Personal Computer

m4-=08

PASCAL LANGUAGE
MANUAL

SHARP

Personal Computer

MZ-80B

PASCAL Language Manual

August 1981

080271-010881

Printed in Japan © SHARP CORPORATION

NOTICE

This manual is applicable to the SB-4515 PASCAL interpreter used with the SHARP
MZ-80B Personal Computer. The MZ-80B general-purpose personal computer is supported

by system software which is filed in software packs (cassette tapes or diskettes).

All system software is subject to revision without prior notice, therefore, you are

requested to pay special attention to file version numbers.

This manual has been carefully prepared and checked for completeness, accuracy and
clarity. However, in the event that you should notice any errors or ambiguities, please feel

free to contact your local Sharp representative for clarification.

All system software packs provided for the MZ-80B are original products, and all rights
are reserved. No portion of any system software pack may be copied without approval of

the Sharp Corporation.

ii

Begin

This manual describes the PASCAL programming language supported by the PASCAL
intetrpreter SB-4515. Read this manual thoroughly before using PASCAL.

| The PASCAL interpreter, SB-4515, is.supplied in the form of a cassette tape file.
The PASCAL language has a structure which is completely different from that of the
BASIC language.
Understanding and familiarizing yourself with PASCAL programming will cause you to

change your idea of programming in other languages as well.

Study this manual step by step, and the sophisticated programming technique of PASCAL
will be yours.

il

Contents

INOTICE cuiswis s 0n i@ s s s BUEEE T REBEEGH 5 5% b @ a5 5 W w08 555 OB eSS R P it
BEEIRL + a0 50 0 5000 B 6 R O B e R iii
Chapter 1 Introduction i iiiiiiiiinnnn... 1
The story of PASCALot e e e e e e e e e e et 2
What is the difference between PASCAL BASIC? 4
Let’s try structured programmingottt 6
Recursion: A phenomenon which can be seen in everyday life 8
Event which do not constitute recursion 10
Recursive figuresttt e e 12
Chapter 2 Editingttt ittt 13
Operatingthe computer it ... 14
Load comMMant .owuu s sssmmes s snnsms s omimis s o buoness o s EEE b b 14
GO cOmMmMANA « & ottt ettt e e e e e e e e 15
LIST COMIEATT - o e w e i e mc by s o 5o @ €6 5 8 BRI F 5 & MAE 5 15
Modifying PASCAL PIOZIAMS - .« e v e e et e et e e e e e e e 16
Correcting Part of aProgram it 16
DELETE COMBEANG wmws v o5 smang 55 56 80556 5 65 6 ae o6 b 6ee e 5880 neas 16
RILL COtMRINE 5 sumonses aanam o6 6 ams e o556 b 6 o o5 6 e e b o 6 g 17
INPUT commandouuinii ettt e et 17
L(LAST), N(INEXT) commandot iiiiiinmnneennn. 18
M(Memory Size), E(Limit) command 18
S(SAVE)commandttt ettt e 19
V COMATIL s v oomins noamsass wamse b5 b boas s a6 & owsisses s awee sy s o 19
Q (MONITOR) commando vt it ettt ettt te et te e e e e ieeineenns 19
T COTTIIRATNEL 5 5 5y e smsyor o o v cm o smcoms v . cw 1m i s b o o 5 5 3, 0 BB 5 8 SR D ETEE 6 % 19
S COMMAND.: o s snmunis nsanEa s b Bamess s BaRaEEs o oomassssssnEssiss 19
F OO & sonmme e n mnmsimss s wssms 655 5 oo s s s 8 o saas s § e 20
Rcommand. i e e e 20
Editor command table.t 21
Chapter 3 Basic Rules of PASCAL, 23
Syntax diagram 24
PASCAL program structurec.c.uiiiiimneinnnneennn 30
Variable and variable declarationo, 27

v

YIENHEIRT vosvsnvsmbunanssinssnst i assmsstis RRERELL Ll ERERY S S €S 28

Integexs and real HAMBEIE . . o v acvsmsnmssrsss it hbEEEF LT HEDES LET By 29
Character constants and characterstrings 30
BBDATRLOME o cossarumaneres ERDNA L EOFENET UL P FEGHT T £ 50 0 mmim s 5 m som #1
Variable deCIATALION < s s v 15 s coion to v mmcmime oo s ma s e s aes s oo ss 33
Koray (RtlatBlION. o vunev s ruonsne ssnmmesn cosnnmessnwn s SRESR T ELEES 33
Write and read array data to/from cassettetape 35
Chapter4 Dataand EXpressionsiiuutineneneennnnnn. 47
INTepEt BRPTETRIGNE « 5 o v s spemsd s ¥ KGREEE 53 FRREEAFFIEFouRs o s ommmnns 38
Beolegn eXPIBESIONS « ; « v camwrarcamuan tpsmmmponsranmimasassmmims 40
BEg] BRpICEIONE »xyx 15 prmmss s vononss s anomums s b aaumane s bsssnss 42
CHAR EXPIeSSIONS . . oo vttt et e e ettt e et ettt e e e eeeaeeeens 43
Standard functions e 44
BILD ;i mmmm i PR EN G R F AR s b R e s e §F S RmERE 44
CHR - o sppsmwn s snmusns oo masmasssssuaunss i nansdd i i) SRRanes 44
ORI . . cvvimmim s s s mmemmn s hosuad i vABERE ¥ s nNBEAEES 5 2 URREE &8 44
EERIY s 2uaescs i BRBEE A4 PRESE S 46§ RRBEE G F § § EERET G & 5 o in s 38 2 45
RS &t e oy B PR S R S A R R AR RS EEEEE 45
ERUNGC a6 & asmsmmie 5 5 oacisms s 6 5 ahaisms s 6§ hehanss e s nusns § s 45
BLOAT . vamssn: onnsadtts bansasss pEenmdd Sasnmd € apsmns s 46
ABS: sissarmasic onEaes s DUBES TS § PRABE <5 5 BEDBEEE & [§ 5w b mis s 46
SORY 5 oo 285 6 S@UEBE F & RBESE 5 ¥ vt el 6 0 5 oo e i & 8 & 0 i o508 55 5 46
SN 5 5 o 0 5 e s 5 6 0 i 0 16 6 S 55 3 0 6 B e R B 1 46
COB s sommmems v oo & o s o 55 5 &5 BE S oSS EES 5T 6 HTSESE T 47
AN & vonmams 5 5 mams w5 o wsmens s s A L EBREEEE X ARBEEES s B fEREE 53 47
ARCTAN v ommenbesnits Sabas it s ssaEnsis SERagE s et RuNanE gy o 47
BERP . o sss b @008 2 abRBRESE iR IE st NETRE S GHaRE® s 5 47

LN . oasectrsabnne 95 oaueestd aB0REs: i ERED 3 E 5T FRRETSE ¥ & 47
EOG: : muwee s 45 QHIIEE 3 5 FHGESH it 5 DRBES 5§ § G5 Mits o 5 T woefa e 5 v 47
BEONED o e .00 0 i o o 50 i 9 0 9 6 e i 5 47
PEEK .. uvowanpmusssonosssnasssss@isstis A0nE aassnais $5s 5 b 48
CIN vmwictcranBEasds POEES TS SHTHE 65 43 ARNIE & 355 DEEE 53 9 48
INPUT nepszisaaenss 000886552 60085555 AA0REE & 5 § 5 @@ < 50w 48
KREY ronmm e n 68 Q@E0s 2 s 6 50 6 b 5 & 5 w6 535008 0 6 50 5 1628101 G s e 5 48
RREREE o e 0 5 5 506) 2 5 3 it 8 P S e 6 5 S 2 5 s e i i 48
FBRY ot ama4 5522540 5355 BREES CERABRESE § 4 HADENS & U5 BE EHGHA K 3 49
FOBH sovums veusnses 1552 9mven 5 54 5HGWEE £ 52 EAGHED § 24 SREHRY £ ¥ 49
PHEV pexnas 112 pRuns s s Sonnans § & SRSERES £ 55 SHSUE 5§ FEFER>9 & & 49
PEIIT v omen vnsmmman s nnnmons b 55 mmmm ¢ 5 & 5w ibn & o s ad b @ o 49

Chapter 5 Statementttt 51

Assignment statement e 52
Compound statementst 53
IF statement (ChOICE) .. . oottt et e e e e e e e e 54
CASE statement (selection) 56
WHILE statement (repetition 1) 57
REPEAT statement (repetition 2)c.oiiiiiiiennnnenn... 58
Writing PASCAL programsottt et et e e e e 59
FOR statement (repetition 3)o oot e 60
Procedure declaration and procedure (calling) statement 62
Function declaration and function designator 64
SaAMPlE PTOBLATIL .o afu s v smmaitincs mmiamdons mansdidis aaonias i NEane s s s 65
Global variable and local variable i, 66
Recursionculesisssmsnisssnnensssosassvssoerssesnssonsssss 68
WRITE Statement .|, « s oo svvssrmnvonnnommmmnn wsomnnenessindasssns .70
READSATSMSIE .. . comiim i oo i m oo e ommcotoms o o G B8 6 6 8 5, 61 @ @90 & 88 % 74
Graphic control statementsttt 76
Character display control statementscoiiiinnnnnn.. 78
Function key control and printer control statements 79
CGALL SEEEINEIL & ol o« 5 « 5 0 0w sttt &1 w0 1000w 0 1m0 tmss sm w2 o st s 7 0 s 0 8 80
COUL SHTBIIENT asmw s ss mmimn <ok s dwmn x e mmndisd 5 6 b E 88 & &5 6 6o ns 82
POKE Statement . o umsx s s smmais s s o5 smmmd s 555 85855 5¢ 55506t i 86 sna80 83
OUTPUT statementuur oottt e et e 84
EMPTY statementc.uiiininit e it 85
Statements and functionsttt e 86
ERBICISE .« & ¢ o novsmiews 55 6 wmmm s s ag vmmme s s ps smmsssss mmmenssssmsms s 87
MUSIC statement and TEMPO statementccououn... 88
COMMENT Statementoouiiuiee et et 90
Chapter 6 Programminguuiiieuin... 91
Programmingt ettt e 9e
Indentation 93
Link with color control SyStemovuvt it iiiii it i e 94
NSCHATE 5 5 5 0 00E 5555 BEGBED 3§ & 5 1510661 s 05 rn s 0 50150 oy o0 6 6 B DR 43 88 96
Chapter 7 SUMMAIYttt ittt ettt it ee e 101
Syntax dia@ramt e e e e 102
Summary of SYNtaXo e 110

vi

ASGILGOdEtabIS v senwss s vnpEsr s s M REEE 7 I T HGRAS 4§ BRRERAE T § BB 134
Decimal/Hexadecimal conversiontable 136
Error meSSageitable ... w.w . o womme s & oo i s o mmm st s s aammess s s 6nems 137
PASCAL SB-4515 specificationsuiiiiiiiinennennnnnnn. 139
MEHIGTYTRAD 5546 mnomasss o anmEs ss o@®asE s (eEEe 5548 VRS 5L 0 aEse 141
PASCAL SB-4515 configuration iiiiiiiiinnnnnnnnn. 142
Bl Progmain . » . 5aciss s 6amaisss cRBSB2a s AREESLYS By SEBELSF DENDE 2 149

SUPPLEMENT Complete Monitor SB-1511 Assembly Listing

vii

Chapter 1

Introduction

~

The story of PASCAL .

The PASCAL programming language was invented in 1968
by Professor Niklaus Wirth of Ziirich. Wirth is the inventor of
not only PASCAL but also of other computer programming
languages.

The background for PASCAL’s invention is a programming
language called ALGOL 60. ALGOL 60 uses Backus notation to
expreés algorithms in a clear and simple manner. The syntax
diagrams shown from page 24 on are based on the Backus nota-
tion concept used in ALGOL 60. Although it is necessary to
master PASCAL to understand the syntax diagrams, these
diagrams will not appear difficult after this book has been

thoroughly read.
PASCAL is named after Blaise Pascal (1623~1662), a 33
French mathematician and philosopher who is famous as the Professor Wirth

discoverer of Pascal’s principle, which he proved when he was only 16 years old, and as the inventor of a practical calcu-
lator. Professor Wirth invented PASCAL to provide a new systematic, scientific programming technique which does not
require reliance upon intuition.

This idea did not occur to him by chance but was one of the inevitabilities of history. ALGOL 60 was established
by the International Federation for Information Processing (IFIP) in 1960. Its ability to express algorithms is superior
to that of FORTRAN, because of the use of Backus notation, but its input and output functions are not standardized;
therefore, programs written in ALGOL 60 are not executable on different types of computers.

In 1965, ALGOL 60 was reexamined and many proposals were made for revising it. Among them was one submit-
ted by Professor called ALGOL-W; this language is currently used by some computer systems. After much discussion,
ALGOL 68 established for use around the world, however, Professor Wirth continued the studies which led to ALGOL-
W and published PASCAL in 1971.

transmits exter-
nally applied
———2\ | pressure uni-
1| formly in all
directions with-
out change in
magnitude.

PASCALS
Principle

——

Programming is creative constructive work and
careful thinking is necessary for clear understanding
of the programming process. To achieve this, the
following steps should be taken: first, develop a
clear understanding of the nature of the problem to
be solved. Next, outline the steps required for its
solution. Finally, develop the details of each step.
Programming in this manner is called structured pro-
gramming and PASCAL makes it easy.

Structured programming is similar to building
a house, as shown at right. If you think that struc-
tured programming is easy after you look at these
drawings, you will master soon this elegant program-
ming technique.

Understanding
the program

Estimates,
reckonning tables,
design drawings,

Schedules,

Developing a plan
of attack

We're not
ready for
details yet!

Erecting
the framework

Completing
the structure

Don’t miss
any thing!

This does it!
Now the house \
can be used.

How about
this plan?

What is the difference between PASCAL and BASIC?

Let us consider a simple problem, “read two integers and print that which is larger.” BASIC and PASCAL program
solutions to this problem are shown below. You may think that PASCAL is difficult, since the PASCAL program uses
more lines and characters than does the BASIC program. However, if a more complicated problem is solved with the
two languages, it will become clear that programming-is easier with PASCAL than with BASIC. These examples merely
illustrate the differences between these two programming languages.

| BASIC program PASCAL program

10 INPUT X,Y PROCEDURE HIKAKU,

20 1F¥ X>Y THEN 50 VAR ¥ ,Y:INTEGER;

30 PRINT "X < Y BEGIN

40 GOTO &0) READLN(X,Y);

50 PRINT "X > Y IF X>Y THEN WRITELN('X > YY)

60 END L ELSE WRITELNC"Y > X ™)
END;

Note that the PASCAL program contains no GOTO statement. In
BASIC, it is almost impossible to write a long program without using
GOTO statements. The ability to write programs without GOTO state-
ments is a feature of PASCAL which will make itself clear as you become
familiar with the PASCAL programming language.

There is no real problem with GOTO statements in short programs
such as the one above. They have two disagreeable characteristics, how-
ever, that tend to make them a nuisance in long programs. The first of
these is that you must know the number of the program line to which
execution is to move before you can finish writing the statement. This is
no problem when you want to go to a section of the program which has
already been written, but it can be a headache in cases where the jump is
to be made to an address which is not yet known. The usual method of
getting around this is to use a dummy address or a symbol in each GOTO
statement, then to go back and replace them with the real addresses
when the program is completed. This is not difficult when there are not
many such addresses, but it can be a source of great confusion when the
program is a complicated one.

The other problem becomes apparent when an attempt is made to
read a program written in BASIC. Each time you come to a GOTO state-
ment you must jump to the indicated address to see what processing is
to be performed. You may have had the experience of going through
seemingly endless chains of GOTO statements and despaired that you
would ever be able to make heads or tails out of the mess. This type of

program is sometimes referred to as a “spaghetti” program; such ill-con-

ceived, hard to understand programs can result even when GOTO state-
ments are used quite innocently.

GOTO is, however, a convenient statement, and it tends to be
used to frequently. Since it only controls operation of the program,
and does not perform any calculations or display anything on the
display screen, the computer can be used most effectively by doing
without it wherever possible.

The nature of BASIC is such that the number of unneeded
GOTO statements tends to increase as the length of the program
grows unless the greatest care is taken in writing the program. The
structured programming of PASCAL not only eliminates this prob-
lem, but reduces the likelihood that errors will occur when writing
the program by encouraging an organized approach to defining the
nature of problems. This makes programs easier to understand after
they have been written.

Another difference between BASIC and PASCAL is in the man-
ner in which variables are handled. Variable identifiers in BASIC are
limited to a maximum of two characters, while PASCAL allows eight
or more characters to be used to define a variable. The ability to use
more characters in variable identifiers means that the identifiers can
be more descriptive of their function in the program; for example,
HOUSE instead of H, COLOR instead of C, NUMBER instead of N.
HOUSE, COLOR and NUMBER all naturally convey concepts much
more effectively than do the letters H, C and N. Even though little
more labor may be involved in keying in such identifiers, it should be
obvious that this is more than made up for by doing away with the

need to have to try to remember which letter goes with which variable.

