
) ; 

readln (X) ; 
write ( 11 HIGHT H= 11

) 

readln ( Y) ; 
write (AREA = 11

) ; 

write~ 

end Function designator 

Reads the value of the base length 

Reads the value of the height. 

} Displays the result. 

Variable declaration 

} Function dodmtion 

Details of program execution at line 11 are as follows. This statement is an instruction which displays the value of 

variable AREA. However, since this variable has not yet been calculated, program control is passed to the function 

AREA with variables X andY (containing values entered from the keyboard) assigned to A and H. A*H/2.0 is calculat­

ed in the function declaration block and the result is assigned to function identifier AREA. Program control is then 

returned to the statement on line 11 and the value of AREA is displayed. 



Sample program 
Assume that you want to accumulate coins in geometrical progression; for example, 1 coin on the first day, 2 coins 

on the second day, 4 coins on the third day and so on. 

The number of coins which will have accumulated after a certain number of days can be calculated with the follow­

ing sample program. 

1 2 
CD 
® 

4 8 

0 · l GEOMETRICAL PROGESSION f 
l . var M , SUM : real ; 
2. N, X: integer ; 
3 · function TOTAL (DAY: integer) : real; 
4. begin 
5 · if DAY=l then TOTAL: =l . 0 
6 · else begin 
7 · SUM : = l . 0 ; 
8. M: = l.0; 
9 . for N : = 2 to DAY do 

l0. begin 
ll · M : =2 :0*M ; 
l2 · SUM: = SUM+M 
l3. 
l4. 
l5. 
l6. 
l7. 
l8. 
l9. 
20. 
2l. 
22. 

end; 
begin 

end ; 
TOTAL: =SUM 

end 

write ( " © " ) ; 
X: =l; 
while x <> o do 

begin 

16 32 

23. 
writeln ( ) ; 
write ( " .!]. .!]. 

readln (X) ; 
writeln ( " .!]. 

+HOW MANY DAYS YOU ACCUMULATE COINS.") 
24. 
25. ** TOTAL IS II ' TOTAL (X) : 8' II COINS II) 
26. end 
27. end 

This calculation could be performed with a procedure instead of a function, but the number of variables would 

have to be increased because no value can be assigned to a procedure identifier. Try coding a program which uses a 

procedure to obtain the same result . 

,---------·-----------·-·----·-·-·-----·-·---·-·--·-·--·-----~ 

t Function declaration t 
t t 
t t 
t t 
t t 
t t I fuM~n I 
I Iden tifi er Paramete r list Simple type Variable declaration s tat ement Compound I 

L-----·-·----·---·---·--·---·-·---·--·---·--·-~·~·~: __ .. _1 

65 



66 

Global variable and looal variable 
A procedure declaration or function declaration can declare variable which are valid only in the declaration block. 

Such variables are called local variable . Arrays can also be declared as local variables. Variables which are declared in the 

variable declaration block are called global variables. Global variables are valid throughout the program. 

0. var A : integer; · ·· · ·· · ·· ···· · ·· · · ·· · ·· · · ·· ··· Declares global variable A. (A is valid throughout the pro-
procedure TAB (X : integer) ; gram.) l. 

2. 
3 . 
4. 
5 . 

var N : integer; ··· · ·· ··· ······ ··· ·· ···· Declares local variable N. (N is valid only within the procedure de-
begin claration block for TAB.) 

for N : = l to X do 
write ( " =:> " ) 

6. end ; 
7 . begin 
8 . write ( " © THE 
9. readln (A) ; 

l0. TAB (A) ; 
ll. write ( "ABC ") 
l2 . end. 

NUMBER OF TABS ARE") 

No function corresponding to TAB (X) in BASIC is provided in PASCAL. The above sample program provides 

a similar function using a procedure declaration. When the program is executed, it asks the operator for the number 

of tabs. Key in an appropriate integer number and check the position of "ABC" on the display screen. 

Variable N is declared at line 2. This variable is valid only within the declaration block for procedure TAB. There­

fore, it cannot be used within another parts of the program. Further, no value can be externally assigned to it. 

Parameter X is automatically defmed as a local variable. 

The structure of a procedure declaration or function 

declaration block is as shown at right. It is similar to the 

structure of PASCAL programs in general. 

Modify the sample program "GEOMETRICAL PRO­

GRESSION" shown on the preceding page as follows and 

execute it. 

0. GEOMETRICAL. PROGRESSION f 
l. var SUM : real; 

X: integer : 
3. funcnction TOTAL (DAY : integer) : real; 
4. 
5 . 

var M : real ; N : integer; 
begin 

PROCEDURE------­
FUNCTION·--- -·· ··--· 

Variable decla ration section 

Executable statements 

A8C 
REAL 

I must distinguish 
between global 
vari ables and local 

Local 

ABC 
REAL 



The following sample program will clarify the difference betwen global variables and local variables. 

0. var N : char; ·· · · · · · · · ·· · · · · · ·· · ·· · ·· ·· · · · · · · · · · · ·· · · · · · · · · · · ·· · ··· · · · · ·· · · · · · · · ·· · ·· · · · ··· · · · Declares global variable N. 
l . procedure PRINT ; 
2 . var N : char ; . · · · ·· · · · · · · · · · · · · · ·· · · · · · · · ·· · · · · ·· · · · ·· · · · · · · · · · · ·· ·· ·· · · · · · · · · · · ·· · ··· ·· · Declares local variable N. 
3. begin 
4. N : = ' B ' ; 
5. w riteln ("LOCAL VARIABLE N IS " , N : 2) 
6. end ; 
7. begin 
8. N: =' A ' 
9. writeln ( "A IS FIRST ASSIGNED TO GLOBAL VARIABLE N . ") 

l0. PRINT ; 
ll. writeln ( "CHECK THE CONTENTS OF GLOBAL VARIABLE N . " ) ; 
l2. writeln ("GLOBAL VARIABLE N IS" ,N : 2) 
l3. end . 

This program uses the same identifier for both global and local variables. Program execution proceeds as follows. 

(1) Line 7 is the beginning of the executable statement section. 

(2) Character A is assigned to global variable Nat line 8. 

(3) A message is output at line 9. 

( 4) Procedure PRINT is called at line 10. 

(5) In the procedure declaration block, character B is assigned to local variable N at line 4. 

( 6) The contents of local variable N are displayed at line 5 and program control is returned to line 11. 

(7) A message is displayed at line 11 . 

(8) The contents of global variable N are displayed at line 12. 

Character A, which was first assigned to global variable N, remains unchanged after program execution. Local 

variable N is valid only within the procedure PRINT. 

Local variables are : 

(1) Variables which are declared in procedure and function declarations, or 

(2) Formal parameters of procedure and function declarations. 

Global variables are variables which are declared at the beginning of programs by var declarations. 

Local variables may be defmed as ftles. 

67 



68 

, Recu~'sion , , , . 

A procedure (or function) may call itself. Such cases 

are called recursion. In BASIC, recursion is what occurs 

when a subroutine calls itself. 
The following sample program gives the sum of integers 

1 through N. 

0. var K : integer; 
l. function SUM ( N : integer) : integer; 
2. begin 
3. if N=l then SUM: =l 
4. else SUM: =~+N 
5 . end ; Recursive call 
6. begin 
7. readln (K) ; 
8 . writeln ( 11 SUM= 11

, SUM (K) : 6) 
9. end 

In the above sample program, the function SUM calls 

itself with N-1 assigned to the parameter. The structure 

of this program is difficult to understand, and it is difficult 
to write a clear flow chart. However, the program structure 

can be clarified with a diagram called an NS chart. 

With BASIC, recursive calls are generally impossible except in the case shown below. 

Recursion with BASIC (precisely speaking, this is not really recursion for the reason described on page 10.) 

10 INPUT" N= ";N 

20 GOSUB 1el0 

30 PRINT "END" 

40 STOP 

100 PRINT "N = " ; N 

110 IF N = 0 THEN RETURN 

120 N=N-1 

130 GOSUB 100 

140 RETURN 

The subroutine itself is called at line 130; therefore, this may be regarded as a recursive call. However, when the 

value of N is large, the maximum number of subroutine levels is exceeded. 

With PASCAL, there is no limit on the number of recursive calls which may be made other than the limit imposed 

by the useable memory capacity. Therefore, care is required when using recursion. 



Most programs which use recursion could be written without it. Recursion does not reduce execution time or 

the amount of memory required by the program. 

It is sometimes better not to use recursion. Whether or not recursion is used must be determined on a case-by­
case basis. 

However, use of recursion often makes the program structure easier to understand. The following programs both 
give the factorial of N; the fust uses recursion and the second does not. 

0. var X : integer ; 

l. function FACTORIAL (N : integer) integer; 

2. begin 

3. if N=0 then FACTORIAL : =l 

4. else FACTORIAL: =N*FACTORIAL (N-l) 

5 . end ; Recursive call 

6. begin 

7 . write ( 11 © 11 
) ; 

8 . for X : = 0 to 7 do 

9. begin 

l0. 

ll. 

writeln (X: l 11 11
• FACTORIAL (X) 5) 

writeln ( ) 

l2. end 

l3. end 

0 · var X : integer; 

l · function FACTORIAL (N : integer) : integer; 

2. 

3. 

var A, B : integer; 

begin 

4. A: =l ; 

5 · B: =0; 

6. while B < N do 

7. begin 

8 · B : =B+l; 

9. A : =A*B 

l0. end; 

ll. FACTORIAL: =A 

l2. end ; 

l3. begin 

l4 . write ( 11 © 11 ) ; 

l5 · for X : =0 to 7 do 

l6. begin 

l7 · writeln (X; l , 11 ! 11
, FACTORIAL (X) 5) 

l8. writeln ( ) 

l9. end 

20. end 

69 



70 

WRITE statement 
The write statement is used to display a calculation result or a message on the CRT screen, to print it out on the 

printer or to write data on cassette tape. It corresponds to the PRINT statement in BASIC. 

There are several forms of write statements as shown below. 

Type 1 : for display of a character string on the CRT 

write ("<character string>" ) ; 

writeln (" < character string > " ) ; 

These statements display the character strings enclosed in double quotation marks ( ") on the CRT screen. The 

write statement does not make a carriage return after it has displayed the character string, but the writeln statement 

does. ~ ll=lJ II .!],. <? <=(> may be enclosed in double quotes in the same manner as in BASIC. 

Type 2 : for printing a character string on the printer 

pwrite ( " < character string > " ) ; 

pwriteln ( " < character string>") ; 

The only difference between this form and type 1 is that the character string is output to the printer. 

Type 3 : output of the value of an expression 

write ( < expression 1 > : < expression 2 > : < expression 3 > , ... ) ; 

writeln (<expression 1 > : <expression 2 > : < expression 3 > , .. ) ; 

These statements display the value of expression 1 so that the least significant digit is displayed in the position 

which is a certain number of spaces to the right of the current cursor position. This number is determined by expression 

2. Expression 3 is valid only when expression 1 is real, it specifies the number of decimal places. Expression 1 may be 

any type of expression other than boolean, expressions 2 and 3 must be integer expressions. 

write ( 'A' : 8) : 1 2 3 4 5 6 7 8 

Character A is displayed at the 8th position to the left of the current cursor position. -DDDDDDD~ 
1 2 3 4 5 6 7 8 9 

write ('A': 3, 'B': 2, 'C': 4); ----------------00~0[8000[0 

write ('A') ; 1 2 3 4 . .. .. ... 12 13 14 15 

The default value of expression 2 is 15. ----------------~0000· ·····ODD~ 

Assuming that 1.2345 is assigned to real variable X. 1 2 3 4 5 6 7 8 

write (X: 8); --- ----- - --- ---- - - --- DDITI0(2]GJ[4][5] 
write (X : 5) ; An error results since the number of digit of the contents of X is 6. 

write (X : 5 : 2) ; 1 2 3 4 5 

The corrtents of X are displayed down to the 2nd decimal place. - - --- - - 0[1]0(2][3] 
write ("ABC", 'X' : 3) ; ~[8l[000[X] 

write ('X': 3, "ABC"); DD[X]~[BJ[O 

The above rules also applies to the writeln,pwrite and pwriteln statements. 



Assume that 2, 3 and 8 are assigned to integer variables X, Y and Z, respectively. 
1 2 3 4 5 6 

write (X+ Y: Z-X); ------ --- --- - ------- 00000[5] 
expressio;!-J ~ssion 2 

The above example is the same as write (5 : 6) since expression 1 gives 5 and expression 2 gives 6. In write (X, Y, 

Z) all variables are treated as non-file variables when X is not a file variable, even though the others are. As shown 

above, file declaration is checked only for the first variable; other variables are assumed to be the same type as the first 

variable. This is also true for type 2 read statements. 

writeln ( ) performs a carriage return. write ( ) does not result in an error, but no action is performed, (other 

than to reduce the running speed). 

The following statements dispaly values of array elements which are not declared as file. 

write (DATA [15] : 5); write (DATA [X-Y]: A+ B); 
--r- T TE . 2 -r 

Array identifier L xpresswn Expression 1 Expression 2 
Expression 4 

Expression 1 

(The second statement displays the same data as the first one when X is 20, Y is 5, A is 2 and B is 3.) 

Expression 3 can be specified when the array is real as follows. 

write (DATA [15] : 5: 3); 

Expression 1 :J J L 
Expression 2- Expression 3 

Type 4 :Output of data which is declared as file 

write ( < identifier > , < identifier > , ... , < identifier > ) ; 

For example, the following statement records integers 1 through 10 on the cassette tape as the data file "10 IN­

TEGERS". 

fname ("10 INTEGERS") ; for N: = 1 to 10 do write (N); close 

In this case, variable N must be declared as file in advance; otherwise, the data will be displayed on the CRT screen. 

The variable identifier specified in a write statement must also be specified in a read statement when the recorded data 

is to be read. For example, to read data recorded in the above example, use. 

for M : = 1 to 10 do begin read (N) ; .... . ... ; end 

The following statement cannot read the data because the read data is assigned to control variable N. 

for N : = 1 to 10 do begin read (N) ; ....... . ; end 

write (X, Y, Z) results in an error when X is declared as file andY and Z are not. file declaration is checked only 

for the first identifier. Variables declared as file, it may be boolean variables. 

71 



72 

Type 5 :Output of data of arrays which are declared as file 

write ( < array identifier> [ ] , < array identifier> [ ] , ...... , < array identifier> [ ] ) ; 

This statement saves all array element data in the cassette tape me when the array are declared as file. No character 

may be enclosed in [ ] . Any data type may be used. 

write (RESULT [ ] ) 

The above example saves all array element values from the array RESULT in the cassette tape me. The number of 

dimensions of the array is not limited. It is not possible to save part of an array by specifying RESULT [5]. 

fname ("ABC") ; 

write (RESULT [ ] , DAY [ ] ) ; 

close ; 

When the above statements are executed, all data from arrays RESULT and DAY are saved in the cassette tape ftle 

with the file name ABC assigned. In this case, executions read (DAY [ ]) with me name ABC specified results in an 

error. read (RESULT [ ] , DAY [ ]) must be used. 

To store arrays RESULT and DAY in different mes (or different tapes), the tape deck must be stopped after the 

array RESULT has been stored. Therefore, the program is written as shown below. 

fname ("ABC") ; 

write (RESULT [ ] ) ; 
close ; 
read (A) ; .............. Program execution is stopped until a key is pressed (the tape deck is also stopped). 

fname ("DEF") ; 

write (DAY [ ]) ; 

close; 

lr·----w-n-·-te-·-st-~;~----------------·----------· -----·----·-----·--------

I 

write statement (type 4 and 5) 

L __ . ______ _ ' 



The following sample program stores integers 1 through 5 in a cassette file, then reads them from the file. 

0 · var X ,M: integer; 
1 · N: FILE OF integer; 
2 . procedure PUTDA T A ; 
3 . begin !name ( 11 5 integers 11 

) ; 

4 · for N : = 1 to 5 do write (N) close 
5. end; 
6. procedure GETDATA; 
7 . begin !name ( 11 5 integers 11

) 

8 · for M : = 1 to 5 do 
9 · begin read (N) ; X: =N; write (X: 4) end; close 

10. end; 
11 · begin 

12. writeln ( 11 © DATA WILL BE STORED IN THE CASSETTE TAPE 
FILE. II) ; 

13. PUTDATA; 
14. writeln ( 11 .D. DATA HAS BEEN STORED IN THE CASSETTE TAPE 

FILE. II) ; 

15 . writeln ( 11 .D. PRESS ONE OF KEYS 0 THROUGH 9 AFTER REWIND 
HAS BEEN COMPLETED. 11 

) ; 

16 . readln (X) ; 

17. writeln ( 11 .D. DATA WILL BE READ FROM THE CASSETTE TAPE 
FILE. II) ; 

18 · GETDATA; 

19 · writeln ( ) ; 
20. write ( 11 END 11 

21. end 

The read statement on line 9 is explained in the next section. X : =Non line 9 is required because N is declared as 
file and it cannot bespecified in a write statement for screen display. 

Note: No expression can be specified in the parentheses of write statement of type 4 or type 5. 

fname statement 

character string 

•( ]name >-CD~1 ~ ''' ;?~I •CD 
L _____ _ 

• 

------------------,- ------·------------
close statement 

L_--------_-_----_---.(•.._(...__~-c-los_e-___ )!--------~~~-~~~---

73 



74 

READ statement 
The read statement reads data from the keyboard or 

the cassette tape. It corresponds to the INPUT statement 

of BASIC. 

Type 1 : Reading the values of variables which are not 

declared as file 

read ( < identifier > , < identifier > , ... , 

< identifier > ) ; 

When this statement is executed, ? is displayed to re­

quest that data be keyed in when the identifiers are not 

declared as file. Key in data and press the I CR I key 

and the keyed data is read and displayed. No carriage re-

turn is performed when the read statement is executed . 

read (X, Y, Z); 

When the above statement is executed, the system displays ? and waits for input of the data to be assigned to X. 

After the first data has been input and the I CR I key has been pressed, the system displays ? after the data just enter­

ed to wait for data input toY. After the data for Y has been entered, the system displays? to wait for data for Z. After 

all data has been read, the system goes onto the next statement. 

Data can be keyed in another way, as shown in Note 5 below. Attention must be paid to the cursor position when 

many items of data are keyed in. 

Type 2 : Reading the values of variables which are not declared as file. 

readln (<identifier > , <identifier> , .. ... , <identifier>) ; 

This statement is the same as type 1 except than a carriage return is carried out after the last data has been read. 

Notes: 1) No boolean variables can be specified in a read statement of type 1 or type 2 .. 

2) Only one character can be read when a variable is char variable. 

3) No expression can be specified in parentheses. 

4) For read (X, Y, Z), non of the variables will be handled as file variables if X is not a file variable.fi.le de­

cl.aration is checked only for the fust variable. 

5) For read (X, Y, Z), data can be keyed in two ways. For example, to assign 5 to X, 6 to Y and 7 to Z, key 
in [S] j [6]) [Z]j or [S][J[Q][J[Z]j . 



Type 3 : Reading variables which are declared as file 

read ( < identifier > , < identifier> , . ... . . , < identifier > , 

When the variables are declared as file, the system automatically reads the me data. The me must be opened, and 

the me name must be declared by [name statement in advance. The data read is not displayed on the CRT screen. After 
reading has been finished, the cassette tape stops and the system executes the next statement. 

Executing read (X, Y, Z) results in an error when X is declared as file and Y and Z are not. file declaration is 
checked only for the first variable. 

readln statements are not used for variables declared as file . 

Type 4 : Reading array variables which are declared as file. 

read ( < array identifier > [ ] , < array identifier> [ ] , . .... , < array identifier > [ ] ) ; 

When the variables to be read are array variables which are declared as file, this statement reads the values of all 

elements of the array. No character can be specified within [ ] . 