These facts do not mean that PASCAL can be used to make wonderful programs without effort; the skills involved
in structured programming involve more than just familiarity with the programming language. Structured programs can
also be written in BASIC, (even using the GOTO statement), as long as a well organized approach is taken in developing
solutions. In fact, the effectiveness of any programming language approach taken by the user.

PASCAL makes structured programming easy. Using it leads to a natural understanding of this concept; however, it
is still possible to wind up with a tangled, difficult to understand mess if care is not taken. This can best be avoided by
obtaining a clear understanding of PASCAL’s underlying principles.

PASCAL allows structured programming! /J

BASIC variables A, B, C, X, Y, Z,1,J,K, T,
W..... let’s see, what in the heck was |
going to use these for?

With PASCAL you could
have used identifiers such
as INVADER, CANNON,

Let’s try structured programming |

Let’s become a little more familiar with the concept of structured thinking.

Consider the case of stereo equipment; broadly speaking, there are two basic types of such equipment: component
units and music systems. As you know, in a component system, the tuner and amplifier are separate. In the more
sophisticated devices the preamplifier and the amplifier are also separated. In other words, the functions which com-
prise the stereo system are designed as separate units, which are then combined to suit the listening taste of the user.

The component approach in stereo systems is a form of structured thinking. First, a clear understanding is devel-
oped as to the overall functions and specifications required, then each of these functions is handled as a module. Mod-
ular construction and modular furniture is based on the same concept.

The building block system used in the manufacture of construction equipment is also based on structured thinking.
The overall functions of the equipment are broken down into appropriate parts (units or blocks), each of which is then
designed with measurements and characteristics which will allow it to be combined with the others to obtain the
desired result.

What all of these have in common is that the first step involves defining an objective and then identifying the func-
tions, patterns or sequences which are involved in attaining it. The point is that the process starts with the overall situa-
tion, and then proceeds from top to bottom or from the outside in as details to the final solution are developed in
stages.

Let’s try solving the following problem as an exercise in structured thinking. As none of the PASCAL instructions
have been explained yet, just follow the flow of thought.

Read in N Constants, Arrange Them in Ascending Order and Display Them.

Note that this problem can be broadly divided into three blocks.
This first step can be set forth as follows.

Music system Component units

4

Step 1 shows the first stage of the approach which might be Variable: =initial Va“ﬁJ
taken in PASCAL. The variables are not yet defined as the precise]

need for them has not yet been determined.
The for statement of PASCAL is introduced in step 2. This

statement has the meaning indicated in the flowchart at right.

Yes

Variable >
final value

BEGIN
END
v

Variable: = Variable +1

One possible procedure for arranging the values in order
is as follows.
1 Search for the smallest value X[M] in the elements in-
cluded in array X.
2 Exchange the value in X[1] with the value in X [M] .
3 Search for the smallest value X[M] in the elements from
X[2] to X[N].
Exchange X[2] with X[M].
S Repeat the sequence in steps 3 and 4 for elements X[3]
to X[N] until the last element is reached.

This procedure constitutes the core of step 3 in solving

the problem.

Data

4.

The last problem remaining is that of locating the small-
est value X[M]. A method for accomplishing this can be
summarized as follows.

1 Assign the value in X[I] (the first element of the array)
to smallest value variable MINIMUM. Assign the identi-

fier of the first element to variable M.

2 Establish a new variable for looping, J, and repeat the

following for J for I+1 through N.

o IF X[J] is smaller than MINIMUM,

+ Assign the value in X[J] to MINIMUM;

+ Assign the current value of loop variable J to M.

e If X[J] is larger than MINIMUM, go on to the next data
element for comparison.

Step 4 consists of applying this procedure in a program.
As can be seen, the general procedure is to first develop an
overall grasp of the program, then to develop details of the
solution in stages. Although the number of steps involved
will vary according to the problem, the important point is
that this approach provides a clearer and more certain solu-
tion than can be attained intuitively.

PREPARES AN ARRAY OF 10 ELEMENT
THE ACTUAL NUMBER OF ELEMENS
REQUIRED DEPENDS 0N THE VALUE

VAR X:ARRRYL10T oF INTEGER;
CICT O C T VINTEGER;
BEGIN
[ReADINDATA]
[BRRANGE DATA IN ASCENDING GRDER|
[DISPLAY THE DATA |
N /

Step-2
VAR X:ARRAYT10] OF INTEGEK,
N, 1,03,0,0: INTE&ER;
BEGIN 1N THE NUMBER OF ITEM OF
KEAD(N); <—DATA T BE PROCESSED
FOR 1:=1 TON D0 READRII);
[ARRANGE THE DATA IN ASCENDING ORDER|
FOR I:=1 TO N PO WRITEXLI);

END. ﬁ

VAR 2X:ARRAY[101 ofF INTEGER;
M,N, 1,00 : INTE4ER;
BEGIN
READ(ND;
FOX I:=1 To N DO READ(X[1));
ToR 1:=1 T0O N-1 DO

BEGIN _
EARC X[I+1]T0x£NJl'0R?HESMALLE_£ vJ.

[EXCHANGE X (1) WITH X (M]_)
END;
TOK 1:=1 10 N Do WKJTE/O(LU)%

END.

F{SEeP#F
VAR X:ARRAY[101 OF INTEGER;

M,N MINIMUM,I,J:INTEGER:
BEGIN
KEADN),
FOR 1:=1 TO W P0 READ(XILID);
FOR 1:=1 To N-1 Do
BEGIN
MINIMUM:=XC1]; M =15
FOR 7: =14 TO N DO
1F X[JIKMINIMUM THEN
BEGIN
MINIMUM:=X[31, M:=]
END;
XIM):=X01]5xr11:=MINIMUM
EN);

END.

FOR 1:=1To N DO WRITE(X 1])ﬁ

Recursion:A phenomenon which can he seen in everyday life

Recursion is an idea which is frequently used in PASCAL

This is one example

programs. We can see this phenomenon in everyday life; for
of recursion.

example, if you sit in front of a television set with a camera
which is connected to the set pointed at yourself, you would
see an image something like that shown in the drawing at
right. In other words, recursion is what happens when some-
thing includes itself as a part.

Let’s take a look at a more concrete example.

In the 13th century, an Italian named Fibonacci con-

ceived a mathematical sequence which he stated as follows.
“One pair of rabbits bears a litter of two pups every
month, and each pair of pups starts to bear its own litters of two pups each month after one month.”
A mathematical sequence which increases according to this rule is called a Fibonacci sequence. This sequence is an
example of recursion because the total number of rabbits in each month is the sum of the number of rabbits in the two
preceding months.

Many occurrences of this sequence can be found in the natural world. For example, careful examination of a pine
cone will reveal that the scales are arranged in two types of spirals, one which winds to the left and one which winds to
the right. The seeds are located at the intersections of the spirals, and the number of spirals is 5 and 8. The seeds of
pineapples are located at the intersections of 8 and 13 spirals, those of English daisies at the intersections of 21 and 34
spirals and those of sunflowers at the intersections of 55 and 89 spirals.

The Fibonacci sequence is formally defined as follows:

This can be expressed in PASCAL as shown below. As you will notice, the structure is such that an if statement is
included within another if statement. Of course, recursion may be used not only with instructions, but when a part of
a procedure or a function is called as is with different conditions and variables to perform an identical operation.

The structure of recursions appearing in PASCAL programs is expanded into expressions as appropriate according
to their type.

Here are some more examples of recursion so that you
can become more familiar with this concept.

O Method for finding the factorial n!

0!=1
1'=1x0!

21 =2x1!

31 =3x2!

n! =nx(mn-1)!

Method for finding the total of all integers to N

(1#243F w o s us +N—-1)+N

(14243 ..., +N—2)+N —1)+N

Backus notation
(number) : : =(digit) | (number) (digit)
(digit)::=0111213141516171819
{number) and (digit) each indicates a concept. The symbol
: : =is used to show that the concept on the left is defined on the
right. The vertical bar |is used to indicate the concept ‘or’.
Therefore, (digit) indicates one of the figures from 0 to 9, and
(number) indicates either a (digit) or a {number) followed by
(digits). Recursion occurs because the definition for (number)
includes { number) in its second half.
Since this definition indicates that (numbers) may consist of
just (digits), the figures
0,1,2,3,4,5,6,7,8,9
are (numbers). Since { numbers) can also consist of any of the
above followed by (digits),
012, 3333, 110...... 9876543210
are also (numbers).

Logarithmic spiral of the golden section

A golden rectangle is a rectangle with dimensions such that,
when it is divided with a line to form a square at one of its ends,
the rectangular section which is left over has dimensions of the
same relative proportions as the original. When this process is re-
peated many times in a fixed direction, a spiral is described which
does not change its shape no matter how large or small it becomes.
(This spiral is a logarithmic spiral which is drawn in the direction
in which the rectangle is subdivided.) The shells of mollusks such
as the nautilus have this form.

A logarithmic spiral 4
drawn in the direc- z
tion of rotation of 3

/
the group of squares. !

/
/

Golden section /’

{;.1"'_!'5_ /

/
= J/ Golden rectangle

Another golden rectangle

results when one golden

f rectangle is divided into

two sections so that

'\ one of.the sections
~ is a square

\ rectangle.

~

Event which do not constitute recursion

O Simulated recursion in a BASIC program

10 N=15

20 PRINT N

30 IF N=0 THEN RETURN
40 N=N-1

50 GOSUB 20

60 RETURN

The program example above does not constitute full recursion. The reason is that the loop is repeated without the
variable actually being reproduced. It is difficult to produce a program which includes full recursion, but it is easy to
simulate this process. This is done by storing the initial value of the variable used in the subroutine in an array before
recursion begins, then restoring the original value to the variable before returning from recursion.

A program such as the one shown below is possible if it is assumed that X is the only variable used in the sub-
routine. However, this still does not constitute a true example of recursion.

10 DIM X (15)
20 N=15:X=0
30 P=0
40 X=X+1:PRINT X

50 IF N=0 THEN 120

60 N=N-—1

70 GOSUB 200

80 GOSUB 40

99 GOSUB 300

100 PRINT X

110 IF P=0 THEN STOP

120 RETURN

200 REM SAVE THE VARIABLE VALUE
210 X(P)=X

220 P=P+1

230 RETURN

300 REM RESTORE THE VARIABLE VALUE
310 P=P-1

320 X=X (P)

330 RETURN

Use of recursion in this manner can best be understood by looking
at it as a case in which a jump is made to a copy which is produced when
the recursive image is called. Of course, if recursion also occurs in the
copy, another copy is produced to which another jump is made.

Trying to visual this process mentally can be disturbing, since it is
easy to infer that duplication of images can occur infinitely.

Therefore, let us emphasize that recursion is not a type of infinite
loop. A recursive expression is one which defines an unlimited process
within a limited description. The important point is that the limitation
must be defined in the description; in actual use, the depth of recursion
must be limited so that infinite repetition is avoided.

Let’s take another look at the examples to highlight processes which
do not constitute recursion.

O Procedure for finding factorial n! :

ié

Draw two different size squares adjacent to
each other, such as A and B. Then draw another
square, C, which has sides whose lengths are
equal to the total of the sides of sides A and B.
Next draw square D so that its sides are equal to
the total of the sidesof Band C......
Repeating this process results in a rectangle
whose dimensions approach those of a golden
rectangle as more and more squares are added;
that it, the ratio of its width to its height ap-
1+./5

proaches 9, where O = 5

ool =oox (2—1)! does not constitute recursion, since n must be a finite { number). The important point here
is that the definition of n! includes the factorial of a number (n—1)! which is one smaller than n. In other words,
the value of (n—1)! consists of two elements until the end of the sequence is reached at @!, which does not need to

be defined as a factorial expession.

O Backus notation:

The figures 12341234, 1234 fall within the definition of { number) even if the sequence is repeated a
thousand times. However, an infinite string of 9’s does not constitute a { number), nor does 7, since both of these

continue without limit.

O BASIC program simulation of recursion:

Even though the values of the variable are stacked in an array to simulate recursion, statements such as that on

line 40
40 N=N+1
do not occur in true recursion.

A real Hanoi Tower
has 64 rings. The num-

Rules for moving rings:
» Only one ring may be moved

ber of steps required

at a time.

another peg is 18, 446, 744, 073, 709, 551, 615.

Seven steps are required when there are 3 rings.
In general, 2" —1 steps are required when there are n rings.

to move all of them to (Move All the Rings to Another Peg) * No larger ring may be placed

on top of a smaller ring.

11

12

Recursive figures ‘ | .

This section introduces Sierpinski curves, beautiful patterns which
are defined recursively. The illustration at right shows three different
levels sizes of these patterns drawn overlying one another.

Let’s reduce this pattern to its basic form to learn how it is recur-
sively structured.

A Sierpinski curve of size n is defined with the following state-
ment:

SmM):A@m)YBm) Y C(m)X D(n) 7

A (n), B (n), C (n) and D (n) express steps used to draw an n size

Sierpinski curve. In other words, \ indicates that a pattern segment is
to be drawn downward at a 45° angle to the right. Thus, S (0) would be
displayed in the sequence \ £\ 7, resulting in a tilted box as shown in Figure (2). A recursive pattern can be generated

Sierpinski curves of S(1) ~S(3)

as shown below by expanding this process using A (n) ~ D (n) for the recursive definition. (The bold face arrows indi-
cate segments whose lengths are twice that of other segments.)

A(Mm) : Am—1)\B(n—1) = D(—1) # A(n—1)
B(m) : Bn—1)¢¥ Ckn—1) ¥ A(n—1) y\B(n-1)
C(m: C@-NAND@m-1) « B(n-1)¢Cm-1
D@m) : D(n—-1) 7A(n—-1) 4 C(n—1)Xx D(n-1)

This may appear confusing at first, but A (1), B (1), C (1) and D (1) simply indicate basic patterns as shown in
Figure (b). Curve S (1) is obtained as shown in Figure (¢) as a natural result of the manner in which A (1) ~ D (1).
A (2) is also defined using A (1) ~ D (1).

L

AC2)IAC1) N B(1) = D(1) /’ Acl)

Thus, pattern S (2) is reproduced recursively by using A (2) ~ D (2) as shown in Figure (e). Increasing n by 1 and
halving the length of the basic pattern, makes it possible to display multiple levels of the pattern on top of each other.
This is the procedure which was used to draw S (1) through S (3), the three overlying patterns shown in the illustration
at the top of this page.

AC2)

AT S
A1)
<> B(1) A(ﬂ) AC1)
B(2)
BI&D) B B(1) Dm)
(8 S(@) C1)
o &D) @ A2

D1 ey S(2)
(b A(ﬂ) D1) 81

Chapter 2
Editing

Editing is the process of creating or modifying a program, or of inserting or deleting characters in a

program,

14

Operating the computer

Seeing is believing! Let’s start our adventure in the world of PASCAL by going over procedures for operating the

computer (the MZ-80B) under control of PASCAL interpreter SB-4515 series and loading, storing and modifying
PASCAL programs. PASCAL syntax will be explained in the next chapter.

PASCAL SB-4515 is stored (along with Monitor SB-1511) on a cassette tape file in the same manner as the BASIC
interpreter, and must undergo initial program loading whenever it is to be used. Simply place the PASCAL cassette file
in the cassette tape deck and turn on the power, the IPL automatically loads both the PASCAL interpreter SB-4515
and the Monitor SB-1511 (photo at left). Upon completion of loading, the MZ-80B displays the message illustrated in

the photo at right and the PASCAL interpreter being to operate.

Instead of “xxxxx”,the number of unused bytes of memory in the computer may be indicated.

IPL is loading PASCAL SB-4515

A | (Append)

Load the program stored in the first file of the PASCAL
Application Tape. (A listing of this program is shown in
Sample Programs.)

Key in , then . This corresponds to the LOAD
command in BASIC.

The computer then requests that the name of the file to
be loaded be input by displaying “Filename?”” on the CRT
screen. Key in Hanoi Tower, then . (Alternatively, just
key in @ .) The program first encountered is loaded if
only is keyed in. It is not necessary to enclose the file
name in double quotation marks.

The cursor appears again and begins to flicker after the
program has been loaded. The computer is now ready to exe-
cute the program.

¥%¥ Monitor SB-1511 ¥*

PASCAL interpreter SB-4515
Copuright (C) 1981 by SHARP Corp.

KKXKKX.Bytes
Ready.
|]

A command is an instruction which controls
operation of the computer system.

Various commands
are provided
for PASCAL.

Note: If the load command is executed while a program is already stored in memory, the program loaded is stored

starting at the first memory location following the existing program. This function is convenient for loading

large programs.

Program execution starts with the program first loaded when the G command (G: Go) is entered.

Go command G

Key in , then to execute the program load-

ed. This command corresponds to the RUN command in
BASIC. It takes a moment for display to begin because

the computer first checks for syntax errors. P H 5 E H L '
The display screen is then cleared, a starry sky ap- i
pears and a message is displayed (photo at right). : ; i % T w®ra @ e

‘L Préss a key J

SHARP CORPORATION

P| or |H | (forprinter)

Key in @, then . The program listing is then displayed on the CRT screen. This command corresponds to
the LIST command in BASIC. Key in @ , then @ to print out the program listing on the printer. (The program
listing is not displayed on the CRT screen in this case.) Pressing the space bar while the program listing is being output
stops operation; pressing it again restarts output.

The numbers followed by periods at the left of each row of the listing are line numbers. Line numbers are always
incremented in units of one.

Listing a specified line:
P line number or H line number (for printer)

Key in [E], the line number and . For example, to display the contents of line 5, key in @, and .
No period, *“.”, is required.

Listing lines within a specified range:
P <starting line number > — < ending line number >

For example, to display lines 5 through 12, key in IE, , E], , and . To print out the lines on

the printer, key in < starting line number > — < ending line number >.

Listing up to a specified line:
P — <endingline number>or H — < ending line number > (for printer)
Lines are listed from the start of the program to the specified line. For example, keying in @ 5 E ; , ,and
lists all lines up to line 20.

Listing all lines from a specific line to the end of the program:
P <starting line number > — or H < starting line number > — (for printer)
Lines are listed from the specified line to the end of the program.

Listing lines without line numbers
(only applicable for the printer): #

A program listing without line numbers can be obtained on the printer by keying in and before entering
the list command.

You may notice that some of the program lines are indented. Indentation is characteristic of the manner in which
PASCAL programs are written. Indentation will be explained later.

15

16

Modifying PASCAL programs

Practice the below operations and become familiar with them. This will help you to understand explanations in the
following sections.

Enter P, 3, 6, CR to display line 36 of the program. Replace 64 with 135 in the same manner as in BASIC. Press

the CR key.
36. UFO : =CHR (64) ;

36. UFO : =CHR (135) ;

Execute P36 again to check the result. Try executing the program if the revision has been correctly made. The
UFO which moves from left to right on the screen should now appear in rectangular.

When there are many lines to be corrected, it is convenient to specify listing of a range of lines. This technique is
the same as that used in BASIC.

Let’s try an interesting experiment at this point. Enter P, 3,0, —, 4, 4, CR to list lines 30 through 44, then remove
the indentations so that the program appears as shown at right; now try executing the program. As you can see, its
operation is not affected; thus it is natural to wonder what purpose indentation serves. Although this will be explained
in more detail later, briefly it serves to make the program

easier to read.

44

.procedure UFOMOVE;{ UFO }
.var N:integer ;UFO:char;
.begin
~write(

9 do write("s");
‘do write("$");

Sea
= oNcIun

D | Partial Program Deletion

The program delete command is used to delete one or

HSWNFEDWONNLWNR® |
A AA

%]
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4

0 <320 I1zzZ

more lines of a program.

Deletion of one specific line D <line number >
Try deleting line 9 of the program. Enter D, 9, CR. Line 9 is deleted and all following lines are moved up one line.
List the program to confirm this.

Deleting a specific group of lines:
D <starting line number > — < ending line number >
Key in D, 5, —, 1,0, CR. This causes the program entries on lines 5 through 10 to be deleted and all following lines
of the program to be moved up six lines. In other words, program lines 11 and on are moved up to close the gap.

Deleting all lines up to a specific line number:
D - <endingline number >
Keying in D, —, 5, CR causes all lines from the beginning of the program up through line 5 to be deleted and lines 6
and on to be moved to the front of the program.

Deleting all lines after a specific line number:
D <starting line number > —
Keyingin D, 8, —, CR causes all lines from 8 on to be deleted.

Note: It is possible to delete a line by enterging <line number > CR ; this method should not be used, however,
since difficulty may occur depending on whether the cursor is located at the position of a character on the
screen. The D command should always be used when deleting program lines.

K/

Entering K, /, CR will cause the entire program to be erased. This corresponds to the NEW command in BASIC.

This command is used when a program is to be entered from the key-

board.

Inputting programs

Be sure to enter K, /, CR before beginning,

Enter the program shown at right with the sequence described below.

1. Keyin B./.“0. is displayed and input of the program awaited. The
symbol “./” indicates a carriage return.

2. Enter BEGIN ./ .“1.” is displayed and the next entry awaited.

3. Enter WRITE (“CABC”)./.“2.” is displayed and the next entry awaited. (G is entered by pressing and
at the GRPH mode.)

4. Enter END... “3.” is displayed and the next entry awaited. ‘

5. Since this is the end of the program, enter only . This causes command entry to be awaited without any line
numbers being displayed.

6. Confirm that the program entries are correct by entering P ./ to execute the list command. If entries have been
correctly made, execute the program by entering G ./ . The screen should be cleared and then “ABC” displayed.
Try changing the characters enclosed in quotation marks and reexecuting the program.

Insert command: < line number > &
Let’s try making an insertion in the program entered above. The insertion is to be made between lines 1 and 2.

1. 2 B WRITE (“DEF”) . No other entries are required. Now list the program to confirm that the entry
has been made correctly. (B is entered by pressing and keys simultaneously.)

2. When this program is executed, the error message > Err 18 > Line 2. is displayed and execution halts. The
reason for this is that the entry made in step 1 results in a syntax error. Correct the program as indicated below.

3. Add a semicolon (;) to the end of write (“C ABC”) to separate it from the next statement and execute the pro-
gram; now “ABCDEF” should be displayed. The error resulted because the computer did not know where the com-
mand on line 1 ended. It does not matter whether a semicolon is included at the end of line 3 for reasons which
will be explained later.

Try making all program entries on one line and executing the program as shown below; the result should be
the same.
begin write (“ G ABC”) ; write (“DEF”) end.

4. When more than one program line is to be inserted, execute < first insertion line number >$&. /. Line numbers are
displayed and program input (program input _/) awaited; then the next line number is displayed for entry of
another statement. As many program lines can be entered as necessary.

5. The input command is terminated by entering only a carriage return when the next line number if displayed.

177

18

Making an insertion at the beginning of the program: B

This command is used to make an insertion at the beginning of the program. Entering B ./ causes “0.” to be dis-
played and entry of the insertion to be awaited. This allows 3 new line to be entered at the beginning of a program. The
entry is terminated with CR .

Making an insertion at the end of the program: Z

This command is used to make an insertion at the end of the program. Entering Z ./ causes the line number follow-
ing that of the last line of the program to be displayed. For example, when the number of the last line of the program is
35, “36.” is displayed and entry of the insertion awaited. The insertion is added to the end of the program when the
entry is completed by entering CR .

Assignment of line numbers is not fixed as in BASIC, but change as insertions and deletions are made. In the pro-
cess of programming, you will often find that you have called up a line other than the one which you wanted to review
or that you want to review the lines before and after a specific line. The L (Last) and N (Next) commands explained
below are useful in such situations. -

L < number of lines to be reversed >

When line 10 of a program is listed by executing P10/ , line 8 can also be reviewed by entering L 2 .~/ .If
L 3 ./ isentered next, line number 5 will be listed.
When BF.~ is entered after an L command is executed, insertions can be made in the program from the line dis-
played by the command. In other words, this command can be used in the same manner as the insert command.
Line 0 will be displayed if the number of lines specified in the command is greater than the number of lines in the

program.

N < number of lines to be advanced >

This command functions in a manner similar to the L command.If N 5 ./ isentered after P10./ isexecuted,
line number 15 will be listed. An insertion can be made after line 15 by entering 8. /. The number of the line follow-
ing the last line of the program will be displayed if the number of lines specified in the command is greater than the
number of lines in the program.

The number of unused bytes of memory in the computer can be displayed by entering M./ . This corresponds to
PRINT SIZE in BASIC.

E$ < hexadecimal address >

Specifies the maximum amount of memory which can be used by a program. The full memory will be available
unless otherwise specified with this command. For example, if ESAO0O is entered, the limit is set at-address $A000.
Since the address is specified in hexadecimal notation, “$” is mandatory. The specifiable range is from $8000 to
$FFFF.

This corresponds to the LIMIT instruction in BASIC.

This command is used to save a program on cassette tape. It corresponds to SAVE in BASIC. Let’s try this.
Enter the program shown below after executing the K/ command.
begin
write (““‘ABC”)
end.
Next, enter S ./, “Filename?” will be displayed on the screen to prompt assignment of a file name, so a suitable

name must be given to the file. The file name is composed of a string of up to 16 characters. If no file name is specified,
the above program file will have no name and later identification will be difficult.

This command compares the program contained in the text area with its equivalent text (file name: file name) in
the cassette tape just saved by S command. It corresponds to VERIFY in BASIC.
If the program and tape file coincide, “OK” will appear on the screen; otherwise, “Error” is displayed.

Q/

Entering Q/ ./ causes program control to be returned from the PASCAL editor to the monitor program. And wait
input of a command at the Monitor SB-1511 level. This corresponds to MON in BASIC. The entries used to return con-
trol from the Monitor to the PASCAL are;

xJ
J-adr. $1300...... Cold start
$1301...... Hot start

A cold start is one made when all programs are completely cleared and the stack pointer, etc. is initialized. This is
the same as the status just after loading the interpreter.

A hot start is one made when control is passed to the PASCAL interpreter without programs being cleared or the
registers initialized.

1/

This command activates the MZ-80B System IPL (Initial Program Loader). This corresponds to BOOT in BASIC.

$ | (indentation command)

Indentation is commonly used for list representation in PASCAL programs to improve readability. The $ com-
mand, once executed, causes the editor to automatically align the current subsequent lines with the start of the preced-
ing line.

Entering the $§ command again disables the indentation mode.

19

20

This command displays a complete list of string definitions for definable function keys, thereby enabling you to
determine how individual definable function keys are defined. This corresponds to KLIST in BASIC.
The string definitions of each definable function keys are initially defined by the PASCAL interpreter as follows.

begin
procedure
function

integer;
boolean;
arrayl
repeat
ile

1
2
3
3
S
6
bd
8
9
8
1
2
3
3
5
(=1
7
8
9
e

1
L
1
i
1
1
1
1
1
i
2

This command includes the syntax structure represented by the syntax diagram below.

o8

®

) Provided that

0 < digit 1 < digit 2 £ 24
and

digit 2 — digit 1 = 2.

digit 1 —»®—> digit 2 }—/

666 ¢

The operand of the R command (R: range) determines which of three functions shown below are activated.

1) Changing the character display mode

C80 Sets the character display mode to “80 characters/line”.
CAD oove e v wmmmns s Sets the character display mode to “40 characters/line”.
2) Changing the character and graphic display mode
R Sets the character and graphic display mode to reverse mode.
Naosmuizs:snnmae s Sets the character and graphic display mode to normal mode.

3) Fixing the scrolling area

S digit 1, digit 2 digit 1 and digit 2 fix the scrolling area. The top line refers to line 0 of display and

the bottom line to line 24.

Editor command table

Append command

A)

Appends a program from the cassette tape to the program in memory.

Go command

G/

Executes the program.

List command
(to CRT display)

p)

P (line number) /

P (starting line number) —
(ending line number))

Outputs the entire program listing.
Outputs a specified line of the program listing.
Outputs a specified range of lines of the program listing.

List command
(to printer)

H)/

H ¢line number) /

H (starting line number) —
(ending line number))

#)

Outputs the entire program listing.
Outputs a specified line of the program listing.
Outputs a specified range of lines of the program listing.

Executing # once eliminates the line numbers from the output program
listing. Executing it again restores the line numbers.

Delete command

D (line number) / or
(line number) ,

D (starting line number) —
(ending line number)

Deletes a specified line of the program.

Deletes a specified range of lines of the program.

Kill command K/, Erases the entire program.
Input command B) Used to enter a program starting at line 0. If another program already
exists, the new entries are inserted in front of it.
Z 4 Used to enter a program starting at the first unused line following an
existing program.
=, Displays the number of the line at which the pointer is located and allows

= (statement) J
(line number)&)

(line number Y& (statement) ,)

$/

insertions to be made at the indicated line.

Allows entry of one program line at the line indicated by the pointer.
Allows insertion of program entries starting at the specified line.
Used to insert one program line at the specified line number.

Enables the editor to enter a program with indentation.

Pointer shift command

L (number of lines) /
N (number of lines) /

Moves the pointer back by the specified number of lines.
Advances the pointer by the specified number of lines.

Save command

S/

Saves the program in memory on the cassette tape.

Verify command

\'

Compares the program contained in the text area with its equivalent text
in the cassette tape just saved by S command.

System commands

RC80 / (or C40)
RR ./ (or N)

RS Is,le)

F)

M/

ES$ (address) /

Q//
1)

Sets character display mode to 80 char./line (or 40 char./line).

Sets display mode to reverse mode (or normal mode).

Fixes the scrolling area to line /s through line /e.

Displays a complete list of string definitions for function keys.

Displays the amount of unused memory area in bytes.

Specifies the limiting address of memory available for program use in
hexadecimal.

Transfers control to the monitor.

Activates the MZ-80B System IPL (Initial Program Loader).

Note:)

indicates pressing the CR key.

21

Chapter 3
Basic Rules of PASCAL

23

24

Syntax diagram

All programs must be coded according to PASCAL’s own syntax. PASCAL syntax is represented by syntax dia-
grams, which are summarized in Chapter 7. This paragraph uses some examples to show how syntax diagrams are used.

The syntax diagrams explained in the paragraphs of this and succeeding chapters are shown at the end of each
paragraph. '

Example 1 Syntax Diagram for Identifiers

Various identifiers are used in a PASCAL program. For example, variables, procedures and functions are all as-
signed identifiers. An identifier must begin with a letter and may be followed by any combination of letters and digits.
This is represented by the syntax diagram below.

DR . W - _

First gate Second gate

This syntax diagram is a kind
of gate which does not pass

identifiers which do not match
the defined syntax.

- i
The line between points © and ©
indicates that any combination of ‘@
letters and digits can pass through.
W
ﬁnd"&
o

No identifier which does
not begin with a letter
can go beyond this point!

N

(s
/ll||mh.,,

y : I

Ry -
@)
gRamS” >

S -

No identifier can
pass until all its
components are
checked.

Any digit can
pass here.

You cannot pass through
the gate because you con-
tain a symbol other than a
letter or a digit.

Rectangular Boxes and Round-ended Boxes

Round-ended boxes enclose elements which cannot be divided in a grammatical manner. For example, re-
presents a letter from A to Z and a digit from 0 to 9.
Rectangular boxes enclose elements which can be divided further and which are defined elsewhere. For example,

is defined elsewhere with another syntax diagram.

Look at the syntax diagram on the preceding page again.

1) @ is the entrance to the syntax diagram. The first letter indicates that the first element of the identifier must be a
letter.

(2) The section between points @ and @ is the part of the syntax diagram used to check the second and succeeding
elements. Identifiers can pass through this section once all their elements have been checked. Therefore, an identi-
fier consisting just one letter can immediately pass through this section.

(3) All elements after the first letter take either the upper or lower loops, depending on whether the character being
checked is a letter or a digit.

In any other case, cannot pass the syntax diagram. All identifiers are checked in the above manner, and ones which

are grammatically correct pass the syntax diagram. For example, R and R2G3 are correct identifiers but R2 #4, 1234

and 7 are incorrect identifiers.

Example 2 Syntax Diagram for Unsigned Numbers

The following syntax diagram is for checking unsigned numbers. Confirm that the unsigned number 3.2E6 passes
the syntax diagram. (3.2E6 represents 3.2 x 10%). Does 2E2 pass?

Unsigned

5 Unsigned
integer

integer

|

Unsigned
integer

E and a following unsigned
integer are not mandatory
if there is a decimal point

There doesn’t have
to be a decimal point, but
if there isn’t there must be
an E and a following
unsigned iteger.

s
Any number of A+ or —sign s

{ digits can be used.) (not mandatory.

Syntax diagram for
unsigned integers.

You three have
failed.

25

26

PASCAL program structure ,

PASCAL programs have a certain structure which conforms to certain rules. Each PASCAL program consists of 3
sections: the variable declaration section; the procedure and function declaration section and; the executable section.
These sections must be arranged in this order.

(1) Variable declaration section
(2) Procedure declaration section
(3) Executable statements

This section declares all [?AI_S_%E’ CORPORATIONJ/
variables. : <
O Variable declaration
I_ o
E REAL jrom] JKE section
= = = T W;g
Well 543 The value of . ot) [5 Procedure and function § |
PAlis3.14159.......... L %Vé.' //"7*\/\\(\?‘_//\ e ~ declaration section. | |
%/A,.yo%%i : &
o
OK. Then
® % 3 0 E)éécutat;ie
Calculate the area 3 = statements||
of a circle. = = O |
X |

i e TR SR e e

Sample Program: Computing the Area of a Circle

. var PAI, RADIUS, AREA : real; ' Variable declaration section
. procedure CALCULATE (X : real) ; Procedure declaration section
begin AREA : =PAI%X>*X end; _
. begin
PAT : =3.14159 ;
readln (RADIUS)
while RADIUS<>@.0 do
begin Executable statements
CALCULATE (RADIUS)
writeln (" S= ", AREA)
10. readin (RADIUS)
11. end
12. end. -

CONOUOPARADHS

This program reads the value of the radius of a circle from the keyboard, calculates the area of the circle and
displays the result on the CRT screen. The program stops when “0” is keyed in.