Data can be read even if the array identifier or the number of dimensions of the array is different from that speci­

fied when data are saved, if the total number of array elements and the data. type are the same as those stored in the 

me. See the example on page 36. 

All array identifiers specified must be declared as file ; otherwise, an error results. 

Notes : 1. boolean variables can be used when they are declared as file. 

2. No statement or expression can be specified within parentheses. 

read (X+Y); 

read (Z : =X- Y); 

read (X, Y, Z); 

Incorrect because an expression is used in parentheses. 

Incorrect because a statement is used in parentheses. 

An error results when X is declared as file but Y and Z are not. When Y and Z 

are declared as file but X is not, no error results but Y and Z are treated as if 

they are not declared as file. 

75 



76 

Graphic control statements 
The MZ-80B personal computer can be used for display of high-density graphics by installing an optional graphic 

RAM card . Graphic control with PASCAL is almost the same as with BASIC. The PASCAL graphic control statements 

and functions are listed below with the corresponding BASIC control statements and functions for comparison. 

PASCAL graphic control statements 

graph(< I, a,O, b, C, F >) 
gset (x, y) 

grset (x, y) 

line (x1, Y1, X2, Y2<, X3, Y3, ... , Xn, Yn>) 

bline(xl>yl>x2 , Y2<, X3, Y3, . . . , Xn, Yn>) 
position (x, y) 
pattern (x1, <"character string" I character expression>) 

PASCAL graphic control functions 

point (x, Y) 

posh 

posv 

BASIC graphic control statements 

GRAPH <Ia, Ob, C, F> 

SET x, y 
RESET x, y 

LINE XI> Y1, X2, Y2<, X3, Y3 ... , Xn, Yn> 

BLINE X1, Y1, X2, Y2 <, X3, Y3 . . . , Xn, Yn> 
POSITION x, y 

PATTERN x1, X1$<, x2, x2$ ... Xn, Xn$> 

BASIC graphic control functions 

POINT (x, y) 

POSH 
POSY 

Lets use the gset statement to draw a circle on the screen with a radius of 80 whose center is at (160, 100). We can 

do this by rotating a radius vector of 80 through 360° (1 o at a time) to set dots. The coordinates of the radius vector 

can be computed using the SIN and COS functions with respect to the angle. Note that the parameters and the results 

of the SIN and COS functions are of the real type, whereas the operands of thegset statement must be of the integer 

type. Consequently, it is necessary to convert data types when passing arguments between graphic control statements. 

A programming example and the results of its execution are shown below. 

0. var X, Y, TH: integer; DK: real; 
1 . begin 
2 . graph (I , 1 , C , 0 , 1) ; 
3 . for TH : =0 to 360 do 
4. begin 
5 . DK: = floaf(TH) * 3.1415927/ 180.0 ; 
6 . X: = frunc (cos (DK) * 80 .0) +160; 
7. Y : =trunc (sin (DK) * 80 .0) +100; 
8 . gset (X , Y) 
9 . end 

10 . end. 



Let's draw a diamond on the screen using the line statement. Note that the coordinate data specified in the 

operand field of the line (or bline) statement must also be of the integer type. 

0 . var A : integer; 
1 . begin 
2 . g rap h ( I , 1 , C , 0 , 1) 
3 . for A : = 0 to 150 do 
4 . line (160 , 0 , trun c (co s (flo at ( A) 

5 . end . 

* 3 . 1415927 / 150 . 0) +160, 
100 '160 '200) ; 

You can use the position and pattern statements of PASCAL in the same manner as in BASIC. Note that pattern 

data specified in the operand field of the pattern statement must be a character string enclosed in double quotation 

marks or character type data. 

r-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·--·-·-·-··-·-.. -··-·-··-·- ·-·--·-·- ·-·-·- ·--·-·-·-·-.. ---~ 
1 position statement ! 
! I 1 Expression 1 Expr ess ion 2 1 
i i 
! I 
i ( in t eger ) Unt ege r ) I 
i i 
i i i ___ .. ___ .. _ .. ____ , ___ ,_ .. ___ .. _ .. ____ .. ___ ,_ .. ___ ,_,_,_ .. _,_,_,_, _________________________________ _j 

~--·--·--.. -·-·-·-.. -.. _ .. _ .. _ .. _______ , ____ , ____ .. _____ ,_ .. _ .. _____________ ,_ .. __ , ___ , ___________________ ! 
t pattern statement cha racter s t r ing t 
t t j Express ion 1 j 

j Expression 2 j 
t t 
t t 
t ( cha r ) j 

' t t L _ ____ .. _ .. _ .. ___ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. ___ .. _,_ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _ .. _, ___ .. _ .. _ .. _____ .. ___ .. _________ .. ____________ j 

77 



78 

Character display control statements 
The range statement ftxes the scrolling area of the character display screen , changes the character display mode be­

tween 80 characters/line and 40 characters/line, or character and graphic display mode between reverse mode and 

normal mode. 

~--~=ge st::::~-------·-·--·---·-·- -----l 

1 
I 
! 

U11teger:80 or 40) 

R t---------------'1 

N l-------------1 

( i11 tegerl ( in teger) 

I 
I 
l 

L._. I 
------------·--·---·---·-1 

• 

The operand of the range statement determines which of three functions shown below are activated. 

Fixing the scrolling area 

range { ... S, Is, le . . . ) The top line refers to line 0 of the display and the bottom line to line 

24.ls and le fJ.x the scrolling area. 

Hence , 0 ~ Is < le ~ 24 

This area , however, must cover at least three lines. 

• Changing the character display mode 

range ( .. . C, 80 . . . ) ....... . .. This sets the character display mode to "80 characters/line". 

range ( ... C, 40 . .. ) ..... . .... This sets the character display mode to "40 characters/line". 

• Changing the character and graphic display mode 

range ( . . . R .. . ) . . . . . .. .. . . . This sets the character and graphic display mode to reverse mode . 

range ( . . . N ... ) .. .... .. .. .. This sets the character and graphic display mode to normal mode. 



Function key control and printer control statements 
The [key statement corresponds to the DEF FKEY statement in the BASIC language and can be used to defme any 

of twenty functions of the ten definable function keys. 

r· fkey stat~·-m_e_n_t ________ _ 

t -------

( char ) I 
L-----·---·--·----·-·-·-----·---·---·------------l 

A number from 1 through 20 is assign to function number, provided that a number from 11 through 20 can be used 

to defme functions in I SHIFT[ state. 

The image statement causes the printer to draw a desired dot pattern according to the operating mode (image 

mode 1 or 2), and the copy statement causes to copy an entire frame of data displayed on the computer screen. These 

are corresponding to the BASIC statements IMAGE/P and COPY /P respectively. 

~~e statemen;-

j -·-
1 

L ______ ~ ___________ _j 
~---:;py sta._t_e_m_e_n_t-------------------· 

I.____. . -· ~. ·-·-. -· .... ·----------------------·~ 
Example: image ("1r UU 1r") ......... Draws the dot pattern"~ ".on the line printer. 

image ("1r", "UU", "1r) Draws the three dot patterns " I ", "~" and " I " extending over three 

lines on the line printer. 

copy (1) . . . . . . . . . . . . . . . Causes the printer to copy the character display. 

79 



80 

CALL statement 
This statement calls a subroutine coded in machine language; it corresponds to the USR statement of BASIC. 

call ( < expression >) <variable identifier 1 >, <variable identifier 2 > ; 

This statement stores the value of variable 1 in the HL re­

gister and the value of variable 2 in the DE register, then jumps to 

the address indicated by the expression. A return is made by the 

RET instruction. 'The expression and variables must be integer 

type in decimal notation. The variables may be declared as file. 

When 32000 is assigned to variable X, 752 to variable Y, 

4608 to variable Band 100 to variable C, executing 

call (X+Y) B, C; 

causes 4608 ($1200 in hexadecimal) to be stored in the H L re­

gister and 100 to be stored in the DE register and program con­

trol to be transferred to address 32752 ($7FF0) (i.e. X+ Y). 

The user must be familiar with the machine language to use 

this statement. Careless use of this statement may result in destruction ot tne program. 

I've just prepared for 

When program control is returned to the PASCAL program from the subroutine, the HL and DE register contents 

at return are assigned to variables 1 and 2, respectively . Therefore, if the values of variables 1 and 2 at the time the sub­

routine is called are necessary, save them with PUSH instructions at the beginning of the sul:noutine and restore them 

with POP instructions at the end of the subroutine as shown below. 

The stack pointer contents must be the same before and after execution of the subroutine. Thus, the general struc­

ture of a subroutine is as follows. 

LD (nn') , SP 

LD SP, rom' 

PUSH HL 

PUSH DE 

POP DE 

POP HL 

LD SP, (nn') 

RET 

nn' : A hexadecimal address, e.g . $FFF0 

rom' : Specified by the user 

User subroutine 



A negative decimal value must be specified in the statement when a hexadecimal data or address value is equal to 

or greater than $8000. The method for converting a hexadecimal value into the respective decimal is explained below. 

1. Converting hexadecimal values up to $7FFF to decimal 

$1000 

t 
$0100 

t 
$0010 

t 
$7FFF = 4096 x 7 + 256x 15 + 16 x 15 + 15 

~~ 1 

$4A0B=4096x4+256x10+ 16 x 0 +11 

$0250 = 4096x0 + 256 x 2 + 16 x 5 + 0 

32767 

18955 

592 

2. Converting hexadecimal values greater than $80f)l to decimal 

(1) Convert the hexadecimal value to binary. 

(2) Invert each bit. 

(3) Add 1 to the result. 

(4) Convert the resulting binary value to hexadecimal, then convert it to decimal with a- sign affixed. 

(5) $8000 is to be handled as -32767-1. This is a special case. 

(6) Care must be taken with operations X after X: =-32767 -1 has been executed. 

Example : 

Converting $8F56 into decimal. 

Thebinaryexpressionof$8F56is ..... . . ..... 1000 1111 0101 011(.3 ........... $8F56 

( 
Invert each bit .......... . ....... .... ... 0111 0000 1010 1001 . .. .. ... ... $70A9 

( 
Add 1 ............................... 0111 0000 1010 1010 .. ... ...... $70AA 

' The decimal expression of $70AA is . . . . . . . . . . . 4096 x 7 + 25 6 x 0 + 16 x 10 + 10 = 28842 

Affix the -sign ...... .... .... .......... (-28842 

To call a subroutine starting at address $8F56, execute call ( -28842). 

A program which performs the above conversion is shown in the appendix. 

$FFFF is -1 in decimal notation. 

$8001 is -32767 in decimal notation. 

$8000 is -32767 - 1 in decimal notation. 

call statement 

{ iu le,:er) ( int('J,:l'r) 

Address HL register DE register j 

----------·--·--------·----·----J 

81 



82 

COUT statement 
This statement displays a character at the current cursor position according to the ASCII code table. 

cout (<expression > ) ; This statement displays char data indicated by the expression at the current cursor 

position. The cursor position is not changed by execution of this statement. 

PATT := cin ; . ... . . . . . Assigns the character in the cursor position to the variablePATT. 

cout (P ATT) ; . . . . . . . . . The character assigned to PA TT by cin is displayed at the cursor position. 

cout (CHR (X)) displays #when X is 35 because ASCII code 35 corresponds to character#. 

Expressions specified in cout statements may be declared as file. 

A : =X+ Y is not an expression, but is a statement . 

X+ Y, A> B and sqrt (X) are expressions. 

5 and 'A' are expressions. 

It is a good practice to check the syntax diagrams when in doubt. 

Variable X, character 'A' and 
integer 5 are all expressions. 

~---c-o_u_t-st_a_t_e_m_e_n._t ___________ ._ -----~ 

t 
t 
t 

I 
L.,. --·-· --

I char I I 
-------·--·------·-·-·----·--J 



POKE statement 
The poke statement writes specified data in memory. lt corresponds to the POKE statement of BASIC. 

poke (<expression 1>, <expression 2 >); 

T~is statement stores the code data given by expression 1 in the address indicated by expression 2. Expression 1 
must be of type char and expression 2 of type integer. Both may be declared as file. 

poke (chr (X), Y) ; 

Assume that 65 is assigned to X and 32752 toY. This statement then stores 65 ($41) in address 32752 ($7FF0). 

X is an integer variable, but chr (X) is char. This statement is equivalent to poke ('A', Y) in this case, since the ASCII 

code for the character A is 65. 

The integer given by expression 1 must be within the range 0-255 because one exceeding 255 cannot be stored in 

one byte. The value of expression 2 must be negative when an address higher than $8000 is specified. 

Data may not be written in the PASCAL interpreter area. 

·-·-·-·---·-·-·-·-·-·-·-·--------·-·--·---·--------·-·-·-··-·--·-----. 
I poke statement I 

Expression l Expression 2 I 
1

1 

( char) 1 1111<'/H'rl ~~ 
Address 

t-·-·-·---·--·-·-·-·---·------·-·-·--·--·-·--------·-·-·-·--·-·-·-·--·--J 

83 



84 

OUTPUT statement 
The output statement outputs data to the specified port. With this statement, peripheral devices can be control­

led with a PASCAL program. 

output (<expression 1 >, < expression 2 >) ; 

This statement outputs data given by expression 1 to the port address indicated by expression 2. When this state­

ment is executed, the data given by expression 1 is loaded into the A register (accumulator) and the address given by 

expression 2 is loaded into the BC register, then the following machine language instruction is executed. 

OUT (C), A . . .. . . . .. $ED79 

Expression 1 must be a char expression and expression 2 an integer expression. Both may be declared as file. The 

data code is in accordance with the ASCII code table. 
Care must be taken with the value of expression 2 since port addressing is performed using the C register contents. 

For example, the following two statements specify the same port. 

output (chr (X), 255); 

output (chr (X), 4351) ; 

255 is $00FF in hexadecimal. 

4351 is $10FF in hexadecimal. 

As shown above, the lower byte of the hexadecimal data is used to specify the port address. Therefore, no problem 

occurs when the value given by expression 2 is within the range 0-255 . 

I. 

To input data from a port , the input function is used. 

Go through port 2. 

-=--
---==-

output statement 

-----------------------------------·-----, 

( i11teger ) 

Port address 

-------·-·-·-.-----·--·--·-·------·----·-·-·---·--·--



EMPTY statement 
An empty statement is one in which nothing is written. 

See the following statement. 

if A=O then 

else B : = true ; 

There is no statement after then , but an empty statement is executed. 

if A=0 then B :=false 

else; 

The above includes an empty statement after else. Thus, an empty statement can replace any statement in the 

syntax diagrams. 

if then X : = 1 ; 

This statement results in an error because an expression, not statement, must be placed between if and then. 

The following statements are correct , although they are not generally used. 

1. begin 

end. 

2. begin A : =X+ Y; end; Normally, this is written as begin A:= X+ Y end;. 

3. A: =X;;;; 

Use of this type of statement is not recommended since they waste memory and make execution speed longer. 

85 



86 

Statements and functions 
A statement is a unit of program execution. A function is not a statement, but is included in a statement. 

Take note of and learn the following statements and functions in particular. 

Statement Function 

output input 

poke peek 

cout cin 

key 

Any function can be a part of an expression but no statement can. 

write ("DATA=", cout (X)); This statement is incorrect because a cout statement is used instead of an expression. 

write ("DATA="); cout (X); Correct. 

write (peek (X+Y)); Correct. 

Exercise: 

Find all errors in the following program and describe the reasons. 

( 1 ) while ord (key) = 0 do key; 
( 2) if X <> 0 then peek (25302) 
( 3) 0 . var A , B : real ; 

1 . function SUM (X, Y; real) : real ; 
2. begin 
3 . SUM : =X+Y 
4 . end; 
5. begin 
6 . readln (A , B ) : 
7. SUM (A , B); 
8. write (SUM (A,B)) 
9.end. 

(Solution is given on page 90.) 



Exercise 
The following sample program gives the solution of a quadratic equation. This program executes only once. Re­

write it so that it can loop any number of times and execution can be ended at any time. 

0 · l QUADRATIC EQUATION f 
1 · var A , B , C , D : real ; 
2 · function JUDGE ( E , F , G : real) : boolean ; 
3 . begin 
4 · D : = F*F-4 . 0*E*G ; l D = B*B-4*A*C 
5 · if D > =0 . 0 then JUDGE : =true 
6 · else JUDGE : = false 
7 · end; 
8 · procedure ROOT (K : boolean) ; 
9 · var SROOT, ROOTl, ROOT2, ROOT3 , ROOT4 : real; 

10 · begin 
11 · case K of 
12. true: begin 

SROOT : = sqrt (D) ; 13. 
14. 
15. 
16. 
17 . 
18. 
19. 
20. 
21. 
22 

ROOT1 : = ( - B+SROOT) / (2.0*A); 
ROOT2 : = (-B- SROOT) / (2 . 0*A) ; 
writeln ( 11 THE ROOT OF 1 IS 11 

, ROOT1) 
writeln ( 11 THE ROOT OF 2 IS 11 

, ROOT2) 
end ; 

false :begin 
ROOT3: = - B / (2 . 0*A) ; 
ROOT4: = sqrt (-D) / (2 . 0*A) 
writeln ( 11 THE ROOT OF 1 IS 11 ,ROOT3: 12 , 11 + 11

, 

ROOT4 : 12' II I II ) 

23 writeln ( 11 THE ROOT OF 2 IS 11 
, ROOT3 12, 11 

ROOT4 12 ' II I II ) 

24 · end 
25 · end 
26 · end· 
27 · begin ' 
28 . writeln ( 11 ~ .!]. .!]. ~~ ~ AX if 2 .!]. + BX + C 0 II) 

29 . write ( 11 .!]. ..!]. A IS 11 
) 

30 . readln (A) 
31 . write ( 11 .!]. B I S 11 

) 

32 . readln (B) 
3 3 . write ( 11 .!]. C I S 11 

) 

34 . readln (C) 
35 . write ( 11 .!]. .!]. 11 

) 

36 · ROOT (JUDGE (A , B , C) ) 
37. end . 

Line 36 designates function JUDGE with the values of A, B and C read at lines 30, 32 and 34 be parameters, then 
I 

calls procedure ROOT with the resultant data of function JUDGE be a parameter. 

87 



88 

MUSIC statement and TEMPO statement 
These statements enable the computer to play music. The tempo statement specifies the tempo and the music 

statement specifies notes to be played and plays it. 

tempo statement tempo ( < expression >) ; 

The expression is of the integer type and its result must be in the range from 1 through 7. 

tempo (1); The slowest tempo (Lento, Adagio) 

tempo (4); Medium tempo (Moderato): 4 times faster than tempo (I) 

tempo (7); The fastest tempo (Molto Allegro, Presto): 7 times faster than tempo (1) 

The music statement is executed as moderato (tempo (4)) when no tempo statement is specified initially. 

music statement music ( < "character string" > j < char type expression >) ; 

The music statement plays music according to the specified character string or char type expression at a tempo 

specified by the tempo statement. 

The following indicates how the melody or sound effect converted into string data. 

Musical notes are assigned according to pitch (octave and scale) and duration. 

Octave assignment: - + 

The sound range covers three octaves as shown at 

right. The black points indicate C notes, and the three C 

notes are separated by octave assignments as follows; 

Low C ....... - C 

Middle C ...... C 

HighC ....... +C 

Note specification: C, D, E, F, G, A, B, #and R 

C, D, E, F, G, A, B and # are used for note spec­

ification. 

The relationship between the- notes and these char­

acters is shown at right. The # symbol is used for semi­

tone assignment. 

Rests (no sound) are assigned with R. 