Words shown in bold face type are special words with fixed meanings. It is not necessary to distinguish between
the two type faces when you are keying in entries.

Reserved words are listed on page 129. In PASCAL programs, integers expressed as real numbers must be followed
by a decimal point and 0 (.0); for example, 3 is expressed as 3.0 and 12 is expressed as 12.0. This is not necessary for
data which is read from the keyboard by the read statement, since it is automatically converted to the correct format
by the computer. In the above program, PAI: = 3.14159 cannot be replaced with 7: = 3.14159 because 7 cannot be
used as an indentifier.

Variable and variable declaration

Variables discussed here are different from the variables used in arithmetic expressions. They can be easily under-
stood by considering them as a kind of box in which digits or characters are placed as shwon below. The types of
variables are as shown below. Only the defined types of digits or characters can be assigned to each type of variables.

Each variable must be given an identifier called a variable identifier. Declarations of variable identifiers and the
types of values to be assigned to them are made at the beginning of each PASCAL program.

Prepare CHAR
variables S, T

Prepare INTEGER
variables A, B and C.

Prepare REAL
variables X, Y and Z.

Prepare BOOLEAN
variables E, F and G.

BODL@

@AF? A.BC:INTEGER] VARX, Y, 2 : REAL

VAR S.T,U:CHAR VVAR EF.G:

Characters are ‘A’, 'B’, ‘1", 2’
and so forth. Only one character
can be assigned to each CHAR
variable.

Real numbers are 3.14,
4.0,0.86, —0.4 and so forth.

Integers are 0, 1,
2,3,—4,5and
so forth.

BOOLEAN variables have
one of the two values,
TRUE or FALSE.

27

28

|dentifier ’ f

Various identifiers are used in PASCAL programs, and they must conform to the following rules.
(1) The first character of each identifier must be a letter (A through Z).
(2) The second and subsequent characters may be any combination of letters and digits.

(3) Reserved words cannot be used as identifiers.
(4) The maximum number of characters which can be used in each identifier is 32.
Reserved words are special words which are used for PASCAL instructions (such as BEGIN, FOR, VAR, READ,

WRITE, etc.).

PASCAL interpreter SB-4515 recongnizes only lower case character for the PASCAL reserved words, statements,
standard procedures, and standard functions. Although you may key them in upper case, the interpreter will display

them in lower case.
Only upper case alphanumeric characters are allowed, however, for variable names, array names, user procedure

names, and user function names.

Up to 32 characters can be used but

The first character must be a letter.
simplicity is best.

No one who has the
same name as any of us
can be an identifier

Your name is already
reserved.

What combination of
characters do |l use?
simple...clear. ...

Where’s may
seat?

Integers and real numbers

Mathematically speaking, integers are included in the group of real numbers. In PASCAL programs, however, they
are treated separately. No real number can be assigned to an integer variable, and vice versa.

integer (/]

1 -5 —-25 3000
real 00 10 50 -250

3E3 8E-8 8.3E3

Syntax Diagrams for Integers and Real Numbers

and 6 are not

The following are syntax diagrams for integers and real numbers. With the integer syntax diagram, +5, 3 and —25
are accepted, but 5., .5 and —3.2 are not. With the real syntax diagram, SE10, +3.2 and —4.6 are accepted, but +5, .3

integer

o)

29

30

Character constants and character strings

Character Constants (char type data)

It may be necessary to assign a character value to a character variable or to compare one character with another
one. Such a character value is called a character constant. Any of the characters shown in the ASCII code table on page
134 except the single quotation mark (*) can be used as character constants. Such character data consists of a single
character enclosed in single quotation marks.

Ex) A0, BLYE ¥ ! L cammeni s mams s Allowed

EVR AR AT a5 ammms s o5 wemsm Not allowed

Let me ride too!

I'm sorry, but only
one rider at a time!

| can’t ride at all?

Character String

A character string is a set of characters enclosed in double quotation marks ™ ’°. All characters shown in the
ASCII code table on page 134 except for the double quotation mark can be used in character strings, including a single

character.

EX) “SHARP,’ 3 C Co & * * PASCAL * * 2 €I
“TEL 06 621-1221” R s maEEE s f 8 PR g s mp e s mmmee s s e BAEEE F BARESE § Allowed
“INPUT” ¥YES OR. NO™ * ., . comsvsss sommnass: nnmwes s Not allowed (Double quotation marks used).

No double quotation

We form a
character string.

marks (') can join us.

Separators are placed between variable identifiers, numbers and instructions to allow the computer to determine
where each ends and begins.
Separators used in PASCAL programs are as follows:
(1) Space
(2) Comma (,)
(3) Semicolon (;)
At least one separator must be placed between any two

instructions, identifiers and numbers. A semicolon (;) is I F A 5 DT H E N
used to indicate the end of an instruction statement; an [:] =5

instruction statement may be written on more than one
line, and only a semicolon (;) can be used to indicate the
end of one. An identifier or expression, however, cannot be @
written on more than one line.
Ex) var </
AREA
! integer «/
oY

This sample is

incorrect.
- Allowed

va

R ARV
EA : inte </
ger ; </

VARJD AREA:REAL ;

At least one space is required. Two or more spaces may)
be used.

'
VARDDUAREALL:CIREAL; [Thesacesmoy o
VAR D A B C B f NTE G’E R’ —> Declares variable ABC.,

V A R D A » B, C : N TE G—E R; —> Declares three variables: A, B and C.
V A RCIA (1B D e INTE GER, —> A space cannot be used to separate two variables.

52

. Not allowed

No semicolon (;)

In PASCAL programs a carriage return
does not indicate the end of a statement.

In other words, the
statement on the
left is the same as
that on the right.

31

32

Variable declaration |

All variables used in a PASCAL program must be declared with the var declaration.
The var declaration begins with var, followed by a space. Variable identifiers and types follow these.

integer ;

var O A:
T E variable type A: precedes variable type declaration.

variable identifier O indicates a space.

variable declaration

var A:integer ; Declares A as an integer type variable.

var A,B,C:real; Declares A, B and C as real type variables.

var A, B:integer ; X, DATA: real ; Declares A and B as integer type variables and X and DATA as real type
variables.

var CH, SYMBOL: char ; Declares CH and SYMBOL as char type variables.

var Y, Z: boolean ; Declares Y and Z as boolean type variables.

Note: char is an abbreviation for character.

File Declaration
ﬁe same identifier may not specified
It is possible to write data from variables onto cassette twice even for different types of
tape, or to enter data from cassette tape into variables, by variables.
specifying in the variable declaration that the variable is the

counter part of a cassette tape file. This specification is called
a file declaration.

Pages 35 and 36 explain the transfer of data between
variable and cassette tape files, as well as the read and write
statements.

(1) var X, Y : file of integer ;
r Type
File declaration
Identifiers
(2) var DATA : file of real ; A, B : char ;

var declaration (1) specifies tha variables X and Y are of the integer type and that they are counter parts of cassette
tape files. var declaration (2) specifies that the variable DATA is of the real type and that it is the counter part of a cas-
sette tape file; it also specifies that variables A and B are of the char type and have no relation with cassette tape files.

Array declaration ‘ |

An array of variables is declared with an array declaration in the var declaration; this corresponds to the DIM state-
ment in BASIC. There is no limit on the number of dimensions of array variables in PASCAL, except for the memory
capacity. BASIC only provides for one and two-dimensional arrays.

One-dimensional array

. A[” . A“OD] A [100] One-dimensional array with 101 elements

Two-dimensional array

A [10,10] 11 x 11 two-dimensional array

Three-dimensional array

A (3, 3,3] Three-dimensional array.

Let'ssee. ..
4 x4x4marks. ..
64 variables!

o3
mm

/.—_/
Q “

EO.D,OJHOOJ ’
= = %

(P
‘l"im

Each of these is called
an array element.

33

34

Array Declaration

An array variable is specified in the var declaration as follows.
var < array identifier > : array [index] of < element type > ;

Ex) var A : array [5] of integer ;
Specifies A as a one-dimensional array of integer variables with elements @ through 5.
var TABLE : array [10, 10] of char ;
Specifies TABLE as a two-dimensional array of 11 x 11 char variables.
var DATA : array [10, 5, 5] of real ;
Specifies DATA are a three-dimensional array of real variables with 11 x 6 x 6 elements.

As shown in the above examples, the number of dimensions is determined by the number of indexes. An n-dimen-
sional by specifying n indexes separated with commas. The size of arrays which can be specified differs according to the
data type.

A sample program is shown below. In this program, the first two lines declare arrays and the third line declares
variables.
var A : array [5] of integer ; TABLE : array [10, 10] of char ;

DATA : array [10, 5, 5] of real ;

X,Y : real ;Z : boolean ;

When the size and type of more than one array are the same, they are declared as follows.
var X,Y,Z,DATA : array [15] of real ,

Files may be declared for arrays just as they may be for individual variables.

var DATA : file of array [5_0] of real ;

r T Flement type
Index

File declaration

Array identifier

Now that array can be used with me.

Array declaration

Array identifier

file of

array Unsigned integer

(——v Simple type]|

Write and read array data to/from cassette tape

Let us code and execute a program which processes an array, The programming example is divided into two parts.
The first part writes data in the array, then saves it in the cassette tape file; the second part reads the data from the cas-
sette tape file back into an array and substitutes data from the array into variable X for display for each array element.
First input the following. Instructions for the second part will be given later.

@. var DATA : file of array [25] of char;

1. N, X : integer;

2 . begin

S5 X:=65;

4 . for N: =@ to 25 do

5. begin

6. DATA [N] : =08 (X) 3 conrcsscorsan Assigns data to the array.

7 Xu=EX+1

8. end ;

9. fname (" ALPHABET ")
10. write (DATAL 1) oo Saves the contents of the array in the cassette tape file
11, close .
12 end

Run the program. If any errors exist, an error message will be displayed to request corrections.
(1) The fname statement opens the cassette file “ALPHABET” to allow array data to be written on the cassette tape.

(2) The write statement at line 10 automatically saves the contents of the array DATA [] in the cassette tape file.

(3) The cassette tape stops when recording is completed. The close statement closes the cassette file. The system
displays “Ready.” on the CRT screen when the program terminates after recording is completed.
Rewind the cassette tape and clear the program executed. Then, input the following program.

©. var DATA : file of array [25] of char:
1. N : infeger; X : char;
2 . begin
3. fname (" ALPHABET") ;
4. read (DATAL 1) 5 et smsssssssmmmens Reads data from the cassette tape into the array
5. close ; .
6. for N: =0 to 25 do
7. begin
8. X1 =DATAIN] ;3 commnsmvs s mommnns Assigns data to X.
9. write (X : 4) v Displays data in X.
10. end
11. end.

When the above program is executed.

(1) The frname statement opens the cassette file “ALPHABET”, enabling the system to read data from the cassette tape.

(2) The read statement at line 4 automatically reads data, and assigns it in succession to the array elements.
(3) After data has been read, the tape stops.

(4) The letters A through Z are displayed on the CRT screen.

35

36

As shown in the example on the preceding page, a data file can be created by using the file declaration. A distinct
name to indicate its contents must be given to each data file.

Pay attention to the following when inputting or outputting array data to or from the cassette tape file. To write
array data in the file, use

write (< array identifier >1[])
and to read array data from the file, use

read (< array identifier>[])

The symbols “ [” and “] ” must be entered without any intervening spaces or characters. As indicated above, it is
impossible to write or read just one element into an array from the cassette file with specifications such as write (DATA
[5]) or read (DATA [5]).

File arrays are written on or read from the cassette file in blocks of the size specified for each array.

The following does not illustrate a normal situation, but it may be used.

Consider a one-dimensional array which has undergone the file declaration, A [59]. This array can be written on
the cassette tape with write (A []).

Now consider a two-dimensional array, B [19, 2], which has 20 x 3 elements. Both arrays have the same number of
elements, so array data written in the cassette file from array A can be read into array B with read (B []). The data
type of both arrays must be the same.

Data can be transferred between arrays in this manner if the number of elements of both arrays is the same and
both array variable types are the same.

Array X [5] is assigned with char data as follows, then written in the cassette tape file.

X[0] =A XJ[1] =B X[2] =C

X[3] =D X[4] =FE XI[5] =°F

When this data is read into two-dimensional array [2, 1], it is assigned as follows.
‘B> Y [2,0] = ‘C
§ o Y[2,1] = F

Y [0,0]
Y [0,1]

‘A’ Y [1,0]
o ¥ L, 1]

It’s called ““colon-equal”

or “becomes’’

Chapter 4

Data and Expressions

The basic types of data used in PASCAL programs are

integer,
real,
boolean, and

char.

Any combination of data and operators is called an expression.

37

Integer expressions

The following are the five integer operators. All integer expressions are formed of integer operators and integer

data.

Precedence Operator Operation Format Example Result
X Multiplication A%xB 5%2 10
div Division with truncation A div B 5 div 2 2
mod Modulus A mod B 5 mod 2 1
2 + Sum A+B 5+2 7
2 - Subtraction A-B 5-2 3

div gives a truncated integer result. For example,

X :
X:

10 div 3

10 + 3

—
(9,
o
B
1}

2 with the remainder 1.

3 with the remainder 1.

3 is assigned to X.

. 21is assigned to X.

mod gives the remainder. For example,
X:=10 mod 3
X:=17 mod 7

3 with the remainder 1.

—
()
oo
w
1}

1 is assigned to X.

—
~
o
=
L}

2 with the remainder 3. 3 is assigned to X.

Note the following when writing an integer expression.

(1) A+Bisa correct expression, and the following expressions are also correct:
A + B, A+ B, A +Band A + B.

(2) A—Bisa correct expression, and the following expressions are also correct:
A - B, A-B, A -Bad A - B.

(3) A div B isa correct expression, but AdivB, A divB and Adiv B are incorrect.
A div B is correct.

(4) A mod B is a correct expression, but AmodB, A modB and Amod B are incorrect.
A mod B is correct.

Be sure to insert a space before and after div (or mod).

Precedence of Operators

The precedence of operators in an arithmetic expression is shown in the figure below.

+ and — have equal pre-
cedence, therefore, they

are executed in the order
in which they appear.

X . DIV and MOD have
equal precedence, there-
fore, they are executed,
in the order in which

The following are examples of integer operations; familiarize yourself with how these are performed.

3+5 div 2 gives 5. [9_7 mod 2 gives 8.

(3+5) div 2 gives 4. 9>7 mod 5 gives 3.
60—6>k8+2 gives 14. [80 mod 9 div 5 gives1.
(60—6)>*k8+2 gives 434. 80 div 9 mod 5 gives3.
6+(6k(3—1)) gives 18. 3+6%(9 div 2) mod 2 gives 3.
(6+6)>k3—1 gives 35. (3+6)>*k9 div 2 mod 3 gives 1.

A —sign appearing in an integer expression is always executed as a — operator. Thus, —28 div —3 is incorrect
because two integer operators, div and —, appear consecutively. —28 div (—3) is a correct expression and gives the
same result as —(28 div (-3)).

—28 mod -3 is also an incorrect expression. —28 mod (—3) is correct, and gives the same result as —(28 mod

(=3))

Familiarize yourself with the following:

(-15) div 8 gives —1. (—15) mod 8 gives —7.
(—28) div (—3) gives 9. (—28) mod (—3) gives —1.
56 div (—9) gives —6. 56 mod (-9) gives 2.

—10 div 15 gives 0. —10 mod 15 gives —10.

Relational Operators

Relational operators are used for comparing two data values. The relational operators
used in integer expressions are shown below.

FALSE

1l

checks whether the left member is equal to the right member.
> checks whether the left member is inequal to the right member.
= checks whether the left member is equal to or less than the right member. TRUE
checks whether the left member is equal to or greater than the right member.
checks whether the left member is less than the right member.
checks whether the left member is greater than the right member. A\ 4

VAV AA
Il

The result is always rrue or false. For example, A > B gives frue when A is greater than B. This is shown by the
flow chart at right.
Only one relational operator can be used in an expression; X < >Y =Z is an incorrect expression because it con-

tains two relational operators.

Boolean expressions '

Boolean expressions are used for making decisions, YES or NO. The only two values which may be given by a
Boolean expression are true and false. Four Boolean operators are provided for use in Boolean expressions.
These are also called logical operators.

Precedence Operator Meaning Example
1 not Logical NOT | not (A=B) gives frue when A is not equal to B.
2 and Logical AND | (A>B)and (A>C) gives frue when A is greater than both B and C.
3 or Logical OR | (A>B)or(A>C) gives frue when A is greater than B or C.

(A>B)xor(A>C) gives false when A is greater than both B and C, or
3 Xxor Exclusive OR | when A is less than both B and C, and gives true when A is greater
than B and less than C, or when A is less than B and greater than C.

not A is true if A is false; otherwise it is false.
A and B is true if both A and B are true; otherwise it is false.
A or B is true if either or both A and B are frue;otherwise it is false.
A xor B is frue if A and B have different Boolean values; otherwise it is false.
These operations may not be familiar, but they are necessary when using computers.

An exercise follows.
Obtain the results of not A, A and B, A or B and A xor B where
(1) both A and B are rrue.
(2) Ais true and B is false.
(3) Ais false and B is true, and
(4) both A and B are false.
The answers are given on the next page.
Expressions such as notA, AandB, AorB and AxorB are incorrect.

Precedence

The precedence of Boolean operators is as follows.

Highest not
and
Lowest or xor

Relational operators can be used in conjunction with Boolean operator in an expressions. The precedence of rela-
tional operators is lower than that of Boolean operators. Two or more Boolean operators may be used in an expression.
For example, A xor B and C is a correct expression. In this case, and is applied before xor because of the precedence,
that is, first B and C is executed, then its result and A are subjected to the exclusive OR operation. Thereforer, when it
is necessary to first apply xor to A and B, the expression must be written as (A xor B) and C.

Since or and xor have equal preceedence, the one which appears earliest is applied first.

In the case of A and not B, not B is executed first because it has higher precedence, then its result and A are
subjected to and.

Great care must be taken when combining relational operators and Boolean operators, or an unexpected result may
be obtained.

A>0 and A <100 isnot correct.

Use parentheses as follows.

(A>0) and (A<100)

Solutions for exercise

1 () (3 4
not A false false frue true
A and B true false false false

A or B true true true false

A xor B false true true false

41

42

Real expressions

The four operators shown below are used in real expressions. Constants and variables used in real expressions all
must be real.

Precedence Operator Meaning Example
1 > Multiplication A>XB
1 / Division A/B
2 + Addition A+B
2 — Subtraction A-B

The operators div and mod used in integer expressions are not used in real expressions. * power used in BASIC is
not provided in PASCAL.

All constants or variables processed by real expressions must be real; therefore the result cannot be assigned to any
integer variable even if it has the form of an integer (e.g. 2 or 3) since it is eal (2.0 or 3.0).

When var A: integer; B: real; is declared in the var declaration, the following expressions cannot be excuted.

A+B AXB

In practice, however, it may be necessary to assign an integer value to a real variable, or vice versa. Instruction
which convert one type of value into the other are porvided for this purpose. These instructions will be explained in the
section on “Standard Functions.”

X and / have equal
precedence and so do
+and —.

All relational operators, =, <>, <=, > =, <,> may be used in real expressions; their meanings are the same as
they are in integer expressions. Both members of the expression must be real.

When variable A and B are real, neither A and B nor A or B can be executed. However, the following can be execut-
ed because expressions using relational operators give Boolean results.

not (A>B)

(A>B) and (A>C) A space is not always required between a Boolean operator
(A>B) or (A>C) and the parentheses surrounding relational expressions.

(A>B) xor (A>C)

CHAR expressions |

char variables are similar to the string variables of BASIC, but only logical operations using relational operators

can be applied to them.
If CHA and CHB are declared as char variables and ‘A’ is assigned to CHA and ‘B’ is assigned to CHB, when
CHA=CHB
is executed, the character code for A is compared with that for B. Since their codes are 65 and 66, respectively (see the
code table on page 134), false results. Any of the relational operators, =, <>, <=>= <, > may be used in such

expressions.

The code for a
space has the
smallest value.

Logical operators cannot be applied directly to char variables.
When CHA, CHB and CHC are char variables,

CHA. aiid, CHB cis 00 56 5 60 8 550 & & & 5 6 006 % 5 s 5 5 5k ot 0 e 5050 e 8 5 0 e cannot be executed

(CHA > CHB) and (CHA > CHC)
not (CHB <=CHC)
(CHA = CHB) xor (CHAR > CHC)

can be executed because the expressions in
parentheses give Boolean results.

Special instructions relating to char data will be explained later.

43

Standard functions . |

A function performs a prescribed task and returns a result when data is applied to it. A function which performs
a task which is predefined is called a standard function. Several standard functions are provided in PASCAL.
When a variable used in a function is enclosed in parentheses, it is called a formal parameter; the value assigned to

a formal parameter is called an actual parameter. No file identifier can be used as a parameter in any standard function.
The standard functions in PASCAL are described below.

1. ODD (X)

The parameter specified in this function must be an integer value and a boolean result is obtained.
This function gives true if the parameter is odd, otherwise it gives false.

A :=o0dd (5) true is assigned to variable A.
A:=o0dd (6) false is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

2. CHR (X)

The parameter specified in this function must be an integer
value and a char value is obtained as the result.

This function gives the character whose code value is specified
in the parameter. It corresponds to CHR$ (X) in BASIC.

A:

CHR is an abbreviation

= chr (80) The character ‘P’ is assigned to variable A. for character.

Any constant, variable or expression may be used as the para-
meter.

3. ORD (X)

The palameter specified in this function must be a char value
and an integer value is obtained as the result.

This function gives the integer value corresponding to the
code for the character specified in the parameter.

A :=ord (X))

88 (the code for ‘X”) is assigned to variable A. ek X5 M
for order.
Any constant, variable or expression may be used as the para-

meter.

44

4. PRED (X)

The parameter specified in this function must be a char value
and a char value is obtained as the result.

This function gives the character which has the same code
value as that of the character specified in its parameter minus 1.

A :=pred (‘Y) The character ‘X’ is assigned to variable
A.

Any constant, variable or expression may be used as the para-
meter.

5. SUCC (X)

The parameter specified in this function must be a char vaue
and a char value is obtained as the result.

This function gives the character which has the same code
vaue as that of the character specified in its parameter plus 1.

A :=succ (°Y) The character ‘Z’ is assigned to variable
A.

Any constant, variable or expression may be used as the para-
meter.

Inverse Functions

PRED is an abbreviation
for predecessor.

QUCC is an abbreviation
for successor.

Of these functions, chr is the reverse of ord and pred is the reverse of succ. It is said that one is the inverse

function of the other.

The relationship between inverse functions can be understood from the following examples.

chr (ord (X)) =X ord (‘X”) gives 88 and chr (88) gives ‘X’.
pred (succ (‘Y')=Y succ (‘°Y’) gives °Z’ and pred (‘Z") gives Y’.
ord (chr (88)) = 88 chr (88) gives ‘X’ and ord (‘X’) gives 88.
succ (pred (‘2)) =71 pred (‘Z) gives Y’ and succ (‘°Y’) gives ‘Z’.

6. TRUNC (X)

The parameter specified in this function must be a real value and

an integer value is obtained as the result.
This function converts real data values into integer data values.

A : =trunc (3.14) The integer value 3 is assigned to variable
A.

A : =trunc (-2.8) The integer value —2 is assigned to vari-
able A.

Any constant, variable or expression may be used as the parameter.

45

46

7. FLOAT (X)

The parameter specified in this function must be an integer value
and a real value is obtained as the result.

The function is the inverse of the frunc function; it converts
integer data values to reql data values.

A : = float (15) real value 15.0 is assigned to variable A.
A : = float (—8) real value —8.0 is assigned to variable A.
B : = float (trunc (3.14))

real value 3.0 is assigned to variable B.

Any constant, variable or expression may be used as the parameter.

8. ABS (X)

The result is a real value when value specified in the parameter is real; the result is an integer value when the value

specified in the parameter is an integer value.
This function gives the absolute value of the value specified in the parameter, just like the ABS (X) function in

BASIC.

A :=abs (-3.5) real number 3.5 is assigned to variable A.
B : =abs (—365) integer number 365 is assigned to variable B.

Any constant, variable or expression may be used as the parameter.

9 .SAORT (X)

The parameter specified in this function must be a real value which is greater than or equalto zero. The result is a
real value.

This function gives the square root of the value specified in the parameter. Any constant, variable or expression
may be used as the parameter.

10. SIN (X)

The parameter specified in this function must be a real value
(expressed in radians) and a real value is obtained as the result. This
function gives the sine of the value specified in the parameter.

To obtain the sine of a value stated in degrees, first convert the

The above expression gives
the relationship between

values stated in degrees and
radians. This relationship is
important when using the

functions SIN (X), COS (X),
TAN(X) and ARCTN (X).

value to radians. For exmaple, to obtain sin 30°, specify

A: = sin (30.0% 3.1415927/180.0)

Any constant, variable or expression may be used as the parameter.

171. COS (X)

The parameter specified in this function must be a real value (in radians) and a real value is obtained as the result.

A: = cos (200.0 % 3.1415927/180.0) The value of cos 200° is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

12. TAN (X)

The parameter specified in this function must be a real value (in radians) and a real value is obtained as the result.

A: = tan (30.0> 3.1415927/180.0) The value of tan 30° is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

13. ARCTAN (X)

The parameter specified in this function must be a real value .and a real value between —m/2 ~ m/2 (in radians) is
obtained as the resulit.

A : =arctan (X) The value of tan"! X in radians is assigned to variable A.
A : =180.09/3.1415927 >k arctan (X) The value of tan™! X in degrees is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

14. EXP (X)

The parameter specified in this function must be a real value and a real value is obtained as the result. This
function gives the value of e*, where e=2.7182818.

A: =exp(1.9) 2.7182818 is assigned to variable A.
A: =exp (0.0) 1.9 is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

15. LN (X)

The parameter specified in this function must be a real value and a real value is obtained as the result. This function
gives the value of log, X, where X >0.

A: =In(3.0) 1.0986123 is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

16. LOG (X)

The parameter specified in this function must be a real value and a real value is obtained as the result. This func-
tion gives the value of log;0X, where X >0.

A: =log (3.0) 0.47712125 is assigned to variable A.

Any constant, variable or expression may be used as the parameter.

17. RND (X)

The parameter specified in this function must be a real value and a real value is obtained as the result.

This function generates pseudorandom numbers between 0.00000001 and 0.99999999, and works in two manners
depending on the value specified as the parameter.

When the value specified as the parameter is larger than @, the function gives the pseudo-random number next to
the one previously given in the pseudo-random number group. When the value is @ or negative, the function generates
a pseudo-random number group and gives its initial value.

47

48

A: =rnd (1.0) A pseudo-random number which has no relation to the parameter value is assigned to varia-
A: =md(3.9) ble A.

A: = rnd (0.0)

B : = md(-30)] The same value is assigned to both variables A and B.

Any constant, variable or expression may be used as the parameter.

18. PEEK (X)

The parameter specified in this function must be an integer value and a char value is obtained as the result.
This function gives a code (0~255) which corresponds to data stored in the address specified (in decimal) by the
parameter.

A : = peek (4608) The data code stored in address 4608 is assigned to variable A.

Any constant, variable or expression may be used as the parameter. Use the ord function to obtain the result as an

integer value, as in B: = ord (peek (4608)).
This function is corresponding to PEEK (X) in BASIC.

19. CIN

This function has no parameter, and a char value is obtained as the result. This function gives the ASCII code
which corresponds to the character in the position on the CRT screen at which the cursor is located.

A: =cin The ASCII code of the character displayed at the cursor position is assigned to variable A.

20. INPUT (X)

The parameter specified in this function must be an integer value and a char value is obtained as the result.
This function reads data on the port specified by the parameter. For port specification, refer to the explanation of

the output statement on page 84.
This function executes machine language, SED78, (i.e. IN A, (C)). The value of X is loaded in the BC register and

data is read into the accumulator.
Any constant, variable or expression may be used as the parameter.

A : =input (255) Data on port 255 ($FF) is read into variable A. To obtain data of type integer, use
A: = ord (input (255)).

21. KEY

This function has no parameter, and a char value is obtained as the result. This function gives the ASCII code
corresponding to that of the key being pressed. If no key is pressed when this function is executed, the code corre-
sponding to zero is obtained.

A: =key The ASCII code corresponding to the being pressed is assigned to variable A. When no key
is depressed, the code corresponding to zero is assigned to A.

(ord (key) gives zero when no key is depressed.)

22 .CSRH

This function has no parameter, and an integer value is obtained as the result. The integer value indicates the
current location of the cursor on the horizontal axis. The cursor position changes each time the cursor, write, writeln
read or readin statement is executed, and its X-coordinate is given by this function.

The value of this function takes stays within the following range for each character display mode:

80-character mode: 0 < csrh £ 79
40-character mode: 0 < csrh £ 39

b

23 .CSRV

This function has no parameter, and an infeger value is obtained as the result in the same manner as the ¢sri func-
tion. The value indicates the current location of the cursor on the vertical axis and takes stays within the following
range for both character modes mentioned above:

Q0= csrw =24

24 . POSH

This function has no parameter, and an integer value is obtained as the result. The integer value indicates current
location on the horizontal axis of the position pointer in the graphic display area. The position pointer moves each time
the position or pattern statement is executed, and its X-coordinate is given by this function.

The value takes stays within the following range:

0 < posh < 319

25 .POSV

This function has no parameter, and an integer value is obtained as the result in the same manner as the posh func-
tion. The value indicates the current location on the vertical axis of the position pointer in the graphic display area and
takes stays within the following range:

0 = posy £ 199

26 . POINT (X,Y)

This function has two parameters which must be inreger values, and an integer value is obtained as the result. The
value is indicating whether the dot (X, Y) in the graphic display area is set or reset.

Result of the point function Point information
0 Points in both graphic areas 1 and 2 are reset.
1 Only point in graphic area 1 is set.
2 Only point in graphic area 2 is set.
3 Points in both graphic areas 1 and 2 are set.

49

Chapter 5

Statements

A Statement js an unit of execution of a PASCAL program. There are two types of statement,
Simple Statement Statement which cannot be grammatically divided

Structured Statement A statement which consists of multiple simple statements.

571

52

Assignment statement

An assignment statement assigns a value to a variable, function identifier or array. This statement cannot be gram-

matically divided, so it is called a simple statement.

Variable.: =< expression > ;

Ex) X:=A+B; The value previously assigned to A is added to the value previously assigned to B and the

result is placed in X.

: = is called the assignment operator. The type of the left member must be the same as that of the right member.

A:=5; Assigns 5 to variable A. A must be an integer variable.

B:=50; Assign 5.0 to variable B. B must be a real variable.

C :=true; Assigns the logical value frue to C. C must be a boolean variable.

D:=A"; Assigns ‘A’ to D. D must be a char variable.

E:=(X>0)AND (Y >0) E must be a boolean variable and X and Y must be integer values. true is assigned

to E when both X and Y are positive, otherwise false is assigned to E.

Pay attention to the data type, especially when assigning a constant value to a variable. Review the data types of

constants with the following examples.

integer constants

real constants

0 0.0
5 5.0
-15 -15.0
123 123.0
1000 1000.0 or 1E+3
- 0.35
— 0.01 or 1E+2

Assignment statement

| Variable

Expression p——

Function identifier

Compound statements

A PASCAL program section consisting of several statements which are surrounded with begin and end is called
a phase. A compound statement is formed of a phase, begin and end.

The executable section of a PASCAL program) <>
always consists of a combination of compound state- 5:;
ments. The following sample program gives the (=)
Fahrenheit value of a temperature stated in degrees @
Centigrade using the equation, F = 1.8C+32. BEG‘N L
4 Selenefietepent uienntifsttenent | ENID
S ELENELLE EY Y I EY
C)
var TEMPF , TEMPC : real; PHASE

begin

Reads a temperature stated in degree Centigrade.
Calculates the Fahrenheit equivalent

and outputs the result.

end . T——Phase

o .
i
2
3.
4.
B

A phase may include another phase as shown below. This is referred to as block structure. There is no limit on

the number of levels of phases.

0 . var TEMPC , TEMPF : real;
1. begi

2.

3.

4.

B

6.

%

84

9.

10 . end .

The above program operates as indicated in the flowchart TEMPF :=1.g--

at right.

(1) Line 2 is a dummy entry which starts the loop.

(2) Line 5 reads data from the keyboard.

(3) Line 6 calculates the Fahrenheit temperature.

(4) Line 7 outputs the result.

(5) When the data read is other than 0.0, lines 5 through 7 are
executed again ; when it is 0.0, END is displayed and

WRITE
IIEN DI|

the program ends.

Compound statement

begin Statement end

- e

53

I[F statement (choice)

An if statement chooses one of two different actions to be taken after examining the specified expression. There
are two types of if statements.

Type 1 : if <Boolean expression > then < statement> ;

This type of the if statement executes the statement following then when the
Boolean expression gives frue, otherwise, the next statement is executed.

if A=0 then A:=A+1;

[assignment statement

Boolean expression

Statement

The assignment statement is executed when A is ©; otherwise the following state-
ment is executed. This type of PASCAL if statement is the same as the BASIC IF state-

ment.

Only one statement can be placed after then. If two or more statements are required,
they must be grouped as a single compound statement.

Examine the difference between the following examples.

if A>B then X:=100; Y:=5;
if A>B thenbegin X:=100; Y:=5end;

FALSE FALSE
A>B '

TRUE TRUE

X: =100

e

IF A>B THEN X:=100;

In the first example, the if statement ends with X : =100 and Y : =5 is executed separately. In the second ex-
ample, the if statement consists of the whole line.