I High range I 

+ 

la ti 

Rest 
,, I I 

A B 

,#F #G #A R 



Duration specification: 

This specification determines the duration of a note whose pitch has already been assigned. Note durations from 

thirty-second to whole are specified with numbers from 0 to 9. The duration of rests (R) is also specified in this 

manner. 

When notes of identical duration are repeated, duration specifications for the second and following notes may be 

omitted. If no duration specification is made, program execution is carried out with quarter notes (duration 5) initially. 

Volume control 

The sound output volume cannot be controlled by means of the program, but it can be controlled by the volume 

control provided on the rear of the cabinet. 

Example: 

The beginning of "Girl" by the Beatles is played by the following program. 

0 · var A : integer; 
l · begin 
2 · tempo ( 5 ) ; 
3. A: =l: 
4 · while A< > 0 do 
5 . begin 

cr =II 

6 · music ( 11 +C3+D+ #D4+ # Dl + #D4+ #Dl +F4+ # Dl +D4+Cl +C5G+C#A") 
7 · music ( 11 :j:j:G4+ClB4+Cl+D4+ClB4#GlG7R5 11

) 

8 · end 
9 · end. 

This program repeats play. Line 7 can be rewritten using char expressions as follows. 

7. music('#', 'G', '4', '+ ', 'C', ............ . 

Variables may be used in the above statement, and charac­

ter strings and char type expressions can be mixed. 

89 



90 

COMMENT statement 
The comment statement is a non-executable statement which makes it easy to review the program list . It corre­

sponds to the REM statement of BASIC. 

j character string f 

Any number of comment may be used in any part of a program. However, frequent use of comment statements 

makes the running speed slower and requires a greater amount of memory. A comment statement can not be specified 

within another statement. 

eJ. PUZZLE 

l . l98l. 7 .l5 

2 · var A , B , XMAX : integer ; 

3 · DATA : char : 

4 . procedure UP (N : integer) CHARACTER UP 
5. begin 

r------------------------------------------------------------------------------------
Comment statement 

• CD}-------.-l---t•L.-1 _Com-ment_J-J~~CD}---• 
~ 

This concludes our explanation of the rules of the 

PASCAL. The many new statements and unique program­

ming procedure will require some practice to gain familiarity 

with this new language. 

Code and execute many programs, and you will become 

skillful in PASCAL programming. 

Solution of exercise on page 86: 

(1) A statement should follow do, but the function key does. 

------------------,.----- ·---· 

(2) A statement should follow then, but the function peek (25302) does. 

(3) A statement should be placed on line 7, but the function SUM (A, B) is. 



Chapter 6 

Programming 

91 



92 

Programming 
Now that you are familiar with the rules of PASCAL, you are ready to try writing programs. The question lies in 

what approach to take. With BASIC, you can start keying in a program as soon as you have conceived it; this is possible 

because detailed sections can be developed as subroutines and linked to the main program with GOSUB as the need 

arises. This is not the case with PASCAL. 

The fact that PASCAL does not include an equivalent of the GOTO statement means that the structural sequence 

of a PASCAL program must be well defined in advance. A natural result is that PASCAL programs are very clear and 

have a structure which is self apparent. Thus, learning to write programs with PASCAL requires developing a method of 

approach which will cause you to change your idea of programming in other languages as well. This is the main reason 

PASCAL is referred to as an educational programming language. 

As was explained in chapter 1 of this manual, PASCAL programs are made by means of structured programming. 

1. Make an outline of the process to be used in solving the problem and divide it into independent subprocesses. This 

is equivalent to writing subroutines. Parts which cannot be separated as subprocesses are left for inclusion in the 

main routine. 

2. Each subprocess constitutes a procedure or function. Name (identify) the procedures and functions in any order. 

3. Code PASCAL entries for one of the procedures or functions. It may be useful to break the subprocess into smaller 

components for convenience in coding. Declare variables which are used only within one coded block as local varia­

bles. 

4. When the first block has been completed, go on the next one. You may consider incorporating previously coded 

blocks into a single one at this time. 

5. Assign an identifier to each global variable used in coded blocks; make a list of all identifiers for global variables. 

6. When all blocks have been completed, combine them into one body. 

Building a house Set up the framework Measure Bring in material 

+ + 

MAlN PROCEDURE FUNCT101v' PROOEPURE 



7. Insert a comment statement at the beginning of the program to identify it. 

8. Next , declare global variables which are included in the list. 

9. Now write declarations for procedures and functions which have been coded. The order in which these are arranged 

can be independent of the order of execution. Arrange them so that the overall program structure is readily ap­
parent. 

10. Executable statements come last. The order of these statements is extremely important since they determine the 

sequence of execution of the program. Arrange executable statements following the declaration section, starting 

them with begin and ending with end. Processes which cannot be broken down during step 1 are coded in this 

section. 

11 . Enter the program and run it to check for errors. If any error messages are output, correct the program according 

to the messages. Care must be taken when corrections are made because they may have an influence on other parts 

of the program. 

Indentation 

It is recommended that statements be indented as described on page 59. This not only makes the program easy to 

read but also helps prevent errors when the program is entered . Indentation does not require additional memory space. 

The number of spaces preceding each statement is not limited, but generally two spaces are used for each statement 

level. 

Thus, end is indented the same number of spaces as begin, and until the same number of spaces as repeat. else can 

be indented the same number of spaces as if or two spaces more than if, 

begin 

( 
rep;:~d (A) ; 

if A < > 0 then write (X) 

'\...else write ( Y) 

until A=l00 

end 

93 



94 

Link with color control system 
Load the SB-3000 series cartridge in the cassette deck and turn on the power (start IPL). Then, load PASCAL inter­

preter SB-4515 series into memory. 

Three statements and one function are provided for controlling the color control system. These are briefly outlined 
below; for details, refer to the Color Control Manual. 

1. TRAN 

This statement transfers a graphic command to the color display terminal. 

----------·------------------ ·-l 
~--------------------------------

Character s tring J 
--·------·-· 

Example 1 : 

The following program displays the character string "SHARP" in red on a green background formed of 256 x 192 
dots. 

0. begin 

1. tran ("M, 0", "B, 2", "C, 1 ") ; 

2. tran ("SF, 127,95, 0, SHARP") 

3. end. 

Lines 2 and 3 can be placed on one line. For the format of the character string in quotation marks, refer to the 

Color Control Manual. 

Line 1 can be rewritten to include expressions which result in char data as follows. 

tran ('M', ', ', '0', chr (13), 'B', ', ', '2', chr (13), 'C', ', ', '1', chr (13)); 



Example 2: 

The following program allows the color of the background and the characters to be specified from the keyboard. 

0. I COLOR CONTROL f 
1. var BACKGND, CHARCOL , CR: char; 
2. procedure COLCONT (X, A: char) ; 
3. begin 
4. fran ('B' ,' ,' , X, CR) ; 
5. fran ('C' ,',',A , CR) ; 
6 . fran ( " SF , 50 , 95 , 0 , SHARP " ) 
7. end; 
8. begin 
9 · CR : = chr (13) ; 

10. write (" © .!J. .!J. ,!].={> ={>* SPECIFY BACKGROUND COLOR[Ql--7] ") 
11. readln (BACKGND) ; 
12 · while (BACKGND <' 0 ' ) or (BACKGND >' 7') do readln (BACKGND) 
13 · write (" ={>={> SPECIFY CHARACTER COLOR [0--7] "); ] 
14. readln (CHARCOL) ; 
15. while (CHARCOL < '0') or (CHARCOL > '7') do readln (CHA OL) 
16 . fran ( " M , 1 " ) ; 
17 · COLCONT (BACKGND , CHARCOL) 
18-end. 

Look at lines 4 and 5. These statements use expressions which result in char data and are concluded with carriage 

returns. Statements including such expressions must always be concluded with carriage returns . 

2. REQTR 

This-function obtains 1 byte of data from the terminal. 

No parameters are used and the result is char type data. 

Example: 

X: =reqtr 

3. SYRET 

This function obtains 1 byte of data from the terminal and assigns it to char variable X. To convert the 
data to integer data, use Y : = ord (reqtr). 

This statement resets the color control display terminal and makes a cold system start. 

4. SYRET2 

This statement resets the color display terminal and causes the system to wait for entry of a monitor command 

(DU ·A). 

There is no statement corresponding to OTBIN in BASIC which transfers 1 byte of hexadecimal data to color dis­

play terminal, since this can be done using tran. 

For example, 

tran (chr (62), chr (13)) 

transfers hexadecimal data $3E to the terminal device, where 62 is the decimal value of $3E and 13 that of the carriage 

return. This statement can be rewritten as follows. 

tran ('>', chr (13)) 

where >indicates ASCII code 62. 

95 



96 

NS chart 
Flowcharts are not used to represent the structure of PASCAL programs because they are not suitable for repre­

senting the structure of such programs. Instead, NS (Nassi Shneider) charts are used to portray the structure of 

PASCAL programs. NS charts are convenient for checking the flow of very complex programs. It is strongly recom­

mended that you become familiar with use of these charts. 

1. Compound Statement 

Consider the compound statement sh b 1 own e ow. 

begin 

read in (TEMPO) ; 

TEMPF ; · · · · · · · · · · · · Calls p 

writeln (TEMP F) 

end. 

-rocedure TEMPF. 
__,. 

"? 

Reads the centigrade temperature. 

Calculates the equivalent Fahrenheit~ 
temperature. 

Displays the result. 

Draw a rectangle and divide it into sections corresponding to the program steps shown above. Write the first pro­

gram step executed in the top section, the second program step executed in the second section and so on. 

In the above example, the double lines at the ends of the center section indicate that a procedure or function is 
called. This is equivalent to representation of a subroutine in a flowchart. 

2. IF Statement 

Two types ofNS charts are used for if statements since this statement is used in two forms. 

Type 1 

X==10 

Y==100 
j 

if A<> 0 then 

begin 

X; =l0; 

y: =l00 

end; 

The conditional expression is written in the inverted triangle. Statements to be executed when the condition is 

satisfied are written on the left side and the arrow on the right side indicates that the statements are to be bypassed 

when the condition is not satisfied. 
Only one statement may be written in each section. 



if A < 0 then write ( "END ") 
else begin 

write 

( " E ND" ) 

X·-· -
sqrt CA) 

writeln (X) 

X : = sqrt (A) 
writeln (X) 

end ; 

An if statement including else is represented as shown above. Statements executed when the condition is satisfied 

are written on the left and statements following else are written on the right. 
Let's try representing the exercise shown on page 59 using an NS chart . 

Answer to the exercise 

0 var A, X : integer ; 
l begin 
2 read ( A) ; 
3 if A < l0 then X: =l 
4 else if A < le>0 then X : =2 
5 else if A < l000 then X : =3 
6 else X : =4; 
7 write (X : 8) 
8 end. 

read CA) 

if A<1 0 
( 3 ) 

then else 
(4) 

if 
® ( 4 ) 

then else 

X ==1 

X== 2 
® 

@ 
write ex: 8) 

if 
( 5 ) 

then 

X == 3 

( 5 ) 

A< 1 000 

else 
(6) 

X ==4 

When the value assigned to A is 9 or less, the 

execution sequence is 

CD~®~®~@ 

When the value assigned to A is 10~99, the 

execution sequence is 

When the value assigned to A is 10~999 , 

the execution sequence is 

When the value assigned to A is greater than 

1000, the execution sequence is 

CD~®-®-+®-->©--+@ 

Note: The numbers in parentheses are line num­

bers from the program. 

97 



98 

3. CASE Statement 

l1J 
X :=A+B 

case ~ 
I X :=A-8 

of 

~ 
X :=A*B 

4. WHILE Statement 

while N<1 01 

N: =N+1 

do 

S :=S +1 

5. REPEAT Statement 

Y: = sqrt CX) 

write in CY) 

x :=X+1 - 0 

until X=1 0 -0 

6. FOR Statement 

for N:= 3 2 to 255 

do CH: = chr CN) 

writeln C II CHARCTER 

CODE II .CH :4) 

case I of l : X : = A+ B ; 

2: X : =A-B; 

3 : X : =A*B 

end; 

The conditional expression is written on the left and the case labels 

and their corresponding statements are written on the right. In the above 

example, X:=A-B is executed when I is 2. 

while N<l0l do 

begin 

N: =N+l; 

S:=S+l 

end ; 

Since a while statement begins with a conditional determination, 

the conditional expression is written at the top. Statements repeated 

while the condition is satisfied are written on the right. When the condi­

tion is no longer satisfied, program execution proceeds through the left 

side. 

repeat 

y : =sqrt (X) 

writeln (Y) ; 

X : =X+l.0 

until X=l0 : 0; 

The form of this NS chart is the inverse of that for the while state­
ment. 

for N: =32 to 255 do 

begin 

CH: =chr (N) ; 

writeln ( 11 CHARACTER CODE 11
, CH : 4) 

end; 

The loop condition is written at the top and statements after do are 
written on the right. 

These NS charts allow the structure of a PASCAL program to be represented in a clear manner. 



One NS chart is used for each procedure and function. Let's make NS charts for the following program. This pro­

gram reads the value of X andY from the keyboard, raises X to the Yth power and displays the result. 

0. var X : real; Y : integer; 

l . function POWER (M : real; N : integer) : real; 

2 . var K : real ; 

3. begin 

4. if N=0 then POWER: = l.0 

5. else if N=l then POWER: =M 

6 . else begin 

7. 

8. 

9. 

l0. 

ll. 

l2. end; 

l3. begin 

l4. readln (X, Y) ; 

K:=M; 

while N< > l do 

begin K: =K*M; N: = N-l end; 

POWER: =K 

end 

l5. while (X<0.0) or (Y<0) do readln (X,Y) 

l6. writeln (POWER (X, Y) ) 

l7.end. 

function POWER 
Parameter M : real 

POWER 
: =1 ° 0 

POWER 

==M 

N : integer 

K==M 

while N<>1 

do 

POWER : =K 

The if statement in the function declaration in­

cludes another if statement, which includes a while 

statement. Thus, the NS chart of the function de­

claration is as shown at left. 

The NS chart of the main program is shown 

below. 

readle C X , Y) 

while CX<0. 0) or CY<0) 

do I read in ex. Y) 

write in 
(POWER ex. Y)) 

99 



100 

Recursion can also be represented using NS charts. The following sample program gives the sum of integers 1 

through N. 

function SUM ( N : integer) : integer; 

begin 

if N=l then SUM: =l 

else SUM : = SUM ( N- l) + N 

end; 

function WA 
parameter N, result W A 

~ 
if N 1 ----~ if N 1 

~ 

else 
recursive call 

recursive call 
else 

if N 1 else ------- recursive call 

·~ if~ else 
SUM:=1 recursive call 

SUM:=1 

~~ese SUM:=1 recursive call 
SUM:=1 

SUM:=1 recursive call 

S U M : = S U M + N · · ·@ 

S U M : = S U M + N . ............ · ·@ 

S U M : = S U M + N .............. ·@ 

S U M : = S U M + N ...... . ....... ·G) 

Take note of the method used to specify N in SUM: =SUM+N. The value of N is saved in local variable N every 

time a recursive call is executed, and it is restored upon return. That is, local variable N is declared every time a recur­

sive call is executed. 
Assume that function SUM is designated when N is 5. The program executes N:-=5, then performs a recursive call; 

N: =4 is executed and a recursive call is performed again during execution of the first recursive call;N: =3 is executed 

and a recursive call is performed during execution of the second recursive call; and so on. 

Thus, N is 5 at CD, 4 at ~, 3 at Q) and 2 at ®,and the result is 15. 



Chapter 7 

Summary 

101 



SYNTAX DIAGRAM 

IDENTIFIER 

A- Z 

UNSIGNED INTEGER 

0 - 9 

--~~~r=:~c-~"~·-)_~~~]-----~ 

UNSIGNED REAL 

Unsigned integer Unsigned int eger 

102 



UNSIGNED CONSTANT 

Unsigned real 

Unsigned integer 

character 

1 character 

CONSTANT 

Unsigned real 

Unsigned integer 

character 

1 character 

SIMPLE TYPE 

integer 

real 

boolean 

char 

TYPE 

Simple type 

array Unsigned integer 

' 

file of 

103 



VARIABLE 

Variable identifier 

Expression 

' 

FACTOR 

Unsigned constant 

Variable 

Function identifier 

' 

Expression 

Factor 

TERM 

* / 

104 



SIMPLE EXPRESSION 

EXPRESSION 

Simple expression 

Simple expression 

PARAMETER LIST 

Simple type 

' 

' 

105 



STATEMENT 

106 

integer 
char 

boolean 

continued 

Expression 2 

' 



4 read statements. 

continued 

integer 
real 

continued 

Expression 3 can be specified only when expression 

' 

107 



output 

108 

Expression 

(integer: 80 or 40) 

(integer) 
Address 

(char) 

Expression 

(integer) 

Character string 

(integer: 1-4) 

Expression 

(char) 

' 

Expression 

(in teger: 1- 4) 

Character string 

Expression 

(char) 

Comment 

(char) 

Variable identifier 1 

(integer) 

HL register 

Expression 2 

(integer) 

Address 

( intege r) 

Port address 

Empty statement 

) 

( integer) 
DE register 



BLOCK 

Procedure declaration 

procedure 

function 

Parameter list 

Variable declaration 

Parameter list 

Composite statement 

'-----b-e-gJ-·n----~~------~L-------~~~--~'--------'~------------------~·~ 

109 



110 

Summary of syntax 
1 . Variable declaration 

Variable declaration 

There are two types of variables: global variables and local variables. The former is declared in the variable declara­

tion at the beginning of a program and the latter is declared in a procedure or function declaration . Global variables are 

significant throughout the program and local variables are significant only within the procedures and functions in which 

they are declared . 

Example 1 : 

var A, B, SHARP : integer ; ................................... integer variable declaration 

C, D, DATA :real ; ............ ..... ....... .... .. . .. ..... real variable declaration 

E, JUDGMENT : boolean ; .............................. ... boolean variable declaration 

CH, MESSAGE : char ; ................................... char variable declaration 

Example 2: File declaration 

var X, Y : file of real ; ............. . ........................ file declaration 

Note: integer variables range from 0 to ±32767 in decimal notation; only one character can be assigned to a char 
variable; boolean variables take only the values true and false; and real variables range from ±0.27105055E-

19 to ±0.92233720E+19. 

No variables declared as file can be used as parameters. 

2 . Array declaration 

Array declaration 

Arrays are declared in the variable declaration section. The size of arrays differs according to data type. The num­

ber of dimensions of an array is not limited. Arrays can be declared in a local variable declaration section. 



Example 1 : 

var A :array [10] of integer; ................................ One-dimensional array declaration 

DATA: array [100, 10] of real; ........•................... Two-dimensional array declaration 

SHARP : array [ 10, 5, 5] of real ; . . . . . . . . . . . . . . . . . . . . . . . . . . . Three-dimensional array declaration 

MZ: array [10, 5, 5, ...... , n] of char; .... . ................... N-dimensional array declaration 

Example 2: file declaration 

var X : file of array [50] of real; 

Y: file of array [100, 5] of char; 

Example 3 : Simultaneous declaration of arrays and variables 

0. var DATA: array [100, 10] of real; .. ..... . .... .... .................. Array declaration 

1. A : file of array [ 1001 of integer ; ................................. Array declaration 

2. B : boolean ; . .............................................. Variable declaration 

3. CH, PRINT :char; ........................................... Variable declaration 

Note: The indexes of arrays must be positive integers. 

3 . Procedure declaration 

Procedure declaration 

procedure Parameter list 

Variable declaration statement Compound statement 

Procedures must be declared in the procedure declaration section. Local variables are declared in each procedure 

declaration . Their name may be the same as those used for global variables. 

Example 1 : when no parameters are used. 

procedure DATAOUT; ............................. Declares DATAOUT as a procedure identifier. 

var N : integer ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Declares local variable N. 
begin 

for N : = 0 to 9 do write (DATA [N]) ................... Displays array data. 

end; 

Example 2: when parameters are used. 

procedure MULTI 

(X, Y : real); 

begin 

Z: =X* Y 
end; 

No file identifiers can be specified 

as parameters. 

Parameter list 

' 

111 



112 

4 . Function declaration 

Function declaration 

function 

Identifier Parameter list Simple type Variable declaration statement 

Functions must be declared in the function declaration section. 

Example: function AREA (A, H: rea(): real ; 

begin 
AREA:= (A* H)/ 2.0 

end; 

Local variables are declared in each function declaration. 

5 . Assignment statement 

Assignment statement 

Function identifier 

The assignment statement assigns the result of the right member to the variable or function. 

Example: A: =5 ........ .. .... "A" must be an integer variable. 

B: =5.0 ............ . "B" must be a real variable. 

Z : =(X>Y) ......... . "Z" must be a boolean variable. 

C : ='A' . . . . . . . . . . . . . "C" must be a char variable. 

Note: 1. STRI : ="ABC" Incorrect because a character string cannot be assigned to a char variable. 

' 

2. STR2 : = 'ABC' Incorrect because only one character can be placed between single quotation marks. 

6 . Compound statement 

Compound statement 

--c.._ __ b_eg_i_n _ _...)l--.,.....-----<•~1 Statement 1-----.,--------<•~C end )1------•.,._ 

(--------IQt------------· J 



A compound statement consists of many statements. It start.s with begin and ends with end. 

Example : begin M : =2*M; SUM : =SUM+M end; 

Although only one statement is allowed after do. then and else, a number of statements can be combined and 

written as one compound statement. 

7. IF statement 

if statement 

Example 1 : if A>B then A : =A-1 ; 

If A> B gives true, A : =A-1 is executed , otherwise, execution continues with the next statement. 

Example 2: if A> B then A : =A - 1; 

else B : =B-1 

If A > B is true, A : = A - 1 is executed; if false, B : = B - 1 is executed. Only one statement can be specified after 

then or else. Use a compound statement if two or more statements are required. 

8 . CAS E statement 

case statement 

Executes the statement with the case label indicated by the expression. If the case label does not exist, the next 

statement is executed. The value of the label must be within the range -32767 ~ +32767 when the expression is of the 

integer type, one listed in the ASCII code table when it is of the char type and true or false when it is of the boolean 

type. 

Example : case of 1 : X: =A+ B ; 
Expres- 2: X : =A-B; 
sion 

end; 

113 



114 

9 . WHILE statement 

while statement 

---.oo{-( ___ w_h-ile __ .,)}------<-i: Express ion 11----<-.( do 
I l l-------<-.(l Stat ement 11------

The statement after do is repeated if the expression between while and do is true, otherwise, the next statement is 

executed. The expression gives false from the beginning, the loop is not performed. 
Only one statement can be specified after do; use a compound statement to execute two or more statements. 

Example: 

while X< >0 do 
read (X); 

1 0. REPEAT statement 

repeat statement 

f al sr 

•(.._ __ r_e_pe_a_t __ ...,)._-~.,.....~ ~ . c .... __ un_t_il _ _.H Express ion 1-1--~· ... 

The statement between repeat and until is executed first, then the 

result of the expression after until is checked. If the result is false the 

statement is repeated; otherwise, the next statement is executed. The 

statement is executed at least once even if the result of the expression 

is true from the start. 

Many statements can be specified between repeat and until; it is 

not necessary to use compound statements. 

repeat 

read (A); 
X: =X+A 

until A=0; fal se 



1 1 . F 0 R statement 

for statement 

Example 1 : 

for N : = 1 to 10 do write ("A") ; 

Assigns 1 to N as the starting value, repeats the statement following do with N incremented by 1 for each repeti­

tion until N becomes 10. 

In this case, H'l "A's" are displayed on the screen . 

Example 2: 

for N : = 15 downto 1 do write ("A") ; 

The starting value ofN is 15. The statement following do is repeated with N decremented by 1 for each repetition 

until N becomes 1. 

In this case, 15 "A's" are displaye-d on the screen. 

Only one statement can be specified after do. Use a compound statement to execute two or more statements. 

1 2 . Procedure statement 

Procedure statement 

Procedure identifier 

Calls a declared procedure. There are two types of procedure statement: one accompanies parameters and the other 

does not. 

Example: 

DATAIN .. .. ... . ..... Calls the procedure DATAIN. 

SELECT (M) .......... Calls the procedure SELECT with parameter M assigned to the formal parameter. 

CURSOR (X, Y) . . . ... . . Calls the procedure CURSOR with parameters X andY assigned to formal parameters. 

Note: The type of each actual parameter must be the same as that of the corresponding formal parameter. 

No file identifier can be specified as a parameter. 

115 



116 

1 3 . Function designation 

Function designation 

Function identifier 

Program control is returned to the statement which calls the function with the result assigned to the function 

identifier. Otherwise this function is similar to the procedure statement. 

Example: 

FACTO RIAL (N) The function FACTO RIAL is called with N assigned to the formal parameter. The 

result is assigned to FACTORIAL. N must not be declared as file. 

1 4 . WRITE statement 
Types 1 , 2 and 3 

write statement 

Expression 3 can be specified 
only when expression 1 is real 

This statement displays data or a messge on the CRT screen, outputs it to the printer or writes data on cassette 

tape. The codes used are ASCII codes. 

write 

writeln 

pwrite 

pwriteln 

write ('A' : 8) 

Displays data on the CRT screen. Performs no carriage return. 

Displays data on the CRT screen. Performs a carriage return after display. 

Prints data on the printer. Performs no carriage return. 

Prints data on the printer. Performs a carriage return after printing. 

Displays the character "A" at the 8th position from the current 
12345678 

cursor position. I I I I I I I IAI 

wirte ('A') 
Th d f ult a1 f · 2 · 15 1 2 3 000 ··oooooooooooo1 3 14 15 e e a v ue o expressiOn IS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • IT:D 

00

• oo . oo. oo. o=0 

When X is a real variable and the data is 1.23456, 

write (X : 5 : 3) displays . . . . . . . . . . . . . . . ... ......................... 1 ~ 1 ~ 1 ~ 1 ~ 1: 1 
Expression 3 specifies the number of decimal places. 

For write (X, Y, Z), the ftle declaration is only checked for X. When X is not declared as file, Y and Z are assumed 
to be other than file also. 



Types 4 and 5 

write statement (type 4 and 5) 

write statements of types 4 and 5 store variable and array data in the cassette tape file. No expression can be speci­

fied within parentheses. For write (X, Y, Z), an error results when X is declared as file but Y and Z are not. File declara­

tion is checked only for X. 

1 5 . READ statement 
Types 1 and 2 

read statement (type 1 and 2) 

read . . . .. . ... Reads data from the keyboard. Performs no carriage return after reading. 

readln . ....... Reads data from the keyboard. Performs a carriage return after reading. 

A read statement specified for char variables cannot read a character string. 13 ($0D) is assigned to X when only 

the CR key is pressed for read (X). For read (X, Y, Z), file declaration is checked only for X. Therefore, when X is 

declared as file, Y and Z are assumed to be declared as file even if they are not. 

readln (X, Y, Z) performs a carriage return after the last data has been read. No expression can be specified in 

parentheses. 2 CR may be .keyed when read (X) is executed and X is a real variable. The data is converted into 2.0 

internally. 

For read (X, Y, Z), the CR key is not required to be pressed after the entry for each variable; press 5 6 

and CR . 

Types 3 and 4 

read statement (type 3 and 4) 

{ ·I Identifier I 
0· 

--+t• ( read }---(D~----,-------+1 r---~---~(2)~--------· 
,...________..] 

These statements read data from the cassette tape into variables and arrays. No expression can be specified in 

parentheses. For read (X, Y, Z), an error results when X is declared as file andY and Z are not. 

117 



118 

1 6. FNAME statement 
------·----·--------· ----------·---, 

fname statement 

I 
I 

character st ring 

.,(_!na-me )---(I)~1 ~ ke, ~~J •Q)r---• 

---------·-·------------------·-·_1 
This statement opens a cassette file to allow a sequential data file to be written on or to be read from cassette tape. 

"(Character string)" specifies the name of the sequential data file . When the key function is specified instead of 
"(character string)", the system allows entry of ftle name from the keyboard. 

1 7. CLOSE statement 

,--· ----------·------·---·---·--·-·-·-·--·-·--·l 
close statement j 

•( dm ) I 
I ------- -------·------·--·-·----·-·-·---·-·-----·-.J 

This statement closes a cassette tape ftle opened by thefname statement. Closing a cassette ftle allows/name state· 

ment to be declared for other data files. 

1 8. GRAPH statement 

~-- graph stateme:--·--
-----------·---·--·· 

(integer) 

1'------+t c t------~1 

'-----.. F t------' 

L-~·-------~·----------·----_1 
This statement sets the graphic input or output mode and clears or fills the graphic memory area. 

Example: graph (0, 0, I, 2, C, I, 1, F, 0, 3) 

Clears graphic data from the display, puts graphic area 2 in the input mode, clears graphic area 2, puts graphic area 

1 in the input mode, fills graphic area 1 and puts graphic areas 1 and 2 in the output mode. 



1 9. GSET / GRSET statement 

,---
1 gset I grset statements 

I 
L.----·-· 

These statements set or reset a dot in any position in a graphlc area operating in the input mode. The dot position 

is specified with X- and ¥-coordinates. The X-coordinate of the graphlc area can range from 0 to 319 - from left to 

right- and theY-coordinate from 0 to 199 -from top to bottom. 

Example: gset (160, 100) 

Displays (Sets) a dot in the center of the screen. 

20. L I NE/ BL I NE statement 

-·- --------~---
line I bline statements 

These statements draw a line or a black line in the graphlc area that is in the input mode, by setting dots from the 

first set of coordinates to the second set of coordinates. When the operand specifies three or more sets of coordinates, 

the system draws corresponding segments one after another. 

21 . POS I T I ON statement 

l -----·--------------------------------
position statement 

I 
~--------------------·----------------------------------------·-·---' 

Thls statement sets the location of the position pointer in the graphlc area. The pattern statement is executed start­

ing at position coordinates indicated by the position pointer. 

119 



120 

2 2 . P A T T E R N statement 

~-p-a~-e-rn_s_t~nt -·------·---·-·--,:==--------] 
I I 
L ____________________ _:_ ________________ J 

This statement draws the dot pattern specified by operands in a graphic area which is the input mode . Each dot 

pattern unit consists of 8 dots arranged horizontally and corresponds to 8 bits representing a character. Elements are 

stacked in the number of layers specified by the value of the operand (Expression 1) and the direction in which layers 

are stacked is specified by the sign of the value. 

23. RANGE statement 

·--------------------·----·--- ---------·-·--
range statement 

(integer : 80 or 40) 

1'------~~ R ._ __________ __, 

1'-----..tN._-----------1 

·------------------------------------------
This statement changes the character display mode between 80 and 40 characters/line, between reverse mode and 

normal mode, or fixes the scrolling area of the display. 

Example: range (C, 80, S, 10, 15) 

Sets the display in the 80 characters/line mode and scrolling area to lines 10 through 15. 

24. CURSOR statement 

r--------·----------·----------·-· I cursor statement 

( intege r ) 

L
l ,.-....., 

·------·---·--------·-----·--·---
This statement positions the cursor on the display. - Messages issued by a write or a read statement appear begin­

ning at the cursor position. 



25. F KEY statement 

r·~:;~::~ment ·--·-------- ------·,,,· I Expression 1 character string 

I J,.. I 
l-·--·--·----·---·----------~~~--------J 

This statement defmes function for any of the ten function keys. A number from 1 through 20 is defmed to ex­

pression 1 (function number). A number from 1 through 10 is used to specify each of the function keys in normal 

state, and a number from 11 through 20 is used to specify each of these keys in shifted state. 

26. COPY statement 

--------------------------------- ---------------
copy statement 

-·-~-·--·-·-----·--·-------·---·---·-----------

This statement causes the printer to copy an entire frame of data displayed on the computer screen. 

Example: copy (1) 

Causes the printer to copy the character display. 

copy (4) 

Causes the printer to copy the dot pattern set in both graphic area 1 and graphic area 2. 

27. I MAGE statement 

r·~:age statement --·-·-·-··-----·-------· 

I charac ter s t r ing 

·--·--·---------------------"---------------
This statement causes the printer to draw a desired .dot pattern according to the operating mode. 

121 



122 

2 8 . C A L L statement This statement calls a user coded subroutine. 

call statement 

( i11tege r l 
Address 

I i71 11•ger l 
HL r egister DE r egister 

L_·--------------------------------------------------~ 
Example: call (X+Y) B, C 

The value of B is loaded into the HL register and the value of C is loaded into the DE register, control is transferred 
to the address indicated by X+Y. The expression and variables may be declared as file. 

29. COUT statement 

! 

I coot statement 

L. ___ _ ( char ) 

This statement displays_ a character at the current cursor position. The expression is of the char type and the codes 

are CIN/COUT codes. It is recommended that this statement be used in conjunction with the cin function. 

3 0 . P 0 K E statement This statement writes data in memory. 

poke statement 

Example: poke (X, Y) 

I i11leger l 

Address 

Stores the value of X in the address indicated by Y. Variables may be declared as file. 

poke ('A', 24576) ....... Stores ASCII code 65 ($41) corresponding to character A in address 24576 ($6000). 

poke ('B', -12288) . .. . .. Stores ASCII code 66 ($42) corresponding to character Bin address -12288 ($D000). 



31 . OUTPUT statement 

This statement outputs data to the specified port. 

output statement 

Example: OUTPUT (X, A) 

( integer) 

Port address 

Outputs the value of X to the port indicated by A. The value of expression 1 is loaded into the accumulator and 

the value of expression 2 is loaded into the BC register. Then, machine language instruction OUT (C), A is automatical-

ly executed. Expression 1 must be of the char type and the codes used are the ASCII codes. Expressions 1 and 2 may 

be declared as file. 

3 2 . Comment statement This statement outputs a comment. 

Example: 

Comment statement 

----i• CDI-----.-
1

__....L--, _com-ment_!-J----------c• CDI---• 
.. 

J AREA OF TRIANGLE f 

No l or f symbol can be specified between two other I f symbols. No comment can be specified in any 

identifier, expression or instruction. 

123 



124 

3 3 . Standard function 

(1) ODD(< expression>) 

The parameter must be an integer value and boolean result is obtained. This function gives true if the parameter is 

odd, otherwise it gives false. 

A: =odd (5) 
A: =odd (6) 

true is assigned to variable A. 

false is assigned to variable A. 

(2) CHR (<expression>) 
The parameter specified in this function must be an integer value and a char value is obtained as the result. 

This function gives the character whose code value is specified in the parameter. 

A:= chr (80) The character 'P' is assigned to variable A. 

(3) ORD (<expression>) 

The parameter specified in this function must be a char value and an integer value is obtained as the result. 

This function gives the integer value corresponding to the code for the character specified in the parameter. 

A : = ord ('X') 88 (the code for 'X') is assigned to variable A. 

( 4) PRED ( < expression>) 

The parameter specified in this function must be a char value and a char value is obtained as the result. 

This function gives the character which has the same code value as that of the character specified in its parameter, 
minus 1. 

A : = pred ('Y') The character 'X' is assigned to variable A. 

(5) SUCC ( < expression>) 

The parameter specified in this function must be a char value and a char value is obtained as the result. 

This function gives the character which has the same code value as that of the character specified in its parameter 

plus 1. 

A : = succ ('Y') The character 'Z' is assigned to variable A. 

(6) TRUNC (<expression>) 

The parameter specified in this function must be a real value and an integer value is obtained as the result. 
This function converts real data values into integer data values. 

A:= trunc (3.14) The integer value 3 is assigned to variable A. 

(7) FLOAT ( < expression >) 

The parameter specified in this function must be an integer value and real value is obtained as the result. 

This function is the inverse of the trunc function; it converts integer data values to real data values. 

A : =float (15) real number 15.0 is assigned to variable A. 

(8) ABS (<expression >) 

The result is a real value when the value specified in the parameter is real; the result is an integer value when the 
value spedified in the parameter is an integer value. 

This function gives the absolute value of the value specified in the parameter. 

A:= abs (-3.5) real number 3.5 is assigned to variable A. 

B : = abs ( -36.5) integer number 36.5 is assigned to variable B. 



(9) SQRT (<expression>) 

The parameter specified in this function must be a real value which is greater than or equal to zero. The result is a 

real value. 
This function gives the square root of the value specified in the parameter. 

A : = sqrt (2.0) The square root of 2.0 is assigned to variable A. 

(1 0) SIN ( < expression >) 

The parameter specified in thif> function must be a real value (expressed in radians) and a real value is obtained as 
the result. This function gives the sine of the value specified in the parameter. 

To obtain sin 30°, specify 

A:= sin (30.0*3.1415927/180.0) 

(11) COS ( < expression >) 

The parameter specified in this function must be a real value (in radians) and a real value is obtained as the result. 

A:= cos (200.0*3.1415927/180.0) 

The value of cos 200° is assigned to variable A. 

(12) TAN (<expression>) 

The parameter specified in this function must be a real value (in radians) and a real value is obtained as the result. 
result. 
A:= tan (30.0* 3.1415927/180.0) 

The value of tan 30° is assigned to variable A. 

(13) ARCTAN ( < expression >) 
The parameter specified in this function must be a real value and a real value between -rr/2 and rr/2 (in radians) 

is obtained as the result. 

A: =180.0/3.1415927* arctan (X) 

The value of tan-1 X in degrees is assigned to variable A. 

(14) EXP (<expression>) 

The parameter specified in this function must be a real value and a real value is obtained as the result. 

This function gives the value of ex, where e=2.7182818. 

A : = exp (1.0) 2.7182818 is assigned to variable A. 

(15) LN ( < expression>) 
The parameter specified in this function must be a real value and a real value is obtained as the result. 

This function gives the value of logeX, where X2. 0. 

A: =In (3.0) 1.0986123 is assigned to variable A. 

(16) LOG ( < expression>) 
The parameter specified in this function must be a real value and a real value is obtained as the result. 

This function gives the value oflog10 X, where X 2.0. 

A: =log (3.0) 0.47712125 is assigned to variable A. 

125 



126 

(17) RND ( < expression >) 
The parameter specified in this function must be a real value and a real value is obtained as the result. 

This function generates pseudo-random numbers between 0.00000001 and 0.99999999. 

A : = md (U/l) 

A:= md (-1.0) 

When the value specified as the parameter is larger than 0, the function gives a pseudo-random 

number. 

When the value is 0 or negative, the function generates a pseudo-random number group and 

gives its initial value. 

(18) PEEK ( < expression >) 
The parameter specified in this function must be an integer value and a char vlaue is obtained as the result. 

This function gives a code (0-255) which corresponds to data stored in the address specified (in decimal) by the 

parameter. 

A : =peek ( 4608) The data code stored in address 4608 is assigned to variable A. 

(19) CIN 

This function has no parameter, and a char value is obtained as the result. This function gives the ASCII code 

which corresponds to the character in the position on the CRT screen at which the cursor is located. 

A:= cin The ASCII code of the character displayed at the cursor position is assigned to variable A. 

(20) INPUT ( < expression >) 
The parameter specified in this function must be an integer value and a char value is obtained as the result. 

This function reads data on the port specified by the parameter. For port specification, refer to the explanation of 

the output statement on page 84. 