Type 2 : if < Expression > then < statement 1 > else < statement 2 > ;

This type of the if statement executes statement 1 when the Boolean expression gives true, otherwise it executes
statement 2.
if odd (A) then write (“ABC”) else write (“EFG”) ;

When A is odd, the above statement executes write (““ABC”), then

the statement following write (“EFG™). When A is even, it executes eESﬁJfSZn FAlE
write (“EFG™), then following statement.
then and else can each be followed by only one statement. To spec- ELSE
ify multiple statements, combine them into a compound statement Statemant 1 Statement 2
using begin and end. "ABC" r EFG"
An if statement may appear after then or else, but take note of the PEEE—————
following.

if A>9 thenif A<100 then Y :=Y+1 else X:=X+1;

The meaning of this statement differs according to whether else corresponds to the first if or the second if. In the
statement above, else corresponds to the second if according to the rules of PASCAL (see Figure 5 .1). To make else
correspond to the first if, the statement must be written as follows. (See Figure 5.2).

if A>9 then begin if A<100 then Y :=Y+1 endelse X :=X+1;

Figure 5.1 Figure 5.2

In Figure 5.1, X : =X+1 is executed when A is 100 or more and Y : = Y+1 is executed when A is 10 through 99.
In Figure 5.2, X : = X+1 is executed when A is 9 orlessand Y : = Y+1 is executed when A is 10 through 99.

if statement

if Expression ——(then Statement 1 else Statement 2

55

56

CASE statement (selection) ,

The case statement executes one of several different statements after examining the specified expression, which
may be of any type.

case I of | X:=A+B;
Expres:ign X:=A-B;

X :=AXB
end ; Case labels

In the above example, when I is 2, X : = A-B is ex-
ecuted; when it is 3, X : = A>*B is executed.

When the value of I is not specified (after of), the
statement following the case statement is immediately
executed. The constant values after of (which determine the statement to be executed) are called case labels.

case I of 4: X:=AxkA;
5,6 : X:=AXAXA
end ;
In the above example, when the value of infeger variable I is 4,X : =A >A is executed; when Iis 5 or 6, X :
= A A XA is executed; otherwise, the statement following the case statement is executed.

case CH of ‘A’: write (“CHARACTER CODE A IS 65”) ;
‘B’ : write (“CHARACTER CODE B IS 66”)
end ;

When the value of character variable CH is ‘A’, “CHARACTER CODE A IS 65” is displayed and when it is B,
“CHARACTER CODE B IS 66” is displayed; otherwise the statement following the case statement is executed.

case X>=00 of true : write (sqrt (X)),
false : write (“IMPOSSIBLE TO CALCULATE”)
end ;
When the value of real variable X is greater than or equal to zero, write (sqrt (X)) is executed; when it is negative,
“IMPOSSIBLE TO CALCULATE?” is displayed.
integer values which can be used as case labels range from 0~ *32767. char values which may be used are those
shown in the ASCII Code Table. Each case label used in a case statement must be unique.

integer
char

Expression boolean

——C case of Constant

integer
char

boolean

case statement (

Statement

WHILE statement (repetition 1) -

There are three means provided for repeating a statement or phase until a given condition is satisfied; these are
the while, repeat and for statements.
The basic format of the while statement is as follows.

while < Boolean expression > do < statement > ;
While the Boolean expression is true, the specified

statement is repeated. The statement will not be executed
at all, however, if the initial state of the Boolean expression

is false.

while A>0do A:=A-1;

In the above example, A : = A-1 is executed when the value of variable A is greater than 0; this is repeated until
A becomes 0, at which time the next statement is executed. When A is negative to start with, the specified statement
is not executed at all.

To repeat several statements, group them as a compound statement using begin and end.

The following sample program gives the sum of integers 1 through 100.

@ .var N, S : integer;

1. Dbegin

2. N:=0;

3. S:=0;

4. while N<100 do

5. begin N: =N+1;S:=S+N end;
B . write ("S=",8:4)

7. end .

while statement

——C while)—— Expression ——Cd_o)—b Statement f——

57

REPEAT statement (repetition 2

The repeat statement executes a statement or a phase, then checks the value of the expression; if it is frue, the
next statement is executed, otherwise the statement or phase is repeated. Its basic format is as follows.

repeat < statement 1 > ; <statement 2> ;... ; <statement n> until <Boolean expression > ;

@-.var X ,Y : real;
1. Dbegin Stafement 1
2. X:=1.0;
3. repeat
4. Y : =sqrt (X) 4 Statement 2
5 writeln (" ROOT",X:3,"=",Y:10) ;
6 - X:=Y+1.0
P until X=11.0
8. end .
Stalemenl M

Boolean
gxpressiort FALSE

The above sample gives the square roots of the numbers 1 through 10. Since all variables are real, the constants
must also be real. X : 3 and Y : 10 on line 5 indicate the display location, this will be explained in the explanation of

the write statement.
There must be at least one statement between repeat and until; it is not necessary to group multiple statements

using begin and end.

Note: The difference between the repeat statement and the while statement is that the specified statement(s) is always
executed at least once with the repeat statement.

repeat statement

ﬁ{ repeat Statement until Expression fb———&=

Writing PASCAL programs

In the various sample programs which have been described so far, you may have noticed the difference in the
manner in which PASCAL and BASIC programs are written.

@. var R, AREA : real; §®-VAR R, AREA : REAL;

1. begin 1.BEGIN

2. readln (R) %2. READLN(R) ;

3. while R<>0 .0 do 83.WHILE R<>0.0 DO

4. begin §4.BEGIN

5. AREA : =3 .14%R*kR/4 .0 ; §5.AREA: =3.14%kRXR/4.0;
6 . writeln (AREA) : §6. WRITELN(AREA);

7. readin (R) §v . READLN(R)

8. end 8. BEND

9. end. §9.END.

The sample programs above are the same except for the style in which they are written. Execute them and note
that they give the same results. The sample on the left is written so that the program structure is apparent. As shown
above, indenting program phases appropriately makes it easier to read and understand the structure of a program.

One of the most convenient features of PASCAL is that indentation can be used in program coding. The number
of spaces preceding each statement is not limited, but typically 2 spaces are used.

Each statement ends in a semicolon (;), and not with a carriage return code; therefore, statements could be
written as shown below.

@. var
1. R,

var R,AREA : real; 2 . AREA :
> . rea];

4 . begin

Note that there is no semicolon (;) at the end of lines 7 and 8 in the sample program at the top of this page.
This is because end serves to mark the end of statements in place of the semicolon (;).
Exercise: Write the following program using indentation. The key to doing this correctly is to determine which
if corresponds to which else. Be sure to use semicolons (;) where needed.

VAR A, X : INTEGER

BEGIN READ (A)

IFA<10 THEN X:=1 ELSEIF A< 100 THENX :=2 ELSEIF A< 1000 THENX :=3 ELSEX :=4
WRITE (X : 8) END

The solution is given on page 97.

This program reads a positive value from the keyboard and displays 1’ when the value read is one digit, “2” when
two digits, “3” when 3 digits and “4” when 4 digits.

59

FOR statement (repetition 3

This statement repeats a loop a specified number of times. It is similar to the FOR ~ NEXT statement of BASIC.
There are two types of for statement provided in PASCAL.

Type 1 : for < control variable > : =< starting value > to < ending value > do < statement > ;

The control variable, starting value and ending value must be either integer val- l
ues or char values. The control variable stores the starting value plus the number of e S
repetitions performed. The starting value is first assigned to the variable and com- N ==

pared with the ending value. When it is less than or equal to the ending value, the

statement following do is executed and the control variable is incremented by one.
The next statement is executed when the control variable value becomes greater ALSE
than the ending value. TRUE
Statement
@. var N : integer;
1. CH : char; .
2. begin N et N+1
B for N: =32 to 255 do
4. begin
5s CH: =chr (N) ; '
6. writeln (" CHARACTER FOR CODE ",N:3,

end” Ll FOR N: =S TO E DO<Statemerit >

end .

o 2

The above sample program displays characters corresponding to ASCII codes
32 through 255.

. var CODE : integer;
CH : char;
. begin
for CH: ='"A’ to 'Z’ do
begin
CODE : =ord (CH) ;
writeln (" CHARACTER CODE FOR'",CH:Z2,
" I8",CODE: 3)
end

2 ook RVHES

- end .

The ending value \
hasn’t been reached
yet.

The above sample program displays the ASCII codes corresponding to characters A through Z. Note that the con-
trol variable, the starting value and the ending value are all char values. The character codes are displayed in the order

in which letters are listed in the ASCII code table.
When it is necessary to execute several statements, group them as a compound statement and place them after do.

60

Type 2 : for < control variable > : = < starting value > downto < ending value> do < statement >3

This type of for statement differs from type 1 in that the value of the control variable is decremented by one each

time a 1oop is made. Otherwise it is the same as type 1.

©@. var N : integer;

1. CH : char;

2 . begin

3. for N: =32 downto 255 do

4. begin

5. CH : =chr (N) ;

B v writeln (" CHARACTER FOR CODE",N: 3,
"IS",CH:2)

7. end

8. end

The sample program shown above is a modification of that shown in the des-
cription of the type 1 for statement, with to replaced by downto. Nothing happens
when this program is executed, because the starting value is not greater than the

ending value.

Replace 32 with 255 and vice versa and execute the program for the type 1

for statement.

The control variable
yar’ is decremented by

-
VS == one each time a

loop is made.

A FOR statement
is like this looped
railway model.

—==f We'll stop the loop
when the endmg 1
value is reached. s

Statement

N:=N-1
FOR N:=S DOWNTO E DO
<statement >

A PASCAL program and a BASIC program are compared below. Notice that a FOR loop can include another FOR
loop in both PASCAL and BASIC. But there is no limit on the number of nested levels of such loops in PASCAL.

PASCAL BASIC
VAR X,Y: INTEGER: 1@ FOR X=1 TO 9
BEGIN 20 FOR Y=1 TO 9
FOR X:=1 TO 9 DO 30 PRINT" XXkY="; XXY
FOR Y:=1 TO 9 DO 40 NEXT Y
WRITELN (" XkY=", X%kY :2) 50 NEXT X
END .
for statement
to
Expression 1 Expression 2
——C for @ do —>
Variable identifier (Starting value) (Ending value) Statement
downto

61

Procedure declaration and procedure (calling) statement

A procedure is a particular set of actions which may be used several times in a program. It corresponds to a sub-
routine in BASIC. A procedure must be declared in the procedure declaration section. There are two types of procedure
declarations.

Type 1 : procedure <identifier > ; < compound statement > ;
The identifier corresponds to the subroutine name.

procedure SUM ;
begin

A i =X+Y} BLOCK
end :

Procedure SUM assigns the sum of X and Y to Z.
The following is a sample of a complete program which includes this procedure.

@. var 7 ,X,Y . integer; Variable declaration section
1. procedure SUM ;
2. begin))
3. 7. =X+Y Procedure declaration section
4. end ;
5. begin
6 - readln (X) ; Executable statements
Ly readln (Y) ;
8. SUM ; weoverreeemesensnnssnmeonssnaas oo Procedure statement
S . writeln (7)
1. end.

In the above sample, program execution starts at line 5.

Key-in data is assigned to X at line 6.

At line 7, other key-in data is assigned to Y.

Program control is transferred to procedure SUM at line 8 without any change in the values of X and Y. After the
sum of X and Y has been assigned to Z by the procedure, program control is returned to line 9.

The value of Z is output at line 9.

The program terminates at line 10.

The last end in a program must always be followed by a period (.), not by a comma (,) or a semicolon (;).

Type 2 : procedure < identifier > (< formal parameter identifier >, ..., < formal parameter identifier > :
< type >) ; <variable declaration statement > ; < compound statement > ;

A procedure’s action is based on the data assigned to its formal parameters when it is called. For type 1, values can
be assigned only to the variables used within the procedure. For type 2, values can be assigned to any variables declared
in the var declaration since the variables are assigned to the formal parameters specified for the procedure when each

call is made.

Q. var X,Y,SUM,DIF: real

1 . procedure CALCULATION (A,B: real) ;
2 i begin

D » SUM: =A+B;

4 . DIF: =A—B

B # end g

6 . begin

7. readin (X) ;

8. readin (Y) :

9. CALCULATION (X,Y) ;
10 - writeln (" X+Y=",8UM) ;
11 . writeln ("X—Y=",DIF) ;
12 . CALCULATION (SUM,DIF)
1% . writeln (" (X+Y)+(X—Y)=",8UM) ;
14 . writeln (" (X+Y)—(X—Y)=",DIF)
15 . end.

Flow of program execution

1.
2.

3.

Program execution starts at line 6.

Data values for X and Y are read from the key-
board at lines 7 and 8.

Procedure CALCULATION is called at line 9
with variables X and Y assigned to formal para-
meters A and B, respectively. (X > A, Y = B)
A+B and A-B are performed by procedure
CALCULATION and the results are assigned to
variables SUM and DIF, then program control is
returned to line 10.

The results are displayed at lines 10 and 11.
Procedure CALCULATION is called again at line
12. At this time, variables SUM and DIF are as-
signed to formal parameters A and B, respective-
ly. Calculations are performed and the results are
assigned to variables SUM and DIF, respectively.
Program control is then returned to line 13.

The results are displayed at lines 13 and 14.

Let’s review the meaning of the parameters. In the above program, A and B in line 1 are variables and are called
formal parameters. Variables assigned to these formal parameters are called actual parameters,

It is not necessary to declare formal parameters. Identifiers of variables which are declared in the var declaration
may be used as formal parameters. The number of formal parameters is not limited.

Note the following when using formal parameters.

1. The number of actual parameters used when a procedure is called must be the same as the number of formal
parameters. For example, specifying CALCULATION (X) or CALCULATION (X, Y, Z) when calling the pro-
cedure declared by CALCULATION (X, Y : real) will result in an error.

2. The type of the actual parameters must be the same as the type of the formal parameters. In the above ex-

ample, only real data can be assigned.

3. Formal parameters must be variables (expressions are not allowed).
Thus, procedure (X+Y : real) is not a valid procedure declaration.

4. FILE identifiers cannot be used as formal parameter.

Procedure declaration

|

procedurej—— Parameter list

Identifier

’

Variable declaration statement Compound statement

.
4

63

64

Function declaration and function designator «

If the expression defined in a function includes parameters, the values of variables assigned to the parameters are
used to perform the calculation. A function is different from a procedure in that the result of the calculation is assigned
to a “function identifier”, rather than to a variable, then control is returned to the statement which designates the func-
tion.

A function must be defined in advance by a function declaration.

There are two types of function declaration.

Type 1 : function < function identifier > : <result type > ; < variable declaration statement > ;
< compound statement > ;

Type 2 : function < function identifier > (< formal parameter >, ..., <formal parameter >: <type>):
< result type > ; < variable declaration statement > ; < compound statement > ;

The following example defines a function which gives the area of a triangle, S = ah/2.

@ . function AREA (A ,H: real) : real;
1. begin

R . AREA : =AXH 2.0

3. end ;

AREA is both the function identifier and a variable. The following sample program includes this function declara-
tion.

@. var X,Y : real: Variable declaration
1. function AREA (A ,H: real) : real;
2« begin ; ;
3. AREA : =AXH 2.0 Function declaration
4. end 3
5. begin
6 = write (" BASE A=") :
72 readln (X) : Reads the value of the base length
8. write ("HIGHT H=") ;
9. readln (Y) : Reads the value of the height. Executable statements
10. W”:te (ARBA ="} ; } Displays the result.
11. write (AREA (X .Y)
12 - end. Function designator

Details of program execution at line 11 are as follows. This statement is an instruction which displays the value of
variable AREA. However, since this variable has not yet been calculated, program control is passed to the function
AREA with variables X and Y (containing values entered from the keyboard) assigned to A and H. A>kH/2.0 is calculat-
ed in the function declaration block and the result is assigned to function identifier AREA. Program control is then
returned to the statement on line 11 and the value of AREA is displayed.

Sample program

Assume that you want to accumulate coins in geometrical progression; for example, 1 coin on the first day, 2 coins
on the second day, 4 coins on the third day and so on.

The number of coins which will have accumulated after a certain number of days can be calculated with the follow-
ing sample program.

16 32

©. { GEOMETRICAL PROGESSION |
1. var M,SUM : real;
2 N, X : integer;
3 . function TOTAL (DAY : integer) : real;
4. begin
5 s if DAY=1 then TOTAL:=1.0
6. else begin
s SUM: =1.0;
8 M:=1.0;
9. for N: =2 to DAY do
l1@. begin
ol [M: =2:0%M ;
12 . SUM : =SUM+M
13. end ;
14 . TOTAL : =SUM
15 end
16 . end ;
17 - begin
18 . write ("G ") ;
19. X:=1;
R0 . while X<>0 do
21 . begin
22 writeln () ;
23 - write ("L 4 & HOW MANY DAYS YOU ACCUMULATE COINS.") ;
24 . readin (X) ;
25 . writeln (" 4 >k TOTAL IS", TOTAL (X):8,"COINS")
26 . end
R7 . end .

This calculation could be performed with a procedure instead of a function, but the number of variables would
have to be increased because no value can be assigned to a procedure identifier. Try coding a program which uses a
procedure to obtain the same result.

Function declaration

function)—— ’

Identifier ~Parameter list Simple type Variable declaration statement Compound
statement

66

Global variable and local variahle ‘

A procedure declaration or function declaration can declare variable which are valid only in the declaration block.
Such variables are called local variable. Arrays can also be declared as local variables. Variables which are declared in the
variable declaration block are called global variables. Global variables are valid throughout the program.

@. var A : infeger; oo Declares global variable A. (A is valid throughout the pro-
1. procedure TAB (X : infeger) ; gram.)

B, var N : integer; --cooooeoemieemeien Declares local variable N, (N is valid only within the procedure de-
B begin claration block for TAB.)

4. for N: =1 to X do

5. write ("' = ")

6 . end ;

7 . begin

8. write (" G THE NUMBER OF TABS ARE wy g

9. readin (A) ;
10. TAB (A) ;
17 . write (" ABC ")
12 . end.

No function corresponding to TAB (X) in BASIC is provided in PASCAL. The above sample program provides
a similar function using a procedure declaration. When the program is executed, it asks the operator for the number
of tabs. Key in an appropriate jnteger number and check the position of “ABC” on the display screen.

Variable N is declared at line 2. This variable is valid only within the declaration block for procedure TAB. There-
fore, it cannot be used within another parts of the program. Further, no value can be externally assigned to it.

Parameter X is automatically defined as a local variable.

The structure of a procedure declaration or function PR OCE DU RE -~ 1
declaration block is as shown at right. It is similar to the F UNC‘” ON:=—----~
structure of PASCAL programs in general.

Variable declaration section
Modify the sample program “GEOMETRICAL PRO-

GRESSION” shown on the preceding page as follows and Executable statements
execute it. L J
. I must distinguish
0. {| GEOMETRICAL PROGRESSION |} oo between global
1. var SUM : real; \@ s variables and local
X : integer: variables.

. funcnction TOTAL (DAY : infeger) : real;
var M : real; N : integer:
begin

o B o

Global

ABC ABC
REAL REAL

The following sample program will clarify the difference betwen global variables and local variables.

@. var N : char § st TR AT O BT G e e s s e st st o i o S Declares global variable N.
1. procedure PRINT ;

2., var N : C’hQI‘; .. Declares local variable N.
B - begin

4. N:="B';

5. writeln (" LOCAL VARIABLE N IS",N:2)

6 . end ;

7 . begin

8- N:="A";

9. writeln ("A IS FIRST ASSIGNED TO GLOBAL VARIABLE N.");
lo. PRINT ;
11« writeln (" CHECK THE CONTENTS OF GLOBAL VARIABLE N.");

12. writeln (" GLOBAL VARIABLE N IS",N:2)

13 . end.

This program uses the same identifier for both global and local variables. Program execution proceeds as follows.

(1) Line 7 is the beginning of the executable statement section.

(2) Character A is assigned to global variable N at line 8.

(3) A message is output at line 9.

(4) Procedure PRINT is called at line 10.

(5) In the procedure declaration block, character B is assigned to local variable N at line 4.

(6) The contents of local variable N are displayed at line 5 and program control is returned to line 11.
(7) A message is displayed at line 11.

(8) The contents of global variable N are displayed at line 12.

Character A, which was first assigned to global variable N, remains unchanged after program execution. Local
variable N is valid only within the procedure PRINT.

Local variables are:
(1) Variables which are declared in procedure and function declarations, or
(2) Formal parameters of procedure and function declarations.

Global variables are variables which are declared at the beginning of programs by var declarations.

Local variables may be defined as files.

Recursion

A procedure (or function) may call itself. Such cases
are called recursion. In BASIC, recursion is what occurs
when a subroutine calls itself.

The following sample program gives the sum of integers

1 through N.
@. var K : infeger;
1. function SUM (N : integer) : infeger;
2. begin
3. if N=1 then SUM: =1
4. else SUM: =8UM (N—1)+ N
5. end ; Recursive call
6. begin
. readln (K) ;
8. writeln (" SUM=",SUM (K) : 6)
9. end
In the above sample program, the function SUM calls

itself with N-1 assigned to the parameter. The structure
of this program is difficult to understand, and it is difficult
to write a clear flow chart. However, the program structure
can be clarified with a diagram called an NS chart.

With BASIC, recursive calls are generally impossible except in the case shown below.

Recursion with BASIC (precisely speaking, this is not really recursion for the reason described on page 10.)

10
20
30
40

100
110
120
130
140

INPUT “ N= " ;N
GOSUB 100

PRINT “END”

STOP

PRINT “N= ”;N

IF N=0 THEN RETURN
N=N-1

GOSUB 100

RETURN

The subroutine itself is called at line 130; therefore, this may be regarded as a recursive call. However, when the
value of N is large, the maximum number of subroutine levels is exceeded.

With PASCAL, there is no limit on the number of recursive calls which may be made other than the limit imposed
by the useable memory capacity. Therefore, care is required when using recursion.

68

Most programs which use recursion could be written without it. Recursion does not reduce execution time or

the amount of memory required by the program.
It is sometimes better not to use recursion. Whether or not recursion is used must be determined on a case-by-

case basis.
However, use of recursion often makes the program structure easier to understand. The following programs both

give the factorial of N; the first uses recursion and the second does not.

@. var X : integer;
1. function FACTORIAL (N : infeger) : integer:
2 begin

B if N=0 then FACTORIAL: =1

4. else FACTORIAL: =NXFACTORIAL (N—1)
5. end ; Recursive call

6 . begin

i write ("© ") ;

8. for X: =0 to 7 do

9. begin
10. writeln (X:1,"! " ,FACTORIAL (X) :5) ;
11 writeln ()
12. end
13 . end

©. var X : infeger:
1. function FACTORIAL (N : integer) : infeger:

2. var A, B : infeger:
3. begin
4. A:=1,;
5. B: =0;
6 . while B<N do
7 begin
8. B: =B+1;
9. A: =AXB
lo. end ;
1l. FACTORIAL: =A
12. end :
13 . begin
14.. write ("G ") ;
15. for X: =0 to 7 do
16 . begin
17. writeln (X ;1,"! " ,FACTORIAL (X):5) ;
18. writeln ()
19. end
20. end

69

70

WRITE statement

The write statement is used to display a calculation result or a message on the CRT screen, to print it out on the

printer or to write data on cassette tape. It corresponds to the PRINT statement in BASIC.
There are several forms of write statements as shown below.

Type 1 : for display of a character string on the CRT

write (“ < character string > ") ;
writeln (< character string> ") ;

These statements display the character strings enclosed in double quotation marks () on the CRT screen. The
write statement does not make a carriage return after it has displayed the character string, but the writeln statement
doess. © H T 4 <& = maybeenclosed in double quotes in the same manner as in BASIC.

Type 2 : for printing a character string on the printer

pwrite (‘< character string >") ;
pwriteln (< character string>"") ;

The only difference between this form and type 1 is that the character string is output to the printer.

Type 3 : output of the value of an expression

write (< expression 1 >: <expression 2> : <expression3>,...);
writeln (< expression 1 > : <expression 2> : <expression3>,..);

These statements display the value of expression 1 so that the least significant digit is displayed in the position
which is a certain number of spaces to the right of the current cursor position. This number is determined by expression
2. Expression 3 is valid only when expression 1 is real, it specifies the number of decimal places. Expression 1 may be
any type of expression other than boolean, expressions 2 and 3 must be integer expressions.
write (‘A : 8) : 12345678
Character A is displayed at the 8th position to the left of the current cursor position. — [T ICICICIA]

123456789

write (‘A’:3,B’:2,°C’: 4); OOAOBOOOC
write (‘A7) ; 123 4. 12 13 14 15
The default value of expression 2 is 15. A O I -
Assuming that 1.2345 is assigned to real variable X. 12345678
write (X : 8) ; LML 2El4)E]
write (X : 5) ; An error results since the number of digit of the contents of X is 6.
write (X :5:2) ; 12345

The comntents of X are displayed down to the 2nd decimal place. OME2I3El
write (“ABC”, X’ : 3) ; ABRCOOX
write (‘°X’ : 3, “ABC”) ; IOXABG

The above rules also applies to the writeln, pwrite and pwriteln statements.

Assume that 2, 3 and 8 are assigned to integer variables X, Y and Z, respectively.
1234656

write (X+Y : Z-X) ; OOOO0E

’ T
expression 1 expression 2

The above example is the same as write (5 : 6) since expression 1 gives 5 and expression 2 gives 6. In write XY,
Z) all variables are treated as non-file variables when X is not a file variable, even though the others are. As shown
above, file declaration is checked only for the first variable; other variables are assumed to be the same type as the first
variable. This is also true for type 2 read statements.

writeln () performs a carriage return. write () does not result in an error, but no action is performed, (other
than to reduce the running speed).

The following statements dispaly values of array elements which are not declared as file.

write (DATA [15] :5); write (DATA [X-Y] : A+B);
1 T ;
Array identifier Expression 2 Expression 1 Expression 2

Expression 4

“

- X
Expression 1

(The second statement displays the same data as the first one when X is 20, Yis 5, A is 2 and B is 3.)

Expression 3 can be specified when the array is real as follows.
write (DATA [15] : 5:3);
Expression 1
Expression 2- Expression 3

Type 4 : Output of data which is declared as file

write (< identifier > , < identifier >, . .., <identifier >) ;

For example, the following statement records integers 1 through 10 on the cassette tape as the data file ““10 IN-
TEGERS”.

fname (10 INTEGERS”) ; for N: =1 to 10 do write (N) ;close

In this case, variable N must be declared as file in advance; otherwise, the data will be displayed on the CRT screen.
The variable identifier specified in a write statement must also be specified in a read statement when the recorded data
is to be read. For example, to read data recorded in the above example, use.

for M:=1 to 10 do begin read (N);........ ; end

The following statement cannot read the data because the read data is assigned to control variable N.

for N:=1 to 10 do begin read N) ;........ ; end

write (X, Y, Z) results in an error when X is declared as file and Y and Z are not. file declaration is checked only
for the first identifier. Variables declared as file, it may be boolean variables.

71

72

Type 5 : Output of data of arrays which are declared as file

write (< array identifier > [], <array identifier>1[], , < array identifier >[1) ;

This statement saves all array element data in the cassette tape file when the array are declared as file. No character
may be enclosed in []. Any data type may be used.

write (RESULT [1)

The above example saves all array element values from the array RESULT in the cassette tape file. The number of
dimensions of the array is not limited. It is not possible to save part of an array by specifying RESULT [5].

frame (“ABC”) ;
write (RESULT [], DAY [1);
close ;

When the above statements are executed, all data from arrays RESULT and DAY are saved in the cassette tape file
with the file name ABC assigned. In this case, executions read (DAY []) with file name ABC specified results in an
error, read (RESULT [], DAY []) must be used.

To store arrays RESULT and DAY in different files (or different tapes), the tape deck must be stopped after the
array RESULT has been stored. Therefore, the program is written as shown below.

fname (“ABC”) ;

write (RESULT [1) ;

close ;

read (A); ..o oviviin.. Program execution is stopped until a key is pressed (the tape deck is also stopped).
frname (“DEF”) ;

write DAY [1)

close ;

write statement

==
lI writeln l

pwrite

Character string

T
1

Expression 2 Expression 3

Expression

real

(integer) (integer) (integer)
char

pwriteln

o8 :

Expression 3 can be specified
only when expression 1 is real

write statement (type 4 and 5)

Identifier

The following sample program stores integers 1 through 5 in a cassette file, then reads them from the file.

@. var X M : integer:
1. N:FILE OF infeger;
2 . procedure PUTDATA ;
3. begin fname ("5 integers') ;
4 - for N:=1 to 5 do write (N) ; close
5. end ;
6 . procedure GETDATA :
7. begin fname ("5 integers") :
8. for M: =1 to 5 do
9. begin read (N) ; X : =N ; write (X:4) end: close
10. end ;
11 - begin
12 . writeln ("' © DATA WILL BE STORED IN THE CASSETTE TAPE
FILE. ") ;
13 . PUTDATA ;
14 . writeln (" L DATA HAS BEEN STORED IN THE CASSETTE TAPE
FILE. ") ;
15 . writeln (" 4 PRESS ONE OF KEYS 0 THROUGH 9 AFTER REWIND
HAS BEEN COMPLETED. ") ;
16 . readin (X) ;
17 - writeln (" L DATA WILL BE READ FROM THE CASSETTE TAPE
FILE. ") ;
18 . GETDATA ;
19 - writeln () ;
20. write (" END")
21 . end.

The read statement on line 9 is explained in the next section. X : = N on line 9 is required because N is declared as
file and it cannot bespecified in a write statement for screen display.

Note: No expression can be specified in the parentheses of write statement of type 4 or type 5.

fname statement

character string

fname (1) ")

key

close statement

- close } >

74

READ statement

The read statement reads data from the keyboard or
the cassette tape. It corresponds to the INPUT statement
of BASIC.

Type 1 : Reading the values of variables which are not
declared as file

read (< identifier > ,<identifier>,...,
<identifier>) ;

When this statement is executed, ? is displayed to re-
quest that data be keyed in when the identifiers are not
declared as file. Key in data and press the key
and the keyed data is read and displayed. No carriage re-
turn is performed when the read statement is executed.

read X,Y,Z);

When the above statement is executed, the system displays ? and waits for input of the data to be assigned to X.

After the first data has been input and the key has been pressed, the system displays ? after the data just enter-
ed to wait for data input to Y. After the data for Y has been entered, the system displays ? to wait for data for Z. After
all data has been read, the system goes onto the next statement.

Data can be keyed in another way, as shown in Note 5 below. Attention must be paid to the cursor position when
many items of data are keyed in.

Type 2 : Reading the values of variables which are not declared as file.

readln (<identifier >, <identifier>,..... , <identifier >) ;
This statement is the same as type 1 except than a carriage return is carried out after the last data has been read.

Notes: 1) No boolean variables can be specified in a read statement of type 1 or type 2.
2) Only one character can be read when a variable is char variable.
3) No expression can be specified in parentheses.
4) For read (X,Y,Z), non of the variables will be handled as file variables if X is not a file variable. file de-
claration is checked only for the first variable.
5) For read (X, Y, Z), data can be keyed in two ways. For example, to assign 5 to X, 6 to Y and 7 to Z, key
in B/ [6l/[7./ or ELIELIZ .

Type 3 : Reading variables which are declared as file

read (<identifier >, <identifier>,...... , <identifier >,

When the variables are declared as file, the system automatically reads the file data. The file must be opened, and
the file name must be declared by frname statement in advance. The data read is not displayed on the CRT screen. After
reading has been finished, the cassette tape stops and the system executes the next statement.

Executing read (X, Y, Z) results in an error when X is declared as file and Y and Z are not. file declaration is
checked only for the first variable.

readln statements are not used for variables declared as file.

Type 4 : Reading array variables which are declared as file.

read (< array identifier > [] , <array identifier >[],..... , < array identifier>[]) ;

When the variables to be read are array variables which are declared as file, this statement reads the values of all
elements of the array. No character can be specified within [] .
Data can be read even if the array identifier or the number of dimensions of the array is different from that speci-

fied when data are saved, if the total number of array elements and the data type are the same as those stored in the
file. See the example on page 36.

All array identifiers specified must be declared as file; otherwise, an error results.

Notes: 1. boolean variables can be used when they are declared as file.

2. No statement or expression can be specified within parentheses.

read (X+Y); Incorrect because an expression is used in parentheses.
read (Z:=X-Y); Incorrect because a statement is used in parentheses.
read (X,Y,Z); An error results when X is declared as file but Y and Z are not. When Y and Z

are declared as file but X is not, no error results but Y and Z are treated as if
they are not declared as file.

read statement (type 1 and 2)

read

(Identifier)

readln

75

76

Graphic control statements

The MZ-80B personal computer can be used for display of high-density graphics by installing an optional graphic
RAM card. Graphic control with PASCAL is almost the same as with BASIC. The PASCAL graphic control statements
and functions are listed below with the corresponding BASIC control statements and functions for comparison.

PASCAL graphic control statements BASIC graphic control statements
graph (<1, 2a,0,b,C, F>) GRAPH <Ia, Ob,C,F>
gset (x,y) SET X,y
grset (x,) RESET x,y
line (X1, Y1, X2, ¥2<, X3, Y35 + - - » Xn» Yn>>) LINE X{,¥:1, X2, ¥2<,X3,¥3 ..., Xn, Yn>
bline (X1,¥Y1, X2, ¥2<, X3, Y35 + - - » Xn» ¥n>>) BLINE X;,¥1,X2,Y2<,X3,¥3 - -5 Xns ¥n>
position (X, Y) POSITION x,y

pattern (x;, <“character string” | character expression>) PATTERN X, X;$<, X5, X2$. .. X, Xp $>

PASCAL graphic control functions BASIC graphic control functions
point (X,Y) POINT (%, y)
posh POSH
posy POSV

Lets use the gser statement to draw a circle on the screen with a radius of 80 whose center is at (160, 100). We can
do this by rotating a radius vector of 80 through 360° (1° at a time) to set dots. The coordinates of the radius vector
can be computed using the SIN and COS functions with respect to the angle. Note that the parameters and the results
of the SIN and COS functions are of the real type, whereas the operands of the gser statement must be of the integer
type. Consequently, it is necessary to convert data types when passing arguments between graphic control statements.