This function executes machine language code $ED78, (i.e. IN A, (C)) . The value of X is loaded in the BC register 

and data is read into the accumulator. 

A : =input (255) Data on port 255 ($FF) is read into variable A. 

(21) KEY 
This function has no parameter, and a char value is obtained as the result. This function gives the ASCII code 

corresponding to that of the key being pressed. If no key is pressed when this function is executed, the code corre­

sponding to zero is obtained. 

A:= key The ASCII code corresponding to the key being pressed is assigned to A. 

The following statements loop until some key is pressed. 

A:= key; 

while ord (A)= 0 do A: =key; 

(22) CSRH 

This function has no parameter, and an integer value is obtained as the result. The integer value indicates the cur­

rent location of the cursor on the horizontal axis. The value of this function takes stays within the following ranges 

for each character display mode: 

80-character mode: 0 ~ csrh ~ 79 

40-character mode: 0 ~ csrh ~ 39 



(23) CSRV 

This function has no parameter, and an integer value is obtained as the result in the same manner as the csrh func­

tion. The value indicates the current location of the cursor on the vertical axis and takes stays within the following 

r.ange for both character modes mentioned above: 

0 ~ csrv ~ 24 

(24) POSH 

This function has no parameter, and an integer value is obtained as the result . The integer value indicates current 

location on the horizontal axis of the position pointer in the graphic display area. The value takes stays within the 

following range: 

0 ~posh~ 319 

(25) POSV 

This function has no parameter, and an integer value is obtained as the result in the same manner as the posh func­

tion. The value indicates the current location on the vertical axis of the position pointer in the graphic display area 

and takes stays within the following range: 

0 ~ posv ~ 199 

(26) POINT ( < expression>,< expression>) 

This function has two parameters which must be integer value, and an integer values is obtained as the result. The 

value is indicating whether the dot (X, Y) in the graphic display area is set or reset. 

Result of the point function 

0 

1 

2 

3 

Point information 

Points in both graphic areas 1 and 2 are reset. 

Only point in graphic area 1 is set. 

Only point in graphic area 2 is set. 

Points in both graphic areas 1 and 2 are set. 

127 



128 

3 4 . Standard constant 

true 

false 
Boolean value 

3 5 . Operator 

(I) Integer operators 

Operator Meaning 

+ Identity 

- Sign inversion 

+ Addition 

- Subtraction 

* Multiplication 

div Division with truncation 

mod Modulus 

(2) Real operators 

Operator Meaning 

+ Identity 
- Sign inversion 

+ Addition 

- Subtraction 

* Multiplication 

I Division with truncation 

Example 

+A 

-B 

A+B 

A- B 

A B 

A div B 

A mod B 

Example 

+A 

-B 

A+B 

A-B 

A* B 

AlB 

Note: Mixed operations including both integer and real operators are not allowed. 

(3) Boolean operators 

Operator Meaning Example 

not Logical NOT not (A=B) 

and Logical AND (A> B) and (A> C) 

or Logical OR (A> B) or (A> C) 

xor Exclusive OR (A> B) xor (A> C) 

NOT A A and B 

Value of A 

not A 

A xor 

1 

2 

2 

1 

2 

2 

Precedence 

* 
div 

mod 

+ 

Precedence 

* I 
+ 

Precedence 

1 

2 

3 

3 



(4) Relational operators 

=, < >, < =, > =, < and >. All have equal precedence. 

The relational operators may be used for any data types ; integer, real, char or boolean. For boolean values, true > 

false is always satisfied. Character codes are compared for corresponding char type data. 

36. INTEGER and REAL expressions 

INTEGER type REAL type 

0 0.0 

5 5.0 

-135 -135.0 

10000 10000.0 
or 1E+4 

3 7 . Writing programs by hand 

It is recommended that bold faced words such as procedure, begin, end and var be underlined (leg., begin, var). 

3 8 . Indentation 

The number of spaces preceding a statement is not prescribed. Use an appropriate number so that the relationship 

is maintained between if and else, begin and end, etc. The preceding spaces do not require any memory spaces. 

3 9 . Statement and Function 

Care must be taken when using the following statements and functions since they are similar. 

Statement: output, poke, cout 

Function: input, peek, cin , key 

4 0 Reserved words 

129 



130 

4 1 . Statements for the color control system 

1. TRAN 
This statement transfers a graphic command to the color control terminal. 

Charact er string 

2. REQRT 

This is a function and it receives a byte of data from the color control terminal. 

This function has no parameter and one character of char data is obtained. 

3. SYRET 

This statement resets the color control terminal and cold starts the system. It has no parameter. 

4. SYRET2 

This statement resets the color control terminal and waits for a monitor command. It has no parameter. 

42. MUSIC and TEMPO statements 

These statements play music. The tempo statement specifies the tempo and the music statement specifies notes to 

be played . 

tempo ( < expression >) 

The expression is of the integer type and must be in range of 1 ~ 7. 

music ( < "character string" > I <char expression >) 

Notes are specified with the character string or the char expression. 



43. NS chart 

if <expression> then < statement > 

if <express ion> 

then 

<statement> 

1 : I X == A+ B 

case 
I 2 : I 

<expression> X == A- B 

of 
3 : I 

X == A*B 

if < expression> then < statement 1 > 

else < statement 2 > 

if 

then 

<statement <stateme nt 
1 > 2 > 

case of 
< expres­

sion> 

1 : X:=A+B; 

2 : X: =A-B; 

3 : X: =A B 

for < control variable > : =<initial value> to <final value > do <statement> 

for < control variable > : = <initial value > downto < final value > do < statement > 

for N : = 1 to 1 0 
for X : = 1 5 downto 1 

do <statement> do <sta t emen t > 

while < expression > do < statement > repeat <statement > until <expression> 

while <express ion> 
<stateme nt> 

do <statement> 
until <expre s s ion > 

Compound statement begin < statement 1 > ; < statement 2 > ; < procedure call > ; .. . ... ; < statement n > end 

<s t ateme nt 1 > 

<statement 2 > 

<Procedure statement> 

1 <stateme nt n > I 
131 





APPENDIX 

133 



ASCII code table 
A table of hexadecimal ASCII codes is shown in FIGURE 2. 22 of the Owner's Manual. 

il 

0 INULLj 26 52 @] 78 ~ 104 [6] 
[±] 27 53 [§] 79 [QJ 105 OJ 

2 [!] 28 54 [§] 80 ~ 106 ITJ 
3 G 29 55 [2] 81 [gJ 107 [kJ 
4 G 30 56 ~ ~ 82 [BJ 108 [lJ 
5 I HOME I 31 m 57 ~ 83 ~ 109 ~ 
6 [ill] 32 D 58 D 84 ITJ 110 CD] 
7 [ill] 33 [[] 59 [}] 85 [Q] 111 [QJ 
8 IINSTj 34 B 60 m 86 [YJ 112 [£] 
9 lsRPHj 35 [i] 61 EJ 87 ~ 11 3 @] 

10 00 Cl 36 [I] 62 w 88 ~ 11 4 0 
11 37 ~ 63 rn 89 [YJ 115 [§] 
12 [ill] 38 ~ 64 ~ 90 ~ 116 [!] 
13 39 ~ 65 [A] 91 [CJ 117 [Q] 
14 I ~CRIPT I 40 ITJ 66 ~ 92 [S] 11 8 [YJ 
15 ~ l 41 rn 67 [g 93 [J] 119 ~ 
16 42 ~ 68 [Q] 94 EJ 120 ~ 
17 43 L±J 69 [gJ 95 EJ 121 [YJ 
18 44 GJ -70 [EJ 96 ~ 122 ~ 
19 45 EJ 71 [§] 97 @] 123 OJ 
20 46 GJ 72 [8] 98 lliJ 124 ITJ 
21 47 [Z] 73 OJ 99 ~ 125 rn 
22 48 [QJ 74 QJ 100 ~ 126 EJ 
23 49 OJ 75 [RJ 101 ~ 127 [j] 
24 50 [gJ 76 [bJ 102 [I] 
25 51 @] 77 ~ 103 [ID 

134 



128 [(] 154 rn 180 II 206 m 232 m 
129 [!] 155 B "181 m 207 m 233 n 
130 [!] 156 t:g 182 m 208 m 234 n 
131 ~ 157 Ea 183 6 209 m 235 II 
132 8 158 BJ 184 m 210 m 236 D 
133 [j] 159 rn 185 m 211 m 237 1m 
134 [t] 160 II 186 II 212 II 238 m 
135 ~ 161 D 187 II 213 m 239 m 
136 [I] 162 II 188 B 214 m 240 m 
137 rn 163 rn 189 II 215 rlJ 241 m 
138 §] 164 II 190 tJ 216 Et 242 II 
139 tm 165 ~ 191 II 217 a 243 n 
140 ~ 166 ~ 192 m 218 fA 244 n 
141 ~ 167 II 193 m 219 II 245 m 
142 ~ 168 II 194 m 220 Ill 246 m 
143 tiE 169 IJ 195 &1 221 ~ 247 m 
144 § 170 E3 196 m 222 rl 248 1!1 
145 ~ 171 G 197 II 223 ii 249 I'J 
146 ~ 172 II 198 II 224 11 250 D 
147 LiJ 173 = 199 &1 225 m 251 D 
148 lQ] 174 II 200 m 226 m 252 D 
149 EiJ 175 - 201 D 227 m 253 D 
150 ~ 176 m 202 1!1 228 m 254 r:l 
151 [[j 177 D 203 Ia 229 m 255 [KJ 
152 [g 178 m 204 1!1 230 D 
153 179 il 205 1m 231 m 

135 



Decimal/Hexadecimal conversion table 
~!~!'~" l'iii,:'_Hexa::''r~ :f,;r!jjH'i < I\!IH . 'l~WJ! ~EJ!.qJJ!l;;~ n~~fui:t~ I\~~Hex.t~K · ·o~~lhtitt IW~Hex~. nei:iffiat ciHexa~'l:ln Decimal· o·a1 " extl,r,· o,~nn .····at ,, ' decimal ~p~ ."aecinia:J. . ., eun . 4-f~ - decinliil ':1:' 'decimal 'decimal' 

0 00 48 30 96 60 144 90 192 C0 240 F0 
1 01 49 31 97 61 145 91 193 C1 241 F1 
2 02 50 32 98 62 146 92 194 C2 242 F2 
3 03 51 32 99 63 147 93 195 C3 243 F3 
4 04 52 34 100 64 148 · 94 196 C4 244 F4 
5 05 53 35 1 01 65 149 95 197 C5 245 F5 
6 06 54 36 102 66 150 96 198 C6 246 F6 
7 07 55 37 103 67 1 51 97 199 C7 247 F7 
8 08 56 38 104 68 152 98 200 CB 248 FS 
9 09 57 39 105 69 153 99 201 C9 249 F9 

10 0A 58 3A 106 6A 154 9A 202 CA 250 FA 
1 1 0B 59 3B 107 6B 155 9B 203 CB 251 FB 
1'2 0C 60 3C 108 6C 156 9C 204 cc 252 FC 
1 3 00 61 30 109 60 157 90 205 CD 253 FD 
14 0E 62 3E 1 1 0 6E 158 9E 206 CE 254 FE 
1 5 0 F 63 3F 1 1 1 6F 159 9F 207 CF 255 FF 

16 10 64 40 1 1 2 70 160 A0 208 00 
1 7 1 1 65 41 1 1 3 71 1 61 A1 209 01 
18 1 2 66 42 1 1 4 72 162 A2 210 02 
19 1 3 67 43 1 1 5 73 163 A3 21 1 03 
20 14 68 44 1 1 6 74 164 A4 212 04 
21 1 5 69 45 11 7 75 165 A5 213 05 
22 16 70 46 11 8 76 166 A6 214 06 
23 1 7 71 47 1 1 9 77 167 A7 215 07 
24 18 72 48 120 78 168 AS 216 DB 
25 19 73 49 1 21 79 169 A9 217 09 
26 1A 74 4A 122 7A 170 AA 218 DA 
27 1 B 75 4B 123 7B 1 71 AB 219 DB 
28 1C 76 4C 124 7C 172 AC 220 DC 
29 1 D 77 40 125 70 173 AD 221 DO 
30 1 E 78 4E 126 7E 174 AE 222 DE 
31 1 F 79 4F 127 7F 175 AF 223 OF 

32 20 80 50 128 80 176 B0 224 E0 
33 21 81 51 129 81 177 B1 225 E1 
34 22 82 52 130 82 178 B2 226 E2 
35 23 83 53 1 31 83 179 B3 227 E3 
36 24 84 54 132 84 180 B4 228 E4 
37 25 85 55 133 85 1 81 B5 229 E5 
38 26 86 56 134 86 182 B6 230 E6 
39 27 87 57 135 87 183 B7 231 E7 
40 28 88 58 136 88 184 BB 232 EB 
41 29 89 59 137 89 185 B9 233 E9 
42 2A 90 5A 138 SA 186 BA 234 EA 
43 28 91 58 139 88 187 88 235 EB 
44 2C 92 5C 140 8C 188 BC 236 EC 
45 20 93 50 1 41 80 189 BD 237 ED 
46 2E 94 5E 142 BE 190 BE 238 EE 
47 2F 95 5F 143 SF 1 91 BF 239 EF 

136 



Error message table 

2 

3 

4 

The program is not completed or . is omitted. 

An identifier is declared twice. 

: is omitted or a character other than is specified in a place where should be specified. 

Type specified is not allowed. 

5 Other than identifier is specified in a place where an identifier should be specified. 

6 An identifier is too long. 

7 OF is omitted. 

8 or , is omitted. 

9 is omitted. 

10 or , is omitted. 

11 ] is omitted. 

12 Other than an integer is specified in a place where an integer should be specified. 

13 An array element is too large or data is out of the declared range. 

14 is omitted. 

15 , is omitted. 

16 A READ or WRITE statement includes mixed specifications of FILE type variables and other types of variables. 

17 An incorrect type of value is assigned to a variable. 

18 ; or END is omitted. 

19 THEN is omitted. 

20 Other than a BOOLEAN type variable is specified in a place where a BOOLEAN type variable should be specified. 

21 DO is omitted. 

22 :=is omitted. 

23 TO or DOWNTO is omitted. 

24 UNTIL is omitted. 

25 Other than a variable, function or constant is specified in the place where one of these should be specified. 

26 More than one character is included between single quotation marks. 

27 A undeclared identifier is used. 

28 Other than a procedure identifier is specified where one should be specified. 

29 Parameter mismatch or array dimension mismatch. 

30 BEGIN is omitted. 

31 Other than a digit is specified where one should be specified. 

3 2 · Other than REAL is specified where REAL should be specified. 

33 Other than, or CR is keyed in where either of these two should be keyed in. 

34 WRITE error or break during WRITE execution. 

35 READ error or break during READ execution. 

137 



138 

36 The number of digits of data exceeds the specified number of digits in the WRITE statement. 

3 7 $ is omitted. 

38 Other than hexadecimal data is specified where hexadecimal data should be specified. 

39 Insufficient memory capacity 

40 Command error 

41 ", ', l or I is omitted. 

42 Printer is OFF or is not connected. 

43 Printer out of paper 

44 Printer mechanical trouble 

45 Unallowed symbol is specified. 

46 CLOSE is omitted. 

4 7 An unopened file was referenced. FNAME is omitted. 

48 

49 

50 

51 

52 

53 

54 

55 

A program is checked for syntax before execution begins. If an error is found, the following message will be 

output. 

* Err< error code > * Line< line number> 

* Err < error code > * Run * indicates a non-syntactical error: error code 36 is one of non-syntactical errors. 

Note: It may happen that no error can be found on the indicated line even though an error message is output. A possi­

ble cause is erroneous loading of the program. In such cases, display the program list around the indicated line . 

Position the cursor on the line in which the error is indicated and perform a carriage return to reload the pro­

gram. 



PASCAL SB-4515 specifications 
System . . . . . . . . . . . . . . . . . . . . . . . Cassette tape base interpreter; interpreter; Monitor SB-1511 

Size . . . . . . . . . . . . . . . . . . . . . . . . . Approx. 20K bytes 

Required RAM capacity . . . . . . . . . . . . 64K bytes 

Cold start address . . . . . . . . . . . . . . . . $1300 

Warm start address . . . . . . . . . . . . . . . $1301 

Error messages . . . . . . . . . . . . . . . . . . 4 7 messages 

Data types . . . . . . . . . . . . . . . . . . . . . integer 

Data range 

real 

char 

boolean 

INTEGER data . ... .......... -32767 ~ +32767 (2 byte data, 2's complement) 

REAL data ... . . .. .......... ±0.27105055E-19 ~ ±0.92233720E+ 19 

CHAR data .. ..... .. ........ One character (corresponding to codes 0~2.55) 

BOOLEAN data . . ... . ... .. ... true and false (true> false) 

Number of array dimensions . . . . . . . . . Up to n dimensions 

Range of array index .. .. . . . . ..... . Varies according to data type and memory size 

Identifier length . . . . . . . . . . . . . . . . . Up to 32 characters 

Integer operators . . . . . . . . . . . . . . . . 

Real operators ... . .. . .......... . 

Logical operators ..... . .... . .... . 

Relational operators 

Standard functions 

*· 
*· not, 

div, 

I , 
and, 

<>, <= ' 

mod, +, 

+ , 

or, xor 

>=, <, > 

ODD Checking whether odd or even. boolean -f- integer 

CHR . . . . . . . . . . . . . . . . . . . . . char -f- integer 

ORD . . . . . . . . . . . . . . . . . . . . . integer -f- char 

PRED . . . . . . . . . . . . . . . . . . . . . Preceding character 

SUCC ..... ....... ... . . .. . . Following character 

TRUNC . . . . . . . . . . . . . . . . . . . integer -f- real 

FLOAT . . . . . . . . . . . . . . . . . . . real -f- integer 

ABS . . . . . . . . . . . . . . . . . . . . . . Absolute value of integer or real data 

SQRT . . . . . . . . . . . . . . . . . . . . . Square root 

SIN . .. .... . ... . . . .. ... . . . sinX 

COS ....... . .. . . ... . ..... . cosX 

TAN .. ..... . . . . .. . ..... . . tanX 

ARCTAN .. . . . . . . ... . .. .... tan-1 X 

EXP .. . . . . . . . . ... . .... . .. . ex 

LN .. ........ .. .. . ........ logeX 

LOG .... . .. .. . .... .. . . . . . log 10 X 

RND . . . . . . . . . . . . . . . . . . . . . Random number 

PEEK . . . . . . . . . . . . . . . . . . . . . Read-out from memory 

CIN . . . ....... .. ...... .... Read in character at cursor position 

INPUT . ......... . .. : . . . . . . Read in from port 

KEY ....... . . .. ........ .. Read in from keyboard 

REQTR ..... . . ... . . . . . .. .. Receive one byte of data from the color control system 

CSRH . . . . . . . . . . . . . . . . . . . . . Current location of the cursor on the horizontal axis 

CSRV . . . . . . . . . . . . . . . . . . . . . Current location of the cursor on the vertical axis. 

139 



140 

POSH . ....... . ..... .. ..... Current location of the position pointer on the X-axis 

POSY ... .... . ... . ... ... . .. Current location of the position pointer on theY-axis 

POINT 

Statements 

Assignment statement 

Compound statement 

Determine whether specified dots are set or reset 

Variable:=< expression> 

begin <statement 1 >, <statement 2 >, ..... , <statement n > end; 

IF statement ..... ........... Conditional statement (including else) 

CASE statement . . . . . . . . . . . . . . Selective execution 
WHILE statement . . . . . . . . . . . . . Repetition 

REPEAT statement ... ... . . .... Repetition 

FOR statement . . . . . . . . . . . . . . Repetition (including either to or down to) 

WRITE statement . . . . . . . . . . . . . Data output 

READ statement . . . . . . . . . . . . . Data input 

FNAME statement . . . . . . . . . . . . Defines the file name of a data file and opens it . 

CLOSE statement . . . . . . . . . . . . . Closes the data file which was opened by the !name statement. 

GRAPH statement ... .. ....... Specifies the graphic input/output area, clears or fills graphic area. 

GSET statement . . . . . . . . . . . . . . Sets a dot in the specified position in a graphic area. 

GRSET statement . . . . . . . . . . . . . Resets a dot in the specified position in a graphic area. 

LINE statement . . . . . . . . . . . . . . Draws lines connecting positions specified by operands 

BLINE statement . . . . . . . . . . . . . Draws black lines connecting positions specified by operands. 

POSITION statement Sets the location of the position pointer in a graphic area. 

PATTERN statement . .. ....... Draws the dot pattern specified by operand in a graphic area. 

RANGE statement . . . . . . . . . . . . Sets the scrolling area, number of characters/line or reverse/normal. 

CURSOR statement . . . . . . . . . . . Moves the cursor to any position on the screen. 

FKEY statement ... . . ......... Defines a function for any of the definable function keys . 

CALL statement . . . . . . . . . . . . . . User subroutine call 

COUT statement . .. . . ..... ... Outputs a character to the cursor position 

POKE statement . . . . . . . . . . . . . . Writes data into memory 

OUTPUT statement . . . . . . . . . . . Outputs data to the specified port 

MUSIC statement ........ . .. .. Plays music (used with the tempo statement). 

TEMPO statement . . . . . . . . . . . . Specifies the tempo. 

COPY statement . . . . . . . . . . . . . . Makes a copy of the character display or graphic display. 

IMAGE statement . . . . . . . . . . . . . Draws the dot pattern specified in the operand on the printer. 

TRAN statement . . . . . . . . . . . . . Transfers a graphic command to the color terminal. 

SYRET statement . . . . . . . . . . . . . Resets the color terminal and cold starts the system. 

SYRET2 statement .. ........ . . Resets the color terminal and waits for a monitor command. 

Others 

(1) 

(2) 

(3) 

A file identifier can include a maximum of 16 significant characters. 

Statement numbers are automatically assigned by the system. 

Recursive call capability. 

Differences between the SB-4515 and standard PASCAL 

1. No procedure or function can be declared within another procedure or function declaration. 

2. Structured type data cannot be used. 

3. Only value parameters can be used. 



Memory map 
The memory map is as shown below when the PASCAL interpreter is loaded in a system. 

$00010 

$1300 

$FFFF 

1---- - --- - - ------1 } Monitor program area 
~--------~1 

L_ ____ _ _ __ ~ 

PASCAL interpreter (approx. 20K bytes) 

PAS CAL program text and variable area 
When this area is divided with the E command to obtain a machine lan­
guage area, locations from the specified address to $FFFF become the 
machine language link area. 

(Hexadecimal address) 

141 



142 

PASCAL SB-4515 configuration 
PASCAL SB-4515 is roughly divided into three sections ; program control flows as shown in Figure A.l . 

User 

Commands, etc. Display 

Command error, etc. 

Error indication 

Execution error 

Execution end or break 

Figure A.l SB-4515 CONTROL FLOW 

1. EDITING SECTION 

The editor is primarily used for executing editing 

commands and generating a source programs. 

Each line of a source program is converted into an 

intermediate code line when it is loaded. (See Figure A.2.) 

One intermediate code line corresponds to one source pro­

gram line. Line numbers are omitted in intermediate 

codes. 

a : Number of spaces for indentation (1 byte) 
b : Intermediate codes and identifiers (n bytes : n is 

indefinite.) 
c : 0DH indicating line end ( 1 byte) 

Source program lines are converted into the form 
shown above. Line number data is omitted. 

Figure A.2 



Figure A.3 shows a map of -the 

memory during editing of a source 

program. The line numbers only con­

trol the contents of the line pointer 

(LP), which a line may be inserted or 

from which a line may be deleted. 

The P and H commands reconvert 

intermediate codes into source pro­

gram lines for display. 

f-----------i~ $1300 

Standard functions are assigned to 

intermediate codes. For functions 

which operate on parameters, such as 

COS (A), one intermediate code is as­

signed to COS ( and others are assign­

ed to A and ). Therefore, COSO (A) 

is not handled as the COS function, 

but is handled as two identifiers COS 

D (A) are converted into interme­

diate codes as shown in Figure A.4. 

SB-4515 

Top of source TOP ~+-----------i 
program 

Line pointer (LP).....,.. 
Source program 

Source program (EP) -+---­
end pointer 

Work area 

(SP) 
Stack area 

Memory end (MEP) -;;o+-----------; 
of SB-4515 
(can be specified 
by the user.) 

Set of intermediate 
codes shown in 
Figure A.2 

Approx. lK bytes 

l 
$FFFF 

Example 1: 
Figure A.3 Memory Map during Editing 

a0 : Intermediate code for COS (. 
A Identifier . . .. . .. ASCII code 
a1 : Intermediate code for the identifier 
a2 : Flag data representing data type 
a3 , a4 : Pointer data indicating static address 
a5 : Intermediate code for ) 

Example 2: 

COS (A) 

COS O (A) 
D represents a space. 

· · · · · C 0 S b · I b z ! b 3 b 4 b5 A b 6 b 7 b s be b A 

COS, A : Identifiers .. . .... . ASCII codes 
b1 , b6 : Intermediate codes for the identifiers 
b2 , b7 : Flag data representing data types 
b3 , b4 , b8 , b9 : Pointer data indicating static addresses 
b5 : Intermediate code for ( 
bA : Intermediate code for ) 

When the above two intermediate code lines are displayed with the P command, both source program lines are dis-

played in the form ..... . . COS (A) . .... . .. . 

Figure A.4 

143 



144 

2. SYNTAX CHECK SECTION 

Figure A.S shows difference in block structure between standard PASCAL and SB-4515. A lexical level of up to 1 

is allowed for the SB-4515 . 
Figure A.6 shows a map of the memory configuration during a syntax check. The syntax check section determines 

variable types and static addresses, analyzes the structure of user programs and completes the intermediate code data 

section. 
Figure A. 7 shows an example of identifier analysis and Figure A.8 an example of program structure analysis. 

MAIN 

Level 0 

(a) Standard PASCAL block structure 

MAIN 

Level () 

(b) SB-4515 block structure 

Figure A.S 

I l!ienti­
fier a b c d 

Identifier : ASCII code of up to 
3 2 characters 

a : Code distinguishing 
procedure 
function 
global variable 
local variable 

b : Flag indicating type 
c, d : Address data 

Figure A.7 

T OP 

(LP) _____,.. 

SB-4515 

Source program 

Global variable table 

Procedure identifier table 

Local variable table 
A orB 

Work area 

Stack area 

h 

IJ 

Approx. 
lK bytes 

Figure A.6 Memory map during syntax check 

The following is the intermediate code for 

if <expression> then <statement 1 > 

else <statement 2 >. 

a : Code representing if 
b0 : Code representing then 
b1 , b2 : Pointer indicating the address following statement 1 
c0 : Code representing else 
c1 , c2 : Pointer indicating the address following statement 2 

Figure A.8 



3. INTERPRETER SECTION 

The interpreter section consists of the syntax analyzing section and the virtual stack machine. The virtual stack 

machine cannot directly execute intermediate codes which are arranged in the same order as the source program; The 

syntax analyzing section interprets the intermediate codes to control the virtual stack machine. 

Figure A. 9 Shows a map of the memory configuration during execution of the interpreter section. Note that 

two stacks, Sand W, are used . The S stack is mainly used by the syntax analyzing section and theW stack by the virtual 

stack machine . 

Figure A. 9 shows the state when part of the statements of a user defmed function have been executed . The stack 

buffer stores the S stack cont~nts for the main program at the time the function is called. 

Figure A. 10 shows the stack buffer structure. Area A stores the address and the number of bytes of data trans­

ferred from the S stack, and area B stores the contents of various pointers (NP, RB, etc.). Area C stores the S stack 

contents. 

This data is returned to its originallocations·when control is returned to the main program. 

SB-4515 

Source program 

HEAP (TOSP) 

(NP) -- t~'d 

~ 
Local expression area 

I"' 

A 

Unused 
B 

1ir 
I -J.;J (TOSP) 

Local expression area c 

Stack buffer 
W stack 

Local variable area Local variable area 

(LB) 

Global expression area (LB) 

Global :variable area 
Figure A. 10 

S stack 

~ 

(GB) 

(SP) 
} 800 byt'" 

Figure A. 9 

145 



146 

1. The address of A is stored in the S stack . 
The remainder is : = B *C. 

2. : =is stored in the S stack. 
The remainder is B*C. 

3. TOSP +- TOSP-1 
The value of B is stored in the W stack. 
The remainder is C. 

4. * is stored in the S stack. 
The remainder is C. 

5. TOSP +- TOSP-1 
The value of C is stored in the W stack. 
There is no remainder. 

6. The first element of the S stack is read. 

Since it is * , 
TOSP +- TSOP+ 1 
(TOSP) +- (TOSP) * (TOSP-1) 

7. The next element of the S stack is read. 
Since it is : =, the following element of the 
S stack (address of A) is also read and the 
data of (TOSP) is stored in the address of A. 
Then, TOSP +- TOSP+ 1. 

(TOSP)~ X X 

(TOSP)~ X X 

(TOSP)~ 5 

X X 

(TOSP)---;. 10 

(TOSP+ 1)-3> 5 

X X 

(TOSP-1)~ 10 

(TOSP)......:;. 50 

X X 

(TOSP)~ X X 

Address of A ~ (SP) 

X X X 

foE- (SP) 

Address of A 

X X X 

* ~ (SP) 

--·-
Address of A 

X X X 

~(SP) 

Address of A 

X X X 

X X X (SP) 

Figure A.ll Execution of A : = B C where B is assigned 5 and C assigned 1. 



Figure A.l2 shows data formats in theW stack and HEAP area. In theW stack, each data element consists of a type 

flag (1 byte) and a data section. 

For arrays, data sections are stored in the HEAP area and only array pointer are stored in theW stack. 

A Bo char, boolean 

A Bo Bl integer 

A Bo I B) I B2 B3 B4 real 

A Bo Co c) array pointer I B) I Source program (intermediate codes) 

A : Type flag indicating data type 
Bn : Data from other than arrays 

Chaining data to the source program 
for arrays 

C0 , C 1 : Indicates the top address of the HEAP area. 

Figure A.l2 

File declaration 

var A : array [499] of chaT; 

HEAP area 

500 bytes 

File declaration supported by the SB-4515 only declares the memory area used for transfer of data to/from the 

cassette tape. This is different file declaration supported by standard PASCAL. 

Reference 
(1) K. Jensen and N. Wirth, PASCAL User Manual and Report, Springer-Verlag, 1974. 
(2) N. Wirth, Algorithms+ Data Structures= Programs, Prentice-Hall, 1976. 

147 





Sample Program 

749 



150 

(1) Hanoi Tower (Application Program 1) 

This is the program list for the first application program stored on the PASCAL Applications Tape. The explana­

tions in Chapter 2 are based on this program. 

0. { 
1 • { 
·-:• I'\ 
.&.. • "J 

:::AMPLE PROGRAM 
MASSAGE & HANOI TOWER 

3.var AtNtXtYtCXtCY:integer; 

} 

} 

4. DISKNOtDISKNUMBERtTOWER1tTOWER2tTOWER3tTOWERNUMBER:integer; 
5. BtC:char· ; 
6.pr·o•:edur·e TITLE;{ .....••.•..•...........•..••••....•.. ME~::SAGE} 
?.begin 
8. DELAY<1000); 
9. w r· it e ( 11 CJ{l--IH)·IP){l-¢· ¢·¢·¢·¢·¢·¢·¢· ¢· ¢·¢· ¢·¢·¢· 11 

) ; 

1 0 • w r i t e ( 11 no {l- ·~ ·~ 1 .!) ·~..J..II ) ; 

11 . wr· it e ( 11 ¢· it itT T{l-·~·~'¢1 H .I) ·~·~·~..J.. ..J..II) ; 

1 2 • w r i t e 1 n ( 11 1t 1t r-1 {l- ·~ ·~ ·~ H .!) ·~ ·~ '-----~ 11 
) ; 

13. DELAY(500); 
14. wr· iteln(); 
15. 
1 6 • 
17. 
1 8 • 
l q .· . 
20. 

wr· iteln( 11 

wr·iteln(ll 
wr·iteln( 11 

wr·iteln( 11 

•JJr·iteln( 11 

end; 

r--J r--1 r--1 

I I I I I 
t--' t---l ~ 
I I I I 

..J.. ..J.. ..J.. l..---...1 

.--, 
I 
I 
I 
L--....1 

r--1 r u ) ; 

I I I II ) ; 

t---l I II ) ; 

I I I II ) ; 

..J.. ..J.. l..---...1 CJ II ) ; 

21.pr·ocedur·e STAR~,.JRITE; { .................•........... ::HARRY :::f<Y } 
22 . var NtPOSITION:integer; 
2:~:. begin 
24. for N:=l to 150 do 
25. begin 
26. cursor(trunc(rnd(1.0l*40.0),trunc(rnd(1.0l*24.0)); 
27. cout(chr-(46)) 
2:::. end 
29. end; 
30.procedure UFOMOVE;{ UFO} 
31. var N:integer;UFO:char; 
·:· ·-:.· ·-'L • begin 
·:··:· ·-··-· . wr· i te ( "Cl 11

); 

for· N:=l to :~:9 do wr·ite( 11
¢·

11
); 

35. for- N:=l to 4 do wr·ite( 11 .1) 11
); 

36. UFO:=chr(64); 
37. write<UFO:l); 
3:::. for N:=l to 39 do 
:=:·;', begin 
40. DELAYI100); 
41. wr·ite( ~~.~.·~·~ 11 tUFO: 1) 
42. end; 
43. wr· it e ( ~~ .~ {l-{l-~~~{l-{l-{l.l)~{l{l-{l{~{l~{lll) 

44. end; 
45.procedur-e DELAY<D:integer); 
46. var N:integer; 
47. begin 
4:::. for N:=O to D do 
49. end; 
50.procedur-e CPS; 
51. begin 
52. CX:=csrh;CY:=csrv 
5:3. end; 



54.procedure CMOVE<CH:char); 
55. begin 
56. cout(CH);if CX<39 then CX:=CX+l;cursorCCXtCY) 
57. end; 
58.procedure DOWCN:integer); 
59. begin 
60. CPS;CY:=CY+N+l;cursor(CXtCYl 
61. end; 
62.procedure UPCN:integer); 
63. begin 
64. CPS;CY:=CY-N-1;cursor<CXtCYl 
65. end; 
66.procedure RIGHTCN:integer); 
67. begin 
68. CPS;CX:=CX+N+1;cursor<CX,CYl 
69. end; 
70.procedure LEFT<N:integerl; 
71. begin 
72. CPS;CX:=CX-N-l;cursor<CXtCYl 
73. end; 
74.procedure START; 
75. var N:integer; 
76. begin 
77. r· epeat 
7:::. begin 
79. wr·ite("(!:"); 
80. RIGHT(9); 
81. 
o·-· 
·-· 4 • 

84. 
tJC: ·-· ·-' . 
86. 
87. 
·=-·=-·-··-· . 
90 .. 
91 . 
92. 
9:::. 
94. 
95. 

writeln("O++ HANOI TOWER 
DOWC5); 
for N:=o to 8 do 

begin 
RIGHTC6}; 
•JJr·ite<"I"l; 
RIGHTC11); 
wr·ite("l"); 
RIGHTC111; 
writeln("l") 

end; 
for· N:=1 to 40 do wr·ite("..LI.."); 
wr· iteln(); 
RIGHTC2); 
wr· iteln(" How many disks"); 

•• II) ; 

96. 
97. 

RIGHTC2J;wr· ite(" do YOIJ OJ.'ant to move c:.:.:-6) "); 
r· e ad ( D I ::: K NUMBER ) 

9B. end 
99. IJ n t i 1 ( D I :::I<NUI'lBER< 7) and ( D I :::KNUMBER >2); 

100. TOWER1:=o; 
101. TOWER2:=0; 
102. TOWER3:=0; 
103. for DISI<NO:=DISKNUMBER downto 1 do DISKW<DISKN0,1l 
104. end; 
105.procedure DISKW<DISI<NO,TOWERNUMBER:integer); 
106. var N:integer; 
107. begin 
108. if TOWERNUMBER=l then 
109. begin 
llO. wr· ite(. "C]"); 
111. A:=15-TOWER1; 
112. DOWCAJ; 
113. A:=6-DISKNO; 

151 



152 

114. 
115. 
11 6 . 
11 7. 
118. 
119. 
120. 
121. 
122. 
12:3. 
124. 
125. 
12/:.. 
127. 

129. 
1:30. 
1 :3 1 • 

1 :~:4. 
1:35. 
136. 
1:37. 

1:39. 
140. 
141. 

RIGHT<A>; 
for· N:=1 to DISKNO do CMOVE< ~~W >; 
RIGHT<O>; 
for N:=O to DISKN0-1 do CMOVE< 1 ®1 l; 
TOWER1:=TOWER1+1 

end 
else if TOWERNUMBER=2 then 

begin 
•JJr·ite< "Ill"); 
A:=15-TOWER2; 
DOI-J<A); 
A:=1'"i'-DIS~<NO; 

RICiHT(A); 
for· N:=1 to DI~3KNO do CMOVE< 1 !~~~1 1 >; 
RICiHT<Ol; 
f 0 r· N: =0 t 0 [I u::KN0-1 d 0 CMOVE ( I ~t= I ) ; 

TOWER2:=TOWER2+1 
end 

else begin 
wr·ite< "Ill"); 
A:= 15-TOWER::::; 
DOW<A>; 
A: =:32- D I ~::KNO; 
F:IGHT<A>; 
for· N:=1 to DI:::I<NO do CI'10VE< ~~!=!~:'); 

RIGHT<O>; 
for· N:=O to DI~::KN0-1 do CMOVE< 1 i!W); 
TOWER:3:=TOWER:3+1 

142. end; 
14:3. DELAY<500) 
144. end; 
145.procedure DISKD<TOWERNUMBER:integer); 
146. var N:integer; 
147. begin 
148. if TOWERNUMBER= 1 then 
149. begin 
150. write("CJ"); 
151. A:=16-TOWER1; 
152. DOW(A); 
15:~:. 

154. 
155. 
156. 
157. 
158. 
159. 
1(:, 0 • 
1 (~.1 • 
162. 
1 t.:3. 
164. 
165. 
166. 
167. 

1/:..9. 
170. 
171. 
172. 
173. 

RIGHT<O>; 
for N:=1 to 6 do CMOVE< 1 1 li 
RIGHT(O); 
for N:=O to 5 do CMOVE( 1 1

); 

TOWERl:=TOWERl-1 
end 

else if TOWERNUMBER=2 then 
begin 

wr·ite("CJ"); 
A:= 1 t.-TmJER2; 
DOW<A>; 
RIGHT< 1:3); 
for N:=l to 6 do CMOVE< 1 1

); 

RIGHT<O>; 
f o r· N : = 0 t o 5 d o C M 0 V E < I I ) ; 

TOWER2:=TOWER2-1 
end 

else if TOWERNUMBER=:3 then 
begin 

wr·ite< "CJ"); 
A:= lt.-TOWER3; 



174. 
175. 
176. 
177. 
1 7:::. 
179. 
1i::O. 
1::::1. end; 

DOW< A>; 
RIGHT<2e.); 
for N:=1 to 6 do CMOVE<' '); 
RIGHT<O>; 
for N:=O to 5 do CMOVE(' '); 
TOWER3: =TO~JER~:-1 

end 

1i::2.procedure DISKMOV<DISKNUMBER,T1tT2tT3:integer); 
1:::::::. begin 
1i::4. if DISKNUMBER<>O then 
185. begin 
186. DISKMOV<DISKNUMBER-1tT1tT3tT2); 
1::::7. DISKDCT1 >; 
188. DISKW<DISKNUMBER,T3); 
189. DISKMOVCDISKNUMBER-1tT2tT1tT3) 
1'::10. end 
191. end; 
192.begin { ...•..•..•.•.•....•....................... MAIN PROGRAM } 
193. range(C,40); 
194. ·:::TAR\~RITEi 

195. DELAY< 2000) ; 
1 91:.· • T I T L E ; 
197. UFOMOVE; 
19i::. wr· iteln("-l}.f}-1} SHARF' CORF'ORATION1t1t1t1t"); 
199. write(" [Press a key ]"); 
200. B:=key; 
201. while ord<B>=O do B:=key; 
202. r·epeat 
20 ::::. :::T AF:T; 
204. DISKMOV<DISKNUMBERtlt2t3)i 
205. [I(I~J(6); 

2 0 6 . w r· i t e ( II m II ) ; D (I w ( 21 ) ; F: I G H T ( 5 ) ; 
207. write(" Tr·y again <Y OR N)"); 
2 0 ::: • r· e a d ( C ) 
209. until 'Y'<>C 
210.end. 
2 1 1 • 

153 



154 

(2) Eight Queens (Application Program 2) 

The following sample program arranges 8 queens on a chessboard so that no queen can take any other. There are 

92 solutions. This procedure is often used as an example of recursive programming. procedure ARYWRITE calls itself. 

This program is the second section of the PASCAL Applications Tape. 

0.{ Eight Queens } 
l.var AtX:array[?Jof integer; 
2. e,c:array[14Jof integer; 
3. D,P:integer; 
4.procedure CLEAR; 
5. var N:integer; 
f:... begin 
7. for N:=O to 7 do A(NJ:=l; 
8. for N:=O to 14 do BENJ:=li 
9. for N:=O to 14 do CENJ:=1i 

10. P:=O 
11. er,di 
12.procedure ARYWRITE; 
13. var Z:integeri 
14. begir, 
15. Z:=Oi 
16. r·epeat 
17. if( <AEZJ+B[P-Z+7J+C[P+ZJ)=3)then 
u::. begin 
19. XEPJ:=Z; 
20. AEZJ:=O; 
21. BEP-Z+7J :=O; 
22. C[P+ZJ:=O; 
23. P:=P+li 
24. if P=8 then DATAOUT 

else ARYWRITE;{, .........•.•...... A RECURSIVE CALL} 
26·. P:=P-1; 
27. AEZJ:=1; 
28. BEP-Z+7J:=l; 
29. C[P+ZJ:=1 
30. endi 
~:1. z:=Z+l 
:;:2. IJfltil Z=::: 
::;::;:. end; 
34.procedure BOARD; 
35. var E,M,N:integer; 
~:6. begin 
37. D:=O; 

\IH"iteln( 11 .:H~~ 

write(" r 11
); 

•• E I CiHT G!UEEN::; ··~~~II ) ; 
40. 
41. 
42. 

for· M:=O to/:.. do wr· ite( 11 -r 11 )i 
wr· i te 1 n ( 11

-, "); 

for· E:=O to 7 do 
43. begin 
4 4 • w r· i t e ( 11 1 " ) ; 
45. for·M:=O to 7 do write(" I"); 
46. 
47. 
4:::. 
4q 

.• . 
50. 
51. 
C' .-, . 
._Jk,. 

•JJr·itel r.C); 
if E< >? then 

begin 
write(" l- 11

); 

for· M:=o to 6 do wr·ite("-t"); 
'JJr·ite("---j"); 
wr- i t e 1 n ( ) 



1:' ·:. ·-··-·. 
54. 
55. 

end 
else begin wr·ite( 11 

Lll); 

for· M:=O to 6 do wr· ite(II--LII); 
56. wr·iteln(II-JII) 
57. end 
5:::. end 
59. end; 
60.procedure DATAOUT; 
61. var F1M1N1Z:integer; 
62. t•egin 
(:.:3. [1:=[1+1; 
64. write< 11 rnooooooo 11

); 

65. write(D:2); 
66. wr·itelrd);wr·iteln();wr·iteln();{ ••••••••• :3 CARRIACiE RETURNS} 
67. for N:=O to 7 do 
<. ·=· r:..••-• • 

1:,.'~1 • 

70. 
71. 
72. 
7:3. 
74. 
75. 
7/:... 
77. 
7::: I 

7 q ... 
8() I 

81 . 
C•·-:• 
,_,..;.., I end; 

begin 
wr·ite( 11 ¢· 11

); 

for· M:=O to 7 do 
begin 

if X[NJ=M then 
begin 

F:=M+l; 
w r· it e ( 11 0¢· 11 

) ; 

music ( 11 +A0 11
) 

end 
else wr· ite( 11 

¢·
11

) 

end; 
w r· i t e 1 n ( 11 

¢· 
11 

1 F : 2 1 
11 o 11 

) 

end 

:::::::.begin { ... I ••••••••••••••••••••••••••••••••• EIGHT t)IJEENS MAIN} 
::::4. tempo(?) ;r·ange(CI40); 
:::5. CLEAR; 
86. BOAF:D; 
:::7. ARYWRITE 
::::::.end. 

155 



156 

(3) Calendar Program (Application Program 3) 

When this sample program is executed, a message appears which requests the operator to enter the year. The pro­

gram displays the calendar for month of January of the specified year and steps. Pressing any key advances the month. 

This program is the third section of the PASCAL Applications Tape. 

0 • { 0 •J r· C a 1 e n d a r· } 
l.var YEARtMONTHtTOP,Y:integer;LCHR:char; 
2.procedure PRINTCALENDARIYtMtT:integer);{ ••..•..... Pr· int Calendar} 
3. var Nt!tDAYS:integer; 
4. begin 
5. •:ase M of 
6 • 
7 . 
•::0 ·-· . 
9. 

10. end; 

1t3t5t7t8t10t12:DAYS:=31; 
4t6t9t11:DAYS:=30; 

2:ifCY mod 4=0)and(Y 
then DAY::;:=29 
e 1 s e DAY::;: =2::: 

11. wr·ite("•!:"); 

mod lOO <> O>or(Y mod 400=0) 

12. cur·sor· <11,::::);wr· iteln("++ ",Y:4,"- ",M:2," ••~"); 
13. PRINTLINE<'-'); 
14. write(" SUN MON TUE WED THU FRI SAT" ) ; 
15. PRINTLINE<'-'); 
16. 
17. 

wr· iteln("~"); 

for 1:=1 to T do write(" 
1:::. r·epeat 
19. ifCI< >1>and<I mod 7=1>then 
20. wr· iteln("~"); 
21. write<I-T:5); 
22. I:=I+l; 
2::::. until I-T>[tAY::;; 
24. TOP:=<I-l>mod 7; 
25. PRINTLINE< '-' >; 
26. music("+GO"); 
27. er.d; 

II ) ; 

28.procedure PRINTLINE(LCHR:char);{ .... Carriage Return & Line Print} 
29.var N:integer; 
~:o. begin 
:31. wr· iteln(); 
32. for N:=1 to 39 do 
33. write<LCHR:1) 
::::4. end; 
~:5.begir, { ..................................................... Maj.r1 } 

36. range(C,40);tempo(6); 
37. while key=chr(O)do 
3:::. begin 
~:9, c•Jr·sor· C13t22);wr·ite("Year· "); 
40. read(YEAR); 
41. Y:=YEAR-1; 
4 .-·. 

.L. 

43. 
44. 
45. 
46. 
47. 

TOP:=CY+CY div 4)-(Y div 100l+(Y div 400l+llmod 7; 
for MONTH:=l to 12 do 

begin 
PRINTCALENDAR<YEARtMONTHtTOP); 
while key=chr(O)do 

end 
4B. end 
49.end. 
50. 



(4) Magic Square (Application Program 4) 

A square grid is specified and numbers are assigned to all squares of the grid to that the total of the numbers on 

any horizontal vertical line or diagonal line are the same. The number of squares on one side of the grid must be an odd 

number from 3 to 19. When 9 or greater is specified, the result is output to the printer; otherwise, it is displayed on the 

CRT screen. 

This program is the fourth section of the PASCAL Applications Tape. 

0.{ A Mathematical Game : Magic Square } 
1.var DATA:array[18t18Jof integer; 
2. AREADtXMAXtDATAN,Q,X,Y:integer; 
3. CH:char·; 
4.procedure ARRAYCLEAR;{ •••••••••.•••••••••••.••.••• Clears Array } 
5. var I,J:integer; 
f:... begin 
7. for I:=o to 18 do 
8. for J:=O to 18 do DATA[I,JJ:=O 
9. end; 

10.procedure KEVIN;{ Displays Title and Reads Number of Squares 
11. var N:integer; on a Side } 
12. begin 
13. r·epeat 
14. wr·iteln("f~: .fJ..fJ..fJ.o:::· <::·<::·<::·<::·<::·<::·+++ MATHEMATICAL GAME+++"); 

'IJr·ite(" 
for· N:=o to 
wr·iteln(); 

II ) ; 

24 do •JJr·ite("-"); 
15. 
16. 
1 7 • 
u::. 
1 9 . 

wr·iteln(".fJ.{~ Number· of sq•Jar·es m•Jst be an odd.fJ."); 

2(). 

21. 

wr· iteln(" n•Jmber· [:3-1 .9]."); 
wr· iteln(".fJ..fJ..fJ. l~hen it is mor·e than or· equal to 9,-IJ."); 
writeln(" data is o•JtP•Jt to the Pr·inter·."); 
wr· ite(".fJ..fJ..fJ..fJ. Enter· number· of squar·es "); 
r·ead ( XMAX); 

24. until odd(XMAXland(XMAX>2landCXMAX<20) 
25. end; 
26.procedure WBEGIN; 
27. begin 
28. X:= CXMAX-1>div 2; 
29. Y:=XMAX-1; 
::;:o. DATAN: = 1; 
31. ARRAYWRITECDATANtXtY); 
32. DATAN:=DATAN+1; 
::::::::. x:=X+l; 
34. Y:=O; 
35. ARRAYWRITECDATANtXtY) 
36. end; 
37.procedure ARRAYWRITECN,XNtYN:integer); 
:;::::.begin 
39. DATA[XNtYNJ:=N 
40. end; 
41.procedure DATAWRITE; 
42. var MAXSIZE:integer; 
43. begin 
44. MAXSIZE:=XMAX*XMAX; 
45. r·epeat 
46. DATAN:=DATAN+1; 
47. x:=X+1; 
4:::. Y:=Y+1; 
49. .JUDGE 
50. •Jr•til DATAN=MAX::nzE 

157 



158 

51. end; 
52.pr·ocedur·e .JUDGE;{ ............................ Check Data Ar·ea} 
53. var GMAX:integer; 
54. begin 
55. GMAX:=XMAX-1; 
56. ifCX <XMAX>andCY <XMAX>then 
57. begin 
58. ARRAYREADCX,Y>; 
59. if AREAD=O then ARRAYWRITECDATAN,X,Y> 
c.o. 
61. 

else begin 
x:=x-1; 

62. v:=Y-2; 
63. ARRAYWRITECDATAN,X,Y> 
64. end 
65. end 
66. else ifCX>GMAX>andCY<XMAX>then 
67. begin 
c.e. x:=o; 
69. ARRAYWRITECDATAN,X,Y> 
70. end 
71. else ifCX <XMAX>andCY>GMAX>then 
72. begin 
73. v:=o; 
74. ARRAYWRITECDATAN,X,Y> 
75. end 
76. else if<X >GMAX>and<Y>GMAX>then 
77. begin 
78. x:=x-1; 
79. v:=Y-2; 
80. ARRAYWRITECDATAN,X,Y> 
81. end 
82. end; 
83.procedure ARRAYREADCX,Y:integer); 
84. begin 
85. AREAD:=DATA[X,YJ 
E:6. end; 
87.procedure DATAOUT;{ 
88. var M,N:integer; 
89. begin 

Outputs Data to CRT } 

90. wr· itelnC 11 •!: **MATHEMATICAL GAME DATA ** 11
); 

91. if XMAX >B then 
92. begin 
9 3 • w r· i t e 1 n ( 11 

.(} .(} .(} .(} .(} .(} ::: 1 n c e d a t a i s t o o 1 a r· g e , .(} 11 
) ; 

94. writeln( 11 r·esult is o•JtP•Jt to the Pr·inter· ~-1} 11 ); 
95. PRINTER; 
96. end 
97. else begin DATAPRINT;BOARD end 
98. end; 
99.procedure DATAPRINT; 

100. var M,N:integer; 
101. begin 
102. Y:=XMAX; 
10::::. G!:=o; 
104. write( 11 ill8.(}0 11

); 

105. for M:=l to XMAX do 
106. begin 
107. Y:=Y - 1; 
1oe. x:=o; 
109. wr·ite(" "); 
110. for N:=1 to XMAX do 



111. begin 
112. ARRAYREAD(X,Y>; 
113. write<AREAD:4); 
114. x:=X+1 
115. end; 
11/:... wr· iteln("~~"); 

117. Q:=AREAD+Q 
1UL end 
119. end; 
1 2(1. procedure BOAR[I; { ..••••••.....•...••.•••••..•..•.... Write Board } 
121. var· M,N:integer· ; 
122. begin 
123. M:=XMAX-1; 
124. UP; 
125. for N:=1 to M do begin· 
126. SIDE; 
127. MID 
128. end; 
129. !:dOE; 
130. BOTTOM 
131. end; 
132.procedure UP; 
133. var M,N:integer; 
134. 
1 :~:5. 
1 :::: t .. 
137. 

begin 
M:=XMAX-1; 
wr·ite("CJ~ r"); 
for· N:=1 toM do wr· ite<"---r">; 
wr· i te 1 n < "---, "); 

1::::9. end; 
140.procedure SIDE; 
141. var N,S:integer; 
142. begin 
143. for N:=1 to 2 do 
144. begin 
145. write (" I"); 
146. for· S:=1 to XMAX do wr·ite("¢·¢-¢-j"); 
147. writeln(); 
148. end 
149. end; 
150.procedure MID; 
151. var M,N:integer; 
152. begin 
15::::. wr-ite(" t-">; 
154. M:=XMAX-1; 
155. for· N:=1 toM do wr·ite<"---t">; 
156. w r· it e ( "----l " ) ; 
157. writeln() 
158. end; 
159.procedure BOTTOM; 
1/:..0. var M,N:integer; 
161. begin 
162. wr·ite(" L."); 

1/:..3. M:=XMAX-1; 
164. for· N:=1 toM do wr·ite("-----L-"); 
165. wr· iteln("----l");wr·ite<" Res•Jlt"); 
166. write(Q:5) 
167. end; 
168. pr·ocediJr·e PRINTER; { ..........•..•..•.......•...•....•. Pr· i. nter· } 
169. var MtNtP,Q,R,s,T,U:integer; 
170. begin 

159 



160 

171. M:=XMAX-1; 
172. Y:=XMAX; 
17:3. C!:=O; 
174. x:=o; 
175. pwriteln(); 
176. pwr· iteln<chr·<14):1," ++ MATHEMATICAL GAME ++",chr· (20J); 
177. pwr·iteln(); 
1 7 E: • p w r· i t e < c h r· ( 2 7 ) : 1 , c h r· < 0 ) : 1 , c h r· < 9 ) : 1 , " r" ) ; 
179. for· N:=1 toM do pwr·ite("--,-"); 
lBO. pwr· itel n( "-----,"); 
lBl. for R:=1 to XMAX do 
1B2. 
1::: :~: . 
1 :::4. 
1:35. 
1B6. 
1:::7. 
188. 
1:39. 
190. 
191. 
1 CJ"':J .. -. 
19:3. 
194. 
195. 
196. 
197. 
19:::. 

begin 
pwrite(" I"); 
for· T:=1 to XMAX do pwr· ite(" 
pwr·iteln(); 
Y:=Y-1; 
pwr·ite(" I"); 
for P:=1 to XMAX do 

begin 
ARRAYREAD<X,Y>; 
pwr· ite(AREAD::3," I">; 
x==X+1 

end; 
x:=o; 
pwr·iteln(); 
G!: =AREAD+C:!; 
if R< XMAX then 

begin 
pwr· ite<" 1-"); 

I II ) ; 

199 . 
200. 
201. 

for· U:=1 to XMAX-1 do pwr· ite<"--+">; 
pwr· i te 1 n ( "----1") 

202. end 
20:3. end; 
204. pwr·ite(" L"); 

205. for S:=1 toM do pwr·ite("-..1..."); 
2 0 6 • p w r· i t e 1 n ( "_____J " 1 c h r· ( 1 0 ) ) ; 
207. pwr· iteln(chr· <10) ) ; 
20:::. pwr·ite(chr· l14):1," TOTAL OF NUMBER::;:::::"); 
209. pwriteln(Q:5,chr!20):1,chrl27):1,chr(2):1,chr<12) :1); 
210. end; 
L~11.t•egin { .................................................... Main } 
212. range(C,40); 
21:3. r· epeat 
214. ARRAYCLEAR; 
215. KEYIN; 
216. WBEGIN; 
217. DATAWRITE; 
21B. DATAOUT; 
219. writeln(); 
220. write(" Continue or not <Y OR N> "); 
221. read(CH> 
222. until CH<>'Y' 
22 :3.end. 
224. 



... MATHEMATICAL GAME .... 
r---r---r---r---.---.---.---.---.---.---.---.---.---.---.---.---.----.·--.-·--

10? 213 234 255 276 297 318 339 360 

212 ·'":· ·:· ·:· 
,;,.. ·-· ·-· 254 275 19 21 

22 43 64 85 106 127 148 169 190 

42 f ·:· ,,: .. _. 84 105 126 147 168 189 191 

232 253 274 295 316 337 358 18 20 41 62 83 104 125 146 167 188 209 211 

252 273 294 315 336 357 17 38 40 61 82 103 124 145 166 187 208 210 231 

272 293 314 335 356 16 37 39 60 81 102 123 144 165 186 207 228 230 251 

292 313 334 355 15 36 57 59 80 101 122 143 164 185 206 227 229 250 271 

312 333 354 14 35 56 58 79 100 121 142 163 184 205 226 247 249 270 291 

332 353 13 34 55 76 78 99 120 141 162 183 204 225 246 248 269 290 311 

.-,It:'.-·. 

.,:o._l,.::. 12 :~::;: 54 7 1:' 

·-' 77 98 119 140 161 182 203 224 245 266 268 289 310 331 

1 1 II:'.-• 
. _r.,:. 74 95 97 118 139 160 181 202 223 244 265 267 288 309 330 351 

31 52 73 94 96 117 138 159 180 201 222 243 264 285 287 308 329 350 10 

51 72 93 114 116 137 158 179 200 221 242 263 284 286 307 328 349 9 ::::o 

71 92 113 115 136 157 178 199 220 241 262 283 304 306 327 348 ::: 29 ~50 

91 112 133 135 156 177 198 219 240 261 282 303 305 326 347 7 28 49 70 

111 132 134 155 176 197 218 239 260 281 302 323 325 346 6 27 48 69 90 

131 1
1:' , •. , 
._r..:_ 154 175 196 217 259 280 ::::22 1:' 

·-' 26 47 :::9 110 

151 153 174 195 216 237 258 279 300 321 342 344 4 25 46 67 88 109 130 

171 173 194 215 236 257 278 299 320 341 343 3 24 45 66 87 108 129 150 

172 193 214 235 256 277 298 319 340 361 2 23 44 65 86 107 128 149 170 

TOTAL OF NUMBERS : : : : : 

161 



162 

(5) Hexadecimal-to-decimal Conversion Program 

The following sample program performs the step described on page 81. 

0.{ Hexadecimal-to-decimal Conversion} 
1.var DATA:array[lOJof char; 
2. A:integer·; 
3. FLUG:boolean; 
4.procedure DATAIN; 
"' ·-' . 
f:.,. 
7 . 
C• ·-· . 

1 (l • 
11. 
12. 
13. 
14. 
1 5 • 
16. 
1 7 • 

var· N:integer·; 
x:char·; 

begin write<"Enter data in hex. $"); 
for N:=O to 10 do DATACNJ:='O'; 
N:=O;X:='X'; 
while X<>chr-(l::::>do { ..•....•...•..••.........•.•... 1:::: is CR} 

begin 
r·epeat 

x:=key 
•J n t i 1 ( ( X > ' I ' ) an d ( X< ' : ' ) ) o r· ( ( X > ' @ ' ) an d ( X< ' G ' ) ) o r· < X= c h r· ( l :::: ) ) ; 
if X<>chr(13)then write<X:1); 
DATA[NJ:=X; 
N:=N+l 

t::L e n d ; 
19. if N>5 then begin 
20. wr·iteln(" Inp•Jt Er·r·or· ~"); 

21. DATAIN 
22. end 
23. else begin 
24. 
25. 
2/..-: •• 
27. 
.-,r. 
L•:• • 

2'7. 
:;:(). 
31. 

...... -, 

. .: • . :J • 

~.c= .;. .. _ .. 
~:/:. .. 
:37. 
"':••=· ·-··-·· . 
40. 
41. 
42. 
4::::. 
44. 
45. 
46. 
47. 
48. end; 

case N of 4:begin 
DATA[4J:=DATAE3J; 
DATAC3J:=DATAC2J; 
DATAC2J:=DATAC1J; 
DATAElJ:=DATA[OJ; 
DATACOJ:='O' 

end 
end 

end; 
3:begin 

DATAC4J:=DATAC2J; 
DATAC3J:=DATAC1J; 
DATAC2J:=DATACOJ; 
DATA[l]:='O'; 
DATACOJ:='O' 

end; 
2:begin 

DATA[4J:=DATAC1J; 
DATAC3J:=DATACOJ; 
DATAC:2J :='0'; 
DATAC1J:='O'; 
DATACOJ:='O' 

end; 
l:for· N:=O to 3 do DATAENJ:='O';, 

49.procedure TRANS;{ •..••..•..••...• Conversion of less than $8000} 
50. begin 
51. if DATA[OJ<'B'then 
52. begin A:=(ordCDATA[OJ)-48)*4096; 
53. if DATAC1J>'9'then A:=A+Cord<DATA[lJ)-55)*256 



54. 
55. 
5(: .• 

57. 
58. 

else A:=A+(ord<DATA[lJ>-48>*256; 
if DATA[2J>'9'then A:=A+(ord<DATA[2J)-55)*16 

else A:=A+<ord<DATA[2J>-48>*16; 
if DATA[3J)'9'then A:=A+(ord<DATA[3J)-55) 

else A:=A+<ord<DATAE3J)-48); 
wr· iteln(" =",A:t;.,".IJ"); 

if A=O then FLUG:=false 60. 
61. end 
(:.2. else TRANSl 
6::::. er.d; 
64.procedure TRANS!;{ Conversion of greater than $7FFF } 
65. var· B:r·eal; 
6/:... begin 
67. if<DATAEOJ='8')and<DATA[1J='O')and<DATA[2J='O')and<DATA[3J='0') 
6 ':3 • t h e n w r· i t e 1 n ( 11 = · [ -:3 2 7 6 7- 1 J ~ 11 > 

69. else begin 
70. if DATA[OJ>'9'then B:=float<ord<DATA[OJ>-55>*4096.0 
71. else B:=float<ord<DATA[OJ)-48)*4096.0; 
72. if DATA[1J>'9'then B:=B+float<ord<DATA[lJ)-55>*256.0 
73. else B:=B+float<ord<DATAE1J)-48)*256.0; 
74. if DATA[2J>'9'then B:=B+float(ord<DATA(2J)-55)*16.0 
75. else B:=B+float<ord<DATA[2J)-48)*16.0; 
76. if DATA[3J)'9'then B:=B+float<ord<DATA[3J>-55> 
77. else B:=B+float(ord<DATA[3J)-48); 
78. A:=trunc<65536.0-B>*<-1>; 
79. 
8(>. 

wr· iteln( 11 =",A:1(1); 
wr·iteln() 

81. end 
82. end; 
::::~:.beg). rt { ........•.......•........•...........•..........•. MAIN} 
84. wr· iteln( 11 1!:c:=-¢·He>:adecimal-to decimal Conver·sion~~~~); 

85. FLUG:=true; 
::::6. r·epeat 
f.:?. DATAIN; 
8B. TRAN:::; 
89. until not FLUG 
90.end. 
91. 

163 



164 

(6) Conversion Program for decimal numbers in the range from -32767 to +32767 into hexadecimals 

0.{ Decimal-to Hex~decimal Conversion} 
1.var AtDATA:integer; 
2. DATA1:r·ea1; 
3. FLUG:boolean; 
4.pr· ocedur-e [IATAIN;{ ........•..............•.•...•..... Read Data} 
5. begin 
f:... wr·ite<"Enter· Data in Decirr.al [+32767 •... - ::::2767] "); 
7. readln<DATA); 
B. DATAl:=float<DATA>; 
9. if DATA=O then FLUG:=false 

10. else begin 
11. FLUG:=true; 
12. if DATA<O then TRANS1f:..R<DATA1> 

else begin A:=DATA div 4096;TRANS16 end 
14. end 
15. end; 
16.procedure TRANS16;{ ....•............... Positive Data Processing } 
17. begin 
1:::. wr·ite("$ "); 
19. if A<> O then begin DISP1<A>;DATA:=DATA mod 4096 end 
20. else wr· ite("O"); 
21. A:=DATA div 256; 
22. if A<>O then begin DISP1<A>;DATA:=DATA mod 256 end 
23. else wr· ite<"O"); 
24. A:=DATA div 16; 
25. if A<>O then begin DISP1<A>;DATA:=DATA mod 16 end 
26. else wr· ite("O" ·); 
27. DISPl <DATA>; 
2:::. wr·iteln() 
2·:.1, end; 
30.procedure TRANS16R<NEG:real );{ ..•..••.. Negative Data Processing J 

31. var x,v:r·eal; 
32. begin 
33. X:=65536.0+NEG; 
34. A:=trunc(X/4096.0); 
::::5. Y:=float(A); 
36. DATA:=trunc<X-Y*4096.0); 
37. TRAW:: 1 f:., 
:::::::. end; 
39.procedure DISPl<Z:integer); 
40. begin 
41. if Z>9 then case Z of 10:write( A"); 
42. 11:write( B">; 
43. 
44. 
45. 
46. 
47. 
4:::. 

end 
else wr·ite(Z:1) 

12:wr· ite( C"i; 
1:::::.,.nite< [I"); 

14:wr· ite( E"); 
15:wr·ite< F") 

5(>.t•egin { .......•.....•...................................... Main } 
51. wr·ite("(~: "); 

52. FLUCi:=tr·ue; 
5 :3 . r-epeat 
54. DATAIN 
55. until not FLUG 
56.end. 
57. 



(7) Sierpinski Curve 

This sample program controls the graphic display control. Therefore, graphic RAM expansion is required. The num­

ber of size levels of Sierpinski curves is from 1 through 5. 

0.{ Sierpinski Curve} 
1.var· p,x,v,X1tY1tHti,N:integer· ; 
2. R:-: h a r·; 
:;:, { I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ~:;ier·pinski. } 
4.procedure AA<I:integerl; 
5. begin if I >O then 
6. begin AA<I-1J;X:=X+H;Y:=Y-H;PLOT; 
7. BB<I-1l;X:=X+H+H;PLOT; 
8. DD<I-1J;X:=X+H;Y:=Y+H;PL.OT; 
9. AA<I-11 

10. end 
11. end; 
12.procedure BB(I:integer); 
13. begin if I >O then 
14. begin BB<I-1J;X:=X-H;Y:=Y-HlPLOT; 
1 5 • 
16. 
1 7 • 

CC(I-ll;Y:=Y-H-H;PLOT; 
AA<I-1J;X:=X+H;Y:=Y-H;PLOT; 
BB<I-11 

end 
1'::'. end; 
20.procedure CC<I:integerll 
21. begin if I >O then 

·-:1·') 
~--·. 

24. 
.-.c.-
,;;_ ._1 I 

begin CC!I-1J;X:=X-H;Y:=Y+H;PLOT; 
DD<I-11 ;X:=X-H-H;PLOT; 
BBII-1J;X:=X-H;Y:=Y-H;PLOT; 
CC(I-11 

26. end 
27. endl 
28.procedure DD(I:integerll 
29. begin if I >O then 
30. begin DD<I-1J;X:=X+H;Y:=Y+H;PL.OT; 
31. AA<I-1J;Y:=Y+H+H;PLOT; 
32. CC<I-1J;X:=X-H;Y:=Y+H;PLOT; 
33. [1[1( I-1 l 

end 
:35. end; 
:::::f:...pr·ocedur·e PLOT;{ Draw Line between Two Points } 
:;.:?. begi.n 
::;::::. line<X1tY1tXtYl; 
:::::9. X1:=X;Y1:=Y 
40. er,d; 
4 1 . p r· o c e d 'J r· e H 0 ~J ; { • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • R e a d ::; i. :z e N u m b e r } 
42. begin 
43. r· e peat 
44. 
45. 
46. 
47. 
4:::. 

·~r· it e 1 n ( "(~:'*·<:·'*· <:·<:· '*· '* · 

wr· ite("lJ.lJ. 
r·eadl rdRl; 

Sierpi.nski Curve 
INPUT[1-5J"); 

u n t i 1 ( R >' 0 1 
) and ( R< 1 

/:.. 
1 

) ; 

N:=or·d(RJ-4::: 
49. end; 

II); 

~·(>. { ••••••••••.••••••••..••••••.••..•..•.•••••••• :=:ier· pinski. Main } 
51. begin 
52. range(C,40J; 
5:3. r·epeat 

165 



166 

54. HOW; 
55. graphCltltCtOtl); 
56. I:=O;H:=32; 
57. x:=2*H+90; 
58. v:=3*H+38; 
59. repeat 
60. I:=I+l; 
61. X:=X-H; 
62. H:=H div 2; 
63. Y:=Y+H; 
64. Xl:=X;Yl:=Y; 
65. AA<I>;X:=X+H;Y:=Y-H;PLOT; 
66. BB<I>;X:=X-H;Y:=Y-H;PLOT; 
67. CC<I>;X:=X-H;Y:=Y+H;PLOT; 
68. DD<I>;X:=X+H;Y:=Y+H;PLOT; 
69. until I=N 
70. until key='E' 
71. end. 
72. 



(8) Color Hilbert Curve 

This sample program is an example of color system control program. The color control program (SB-3000 series) 

must be loaded in memory in advance. 

The number of size levels of the curve is from 1 through 7. 

0.{ Color· ................. HILBERT} 
1.var PtXtYtX1tY1tHtltNtXOtYO:integer; 
2. R:.:har·; 
3.procedure TRANSL(AtBtCtD:integer); 
4. begin 
5. t ran ( 1 L 1 

, 
1

, 
1 

) ; 

6. TRANS(A,B>;tran( 1 t'); 
7. TRANS(C,DJ;tran<chr<13)) 
:::. end; 
9.procedure TRANS<A,B:integer); 

10. begin 
11. COLOR<A>;tran( 1 t 1

); 

12. COLOR<B> 
1:=:. end; 
14.procedure COLOR(X:integer);{ Convert X into ASCII Code , and 
15. var C100tC10:char; Transfer } 
16. begi.n 
17. ClOO:=chr<X div 100+48); 
18. x:=x mod 100; 
19. ClO:=chr<X div 10+48); 
20. tran<C100,C10tchr<X mod 10+48)) 

2~2. { I • I I I I ••••••• I •• I ••• I •• I ••• I I •• I ••••• I I •• I I ••• I I •• I •• HILBERT } 
23.procedure AA<I:integer); 
24. begin if I>O then 
25. begin DD<I-1);X:=X-H;PLOT; 
26. AA<I-1J;Y:=Y-H;PLOT; 
27. AA<I-l);X:=X+H;PLOT; 
2:::. BB< I-1 > 
·-::·q .._ ... end 
:::o. end; 
31 .procedure BB<I:integer); 
32. begin if I>O then 
33. begin CC<I-1J;Y:=Y+H;PLOT; 
:34. BB<I-l);X:==X+H;PLOT; 
35. BB<I-1J;Y:=Y-H;PLOT; 
36. AA<I-1) 
37. end 
:3:::. end; 
:::9.pr·oced•Jr·e CC(I:integer· ); 
40. begin if I>O then 
41. begin BB<I-l>;X:=X+H;PLOT; 
42. CC<I-lJ;Y:=Y+H;PLOT; 
43. CC(I-1J;X:=X-H;PLOT; 
44. [1[1(!-1) 
45. end 
46. end; 
47.procedure DD<I:integer); 
48. begin if I>O then 
49. begin AA<I-i);Y:=Y-H;PLOT; 
50. 
51 . 
t:: .-, 

·-· ~ . 
C' .-. 
._r._:, • end 

[1[1(!-1) ;X:=X-H;PLOT; 
DD<I-1);Y:=Y+H;PLOT; 
CC<I-1) 

167 



168 

54. end; 
55.procedure PLOT;{ ••••.••••••••.••• Draw Line between Tow Points } 
56. begin 
57. TRANSL<x,y,xl,Y1l; 
C'•J ·-··-· . X1 :=X ;Yl :=Y 
5'~'. end; 
/:..(),pr-ocedur·e Ht)W;{ •.•.•••..•••..•.••.•..•••••.•. Read ~;ize Number·} 
61. begin 
62. r·epeat 
6 :::: • w r· i t e 1 n ( 11 •!: -IPJ. .fJ. .fJ. .fJ. <=· <=· <=· <=· <=· <=· <=· C o 1 o r· H I L BE R T C u r· v e 11 

) ; 

/.:..4. wr·ite(II-IJ.-IJ.-IJ.c::·<=·Enter· size N•Jmber· [ 1--7 J 11
); 

65. read1n(R); 
66. w r· it e ( 11 .fJ..fJ..fJ..fJ.c::·<:·<=·<=·<=·<=·<=·<=·<=·••• Running ••• 11 

) ; 

/.:.. 7 • •J n t i 1 ( F: > 1 0 1 
) and ( R< 1 :3 1 

) ; 

68. N:=ord<Rl-48 
69. end; 
7(), { •••••••••••••••••••••••••••••••••••••••••••••••• HILBERT Main } 
71.begin 
72. r·epeat 
7:"3. HOW; 
74. tr·an< 11 M,o~~,~~B,0 11 );{ •••••••• B Color· Mode, Black Backgr·ound } 
75. for P:=-1 to (:. do 
71.:... begin 
77. I:=o; 
7B. H:=128; 
79. xo:=H div 2+64; 
80. vo:=xo-35; 
81. repeat 
82. 1:=1+1; 
83. H:=H div 2; 
84. YO:=YO+H div 2; 
85. xo:=XO+H div 2; 
86. X:=XO; 
87. Y:=YO; 
8B. Xl:=X; 
89. Y1:=Y; 
90. tran< 1 C 1 1 1 1 1 1Chr((P+l)mod 7+49),chr(13)); 
9 1. AA<I> · 
92. ur.ti.l I=N 
9:3. end 
94. until key= 1 E 1 

95.end. 
9/.:... 



(9) Port 1/0 Program 

This sample program transfers data between the computer and the color control terminal via the port by means of 

input and output statements. 

Procedure COLOR (line 2 through 11) perfonns ahnost the same function as tran (A). Refer to the OUTPUT 

MODE routine in the Color Control Manual. 

Key in M, 0 CR B, 2 CR C, 1 CR SF, 127, 95, 0, SHARP CR in succession; the result will be the same as that of 

example 1 on page 94. 

0.{ I/0 Control Program via Port } 
l.var A,s,c:charl 
2.procedure COLOR<A:charl; 
3. var B:char·; 
4. begin 
5. B:=chr·(1l; 
f:... r· epeat 
7. until B=chr(ord(input(239llmod 2);{ •.••.••.••. ,Check Bit 0} 
8. output(A,238l;{ •••••••••••• Output Key in Data to Port SEE} 
9. output(chr· ((:.),239);{ ................. Output 6 to Por· t $EF} 

10. output(chr(7lt239l{ •.••••••••••.•••.• Output 7 to Port SEF} 
11. end; 
12.begin 
1·:· ...... 
1 4 • 
15. 
1 (:. • 
17. 
1 :: : • 
1 'il • 
2(>. 
21 I 

B:='~';{ 

wr·ite( 11 1!: lHHJ.? 11 l; 
r·epeat 

r·epeat 
A:=key; 
if A=chr(102lthen A:=chr(13l 

until A<> chr(Ol; 
COLOR (A l ; 

Dummy for Rep~tition } 

i f A = c h r· ( 1 3 l t h e n b e g i n w r· i t e 1 n ( l ; w r· i t e ( 11 ? 11 l e n d 
else wr-ite(A:1) 

u r1 t i 1 B = k e y 

24.end • 
. -. ~:::­

~- ·-·. 

169 





SHARP CORPORATION 

MODEL : MZ8BT02E 
TINSE0031 PAZZ I MZ-80 8 
080261-01 0881 . E 1 


	Sharp_MZ-80B_PASCAL_Language_Manual_front
	175619
	175629
	175636
	175639
	175645
	175649
	175655
	175658
	175704
	175708
	175714
	175717
	175724
	175727
	175734
	175737
	175743
	175746
	175753
	175756
	175802
	175806
	175812
	175816
	175822
	175825
	175831
	175835
	175841
	175844
	175850
	175854
	175900
	175903
	175910
	175913
	175919
	175923
	175929
	175932
	175938
	175942
	175950
	175953
	180000
	180003
	180009
	180013
	180019
	180022
	180028
	180032
	180038
	180041
	180048
	180051
	180058
	180101
	180107
	180111
	180117
	180120
	180126
	180132
	180139
	180142
	180149
	180152
	180158
	180202
	180208
	180211
	180217
	180221
	180228
	180231
	180237
	180240
	180247
	180250
	180256
	180300
	180306
	180309
	180315
	180323
	180433
	180443
	180449
	180452
	180458
	180502
	180508
	180512
	180518
	180521
	180527
	180531
	180537
	180540
	180546
	180550
	180556
	180600
	180606
	180609
	180615
	180619
	180625
	180628
	180634
	180638
	180645
	180648
	180654
	180657
	180704
	180707
	180713
	180716
	180723
	180726
	180733
	180736
	180742
	180746
	180752
	180755
	180801
	180805
	180811
	180814
	180820
	180824
	180830
	180834
	180840
	180843
	180849
	180853
	180859
	180902
	180908
	180912
	180918
	180922
	180928
	180931
	180937
	180943
	180949
	180953
	180959
	181003
	181009
	181012
	181019
	181022
	181028
	181032
	181038
	181041
	181047
	181051
	181057
	181101
	181107
	181110
	181116
	181120
	181126
	181129
	181135
	181139
	181145
	181149
	181155
	181202
	Sharp_MZ-80B_PASCAL_Language_Manual_back