A programming example and the results of its execution are shown below.

©@. var X ,Y ,TH : integer; DK : real;

1. begin

2. graph (I,1,C,0,1) ;

3. for TH: =0 to 360 do

4 . begin

5. DK : =float (TH) > 3.1415927/180.0 ;
6. X : =trunc (cos (DK) X 80.0) +160 ;
7. Y : =trunc (sin (DK) X 80.0) +100 ;
8. gset (X,Y)

9. end
10. end.

graph statement

graph (I Expression

(integer)

gset/grset statement

Expression 1

(integer)

Expression 2

(integer)

Let’s draw a diamond on the screen using the /ine statement. Note that the coordinate data specified in the

operand field of the line (or bline) statement must also be of the integer type.

@. var A . integer,

1. begin

2. graph (L,1.6.9,1) ;

3 for A: =0 to 150 do

4 line (160,00, trunc (cos (float (A)

X 3.1415927 /150 .0) +160,
100,160 ,200) ;

5. end.

line/bline statement

line

bline

Expression 1

Expression 2

(integer)

(integer) l

Expression 3

Expr(;sion 4

4

(integer)

()

(integer)

A

You can use the position and pattern statements of PASCAL in the same manner as in BASIC. Note that pattern
data specified in the operand field of the pattern statement must be a character string enclosed in double quotation

marks or character type data.

position statement

Expression 1

Expression 2

position 9
(integer) (integer)

pattern statement charaeter striig
Expression 1 n A

© {7 s

(integer)
7\ (char)
-

77

78

Character display control statements

The range statement fixes the scrolling area of the character display screen, changes the character display mode be-
tween 80 characters/line and 40 characters/line, or character and graphic display mode between reverse mode and
normal mode.

range statement

-
OO~ L=]

O
(integer: 80 or 40)
-

L . g
O/ -
Expression 1 Expression 2
(S) :) > —
(integer)

(integer)

The operand of the range statement determines which of three functions shown below are activated.

Fixing the scrolling area

range (...S,Is,le . va)

The top line refers to line @ of the display and the bottom line to line
24.1s and le fix the scrolling area.

Hence, 0 Is<leZ 24

This area, however, must cover at least three lines.
Changing the character display mode
range (...C,80...)
range (...C,40...)

This sets the character display mode to “8@ characters/line”.
This sets the character display mode to “40 characters/line”.

Changing the character and graphic display mode
range (...R...)

range(...N...)

This sets the character and graphic display mode to reverse mode.
This sets the character and graphic display mode to normal mode

Function key control and printer control statements

The fkey statement corresponds to the DEF FKEY statement in the BASIC language and can be used to define any
of twenty functions of the ten definable function keys.

fkey statement
Expression 1 character string
©
(integer:1~20) Expression 2
(char)

A number from 1 through 20 is assign to function number, provided that a number from 11 through 20 can be used

to define functions in | SHIFT| state.

The image statement causes the printer to draw a desired dot pattern according to the operating mode (image
mode 1 or 2), and the copy statement causes to copy an entire frame of data displayed on the computer screen. These
are corresponding to the BASIC statements IMAGE/P and COPY /P respectively.

image statement

(imee (O i

character string

Expression

(char)

oF

copy statement

O e) S—

(integer:1~4)
Example: image (“nUU#”)......... Draws the dot pattern “H” on the line printer.
image (“n”, “UU”, “m) Draws the three dot patterns “|”, “=” and “|” extending over three

lines on the line printer.
copy (1) ..o .. Causes the printer to copy the character display.

79

CALL statement |

This statement calls a subroutine coded in machine language; it corresponds to the USR statement of BASIC.

call (<expression>) < variable identifier 1 >, < variable identifier 2 > ;

This statement stores the value of variable 1 in the HL re-
gister and the value of variable 2 in the DE register, then jumps to
the address indicated by the expression. A return is made by the
RET instruction.'The expression and variables must be integer
type in decimal notation. The variables may be declared as file.

When 32000 is assigned to variable X, 752 to variable Y,
4608 to variable B and 100 to variable C, executing

call (X+Y)B,C;

causes 4608 ($1200 in hexadecimal) to be stored in the HL re-
gister and 100 to be stored in the DE register and program con-
trol to be transferred to address 32752 ($7FF0) (i.e. X+Y).

I've just prepared for

The user must be familiar with the machine language to use

this statement. Careless use of this statement may result in destruction ot the program.

When program control is returned to the PASCAL program from the subroutine, the HL and DE register contents

at return are assigned to variables 1 and 2, respectively. Therefore, if the values of variables 1 and 2 at the time the sub-

routine is called are necessary, save them with PUSH instructions at the beginning of the subroutine and restore them

with POP instructions at the end of the subroutine as shown below.

The stack pointer contents must be the same before and after execution of the subroutine. Thus, the general struc-

ture of a subroutine is as follows.

LD (nn"), SP

LD SP, mm’
PUSH HL
PUSH DE

POP DE
POP HL

LD SP, (nn')
RET

80

A hexadecimal address, e.g. $FFFQ
Specified by the user

+ User subroutine

A negative decimal value must be specified in the statement when a hexadecimal data or address value is equal to
or greater than $8000. The method for converting a hexadecimal value into the respective decimal is explained below.

1. Converting hexadecimal values up to $7FFF to decimal

$1000 $0100 $o010
¥ 2 ¥

$7FFF = 4096 x7 + 256x15 + 16x15 + 15 = 32767
$7FFF

$4A0B = 4096 x4 + 256x10 + 16x0 +11 = 18955

$0250 = 4096x0 + 256x2 + 16x5 + @ = 592

2. Converting hexadecimal values greater than $8001 to decimal

(1) Convert the hexadecimal value to binary.

(2) Invert each bit.

(3) Add 1 to the result.

(4) Convert the resulting binary value to hexadecimal, then convert it to decimal with a — sign affixed.
(5) $8000 is to be handled as —32767 —1. This is a special case.

(6) Care must be taken with operations X after X :=—32767—1 has been executed.

Example:

Converting $8F56 into decimal.

The binary expression of $8F561is 1000 1111 0101 0110 $8F56
Inverteachbit 0111 0000 1010 1001 $70A9
AGL] s o namarsess nERDS 556 DORR 248 QSR ?111 0000 1010 1010 $70AA
The decimal expression of $70AAds. 4096x7 +256x0+ 16x10 + 10 = 28842

AR hE =S8N o wvnv vovaonns v omamsmmswms 5—28842

To call a subroutine starting at address $8F56, execute call (—28842).

A program which performs the above conversion is shown in the appendix.
$FFFF is —1 in decimal notation.
$8001 is —32767 in decimal notation.
$8000 is —32767—1 in decimal notation.

call statement

0 Expression L—@—- Variable 1 ——@—— Variable 2 p———»

(integer) (integer) (integer)
Address HL register DE register

82

COUT statement |

This statement displays a character at the current cursor position according to the ASCII code table.

cout (< expression >) ; This statement displays char data indicated by the expression at the current cursor
position. The cursor position is not changed by execution of this statement.

PATT =@ §xesnsssus Assigns the character in the cursor position to the variable PATT.

cout (PATT) ;. The character assigned to PATT by cin is displayed at the cursor position.

cout (CHR (X)) displays # when X is 35 because ASCII code 35 corresponds to character #.
Expressions specified in cout statements may be declared as file.

Variable X, character ‘A’ and
integer 5 are all expressions.

A :=X+Y is not an expression, but is a statement.
X+Y, A>B and sqrt (X) are expressions.

5 and ‘A’ are expressions.

It is a good practice to check the syntax diagrams when in doubt.

cout statement

G ‘ ExpreSSion)

(char)

POKE statement |

The poke statement writes specified data in memory. It corresponds to the POKE statement of BASIC.

poke (<expression 1>, < expression 2 >);

This statement stores the code data given by expression 1 in the address indicated by expression 2. Expression 1
must be of type char and expression 2 of type integer. Both may be declared as file.

poke (chr (X),Y) ;

Assume that 65 is assigned to X and 32752 to Y. This statement then stores 65 ($41) in address 32752 ($7FF0).

X is an integer variable, but chr (X) is char. This statement is equivalent to poke (A’,Y) in this case, since the ASCII
code for the character A is 65.

The integer given by expression 1 must be within the range @-255 because one exceeding 255 cannot be stored in
one byte. The value of expression 2 must be negative when an address higher than $8000 is specified.
Data may not be written in the PASCAL interpreter area.

poke statement

Expression 1 Expression 2
© , o=
(char) linteger)
Address

83

84

QUTPUT statement |

The output statement outputs data to the specified port. With this statement, peripheral devices can be control-
led with a PASCAL program.

output (< expression 1>, < expression 2>);

This statement outputs data given by expression 1 to the port address indicated by expression 2. When this state-
ment is executed, the data given by expression 1 is loaded into the A register (accumulator) and the address given by
expression 2 is loaded into the BC register, then the following machine language instruction is executed.

OUT(C),A......... $ED79

Expression 1 must be a char expression and expression 2 an integer expression. Both may be declared as file. The

data code is in accordance with the ASCII code table.
Care must be taken with the value of expression 2 since port addressing is performed using the C register contents.

For example, the following two statements specify the same port.

output (chr (X), 255) ; 255 is $00FF in hexadecimal.
output (chr (X), 4351) ; 4351 is $10FF in hexadecimal.

As shown above, the lower byte of the hexadecimal data is used to specify the port address. Therefore, no problem
occurs when the value given by expression 2 is within the range 0-255.

To input data from a port, the input function is used.

Which way do
| take?

Go through port 2.

output statement

output (Expression 3 % Expression 2 %

(char) (integer)
Port address

EMPTY statement .

An empty statement is one in which nothing is written.
See the following statement.

if A=0 then
else B:=true;

There is no statement after then, but an empty statement is executed.

if A=0 then B := false
else;

The above includes an empty statement after else. Thus, an empty statement can replace any statement in the

syntax diagrams.

if then X:=1;

This statement results in an error because an expression, not statement, must be placed between if and then.
The following statements are correct, although they are not generally used.

begin
end.

begin A :=X+Y; end; Normally, thisis written as begin A :=X+Y end;.
A:=X555;

Use of this type of statement is not recommended since they waste memory and make execution speed longer.

85

86

Statements and functions

A statement is a unit of program execution. A function is not a statement, but is included in a statement.

Take note of and learn the following statements and functions in particular.

Statement

Function

output
poke

cout

input
peek
cin

key

Any function can be a part of an expression but no statement can.

write (“DATA=", cout (X)); This statement is incorrect because a cout statement is used instead of an expression.

write (“DATA="); cout (X); Correct.

write (peek (X+Y)); Correct.

Exercise:

Find all errors in the following program and describe the reasons.

while ord (key)=0@ do key;
if X<>0 then peek (25302) ;

NS
WN—
AN

var A ,B: real;
.function SUM (X,Y; real) : real;
begin
SUM: =X+Y
end ;
.begin

readln (A ,B)
SUM (A,B);
write (SUM (A ,B))
.end .

OO0 PrARNLVHES

(Solution is given on page 90.)

The following sample program gives the solution of a quadratic equation. This program executes only once. Re-

write it so that it can loop any number of times and execution can be ended at any time.

23

R”4 .
25 .
R6 .
27 .
28.
29 -

31 .
32 .
33 .
34 .
35 .
36 .
37 .

OCONOOOPAROVHO

- | QUADRATIC EQUATION |
-.var A ,B,C,D: real;
- function JUDGE (E,F,G : real) : boolean ;

begin
D:=F%kF—4.0%E%xG;|{ D=B%kB—4%AXC |
if D>=0.0 then JUDGE : =true
else JUDGE : = false
end;

- procedure ROOT (K : boolean) ;

var SROOT,ROOT1,RO0T2,RO0T3,RO0T4 : real;
begin
case K of
true : begin
SROOT : = sqrt (D) ;
ROOT1: = (—B+SROOT) ./ (2.0% A) ;
ROOT2 : = (—B—SROOT) ./ (2.0% A) ;
writeln (" THE ROOT OF 1 IS" ,ROO0T1) ;
writeln (" THE ROOT OF 2 IS" ,RO0OT2) :
end ;
false :begin
ROOT3: =—B. (2.0%A) ;
ROOT4 : =sqrt (—D) (2.0%A) ;
writeln (" THE ROOT OF 1 IS",ROOT3:12," + ",
ROOT4:12," I ") ;
writeln (" THE ROOT OF 2 IS" ,ROOT3 12," — ",
ROOT4 12," I ")

end
end
end ;
begin
writeln (" QL L =2=23=2AXT24 + BX + C =0 ") ;
write (" L & A IS");
readln (A) ;
write (" L B Ig™);
readln (B) ;
write (" L Cc I8");
readln (C) ;

write ("4 L ") .
ROOT (JUDGE (A,B,C))
end .

Line 36 designates function JUDGE with the values of 1}, B and C read at lines 30, 32 and 34 be parameters, then
calls procedure ROOT with the resultant data of function JUDGE be a parameter.

87

88

MUSIC statement and TEMPO statement

These statements enable the computer to play music. The rempo statement specifies the tempo and the music

statement specifies notes to be played and plays it.

tempo statement tempo (< expression >) ;
The expression is of the infeger type and its result must be in the range from 1 through 7.
tempo (1) ; The slowest tempo (Lento, Adagio)
tempo (4) ; Medium tempo (Moderato): 4 times faster than tempo (1)
tempo (7) ; The fastest tempo (Molto Allegro, Presto): 7 times faster than tempo (1)

The music statement is executed as moderato (fempo (4)) when no tempo statement is specified initially.

music statement music (< “character string” >] < char type expression >) ;

The music statement plays music according to the specified character string or char type expression at a tempo
specified by the tempo statement.

The following indicates how the melody or sound effect converted into string data.
Musical notes are assigned according to pitch (octave and scale) and duration.

Octave assignment: — +

The sound range covers three octaves as shown at
right. The black points indicate C notes, and the three C
notes are separated by octave assignments as follows;

LowC —C
MiddleC C
HighC + C

Note specification: C, D, E, F, G, A, B, #and R
C,D,E,F,G,A,B and # are used for note spec-
ification.
The relationship between the notes and these char-

acters is shown at right. The # symbol is used for semi-
tone assignment.

Rests (no sound) are assigned with R.

Rest

R

Duration specification:
This specification determines the duration of a note whose pitch has already been assigned. Note durations from
thirty-second to whole are specified with numbers from 0 to 9. The duration of rests (R) is also specified in this

manner.

When notes of identical duration are repeated, duration specifications for the second and following notes may be
omitted. If no duration specification is made, program execution is carried out with quarter notes (duration 5) initially.

Volume control
The sound output volume cannot be controlled by means of the program, but it can be controlled by the volume
control provided on the rear of the cabinet.

Example:
The beginning of “Girl” by the Beatles is played by the following program.

i
z
i

@ - var A : infeger;

1. begin

R . tempo (5) ;

3 - A:=1:

4. while A<>@ do

5. begin

6 . music (" +C3+D+ #D4+ #D1+ #D4+ #$D1+F4+ #D1+D4+C1+CHG+HCHA") ;
7. music (" $#G4+C1B4+C1l+D4+C1lB4 #G1G7R5")

8 . end

9 . end

This program repeats play. Line 7 can be rewritten using char expressions as follows.
7. music ("#','G','4","+",'C', e

Variables may be used in the above statement, and charac-
ter strings and char type expressions can be mixed.

89

COMMENT statement

The comment statement is a non-executable statement which makes it easy to review the program list. It corre-
sponds to the REM statement of BASIC.

| character string |
Any number of comment may be used in any part of a program. However, frequent use of comment statements

makes the running speed slower and requires a greater amount of memory. A comment statement can not be specified
within another statement.

©-{ PUZZLE |

1.4 1981. 7.15 |}

R . var A ,B,XMAX : integer;

3. DATA : char:

4 . procedure UP (N: integer) ; { CHARACTER UP |

5. begin

Comment statement

{ Comment

Don’t worry about
errors. Try coding and
executing a program.

This concludes our explanation of the rules of the
PASCAL. The many new statements and unique program-
ming procedure will require some practice to gain familiarity

with this new language.
Code and execute many programs, and you will become
skillful in PASCAL programming.

Solution of exercise on page 86:

(1) A statement should follow do, but the function key does.
(2) A statement should follow then, but the function peek (25302) does.
(3) A statement should be placed on line 7, but the function SUM (A, B) is.

Chapter 6

Programming

91

92

Now that you are familiar with the rules of PASCAL, you are ready to try writing programs. The question lies in
what approach to take. With BASIC, you can start keying in a program as soon as you have conceived it; this is possible
because detailed sections can be developed as subroutines and linked to the main program with GOSUB as the need
arises. This is not the case with PASCAL.

The fact that PASCAL does not include an equivalent of the GOTO statement means that the structural sequence
of a PASCAL program must be well defined in advance. A natural result is that PASCAL programs are very clear and
have a structure which is self apparent. Thus, learning to write programs with PASCAL requires developing a method of
approach which will cause you to change your idea of programming in other languages as well. This is the main reason
PASCAL is referred to as an educational programming language.

As was explained in chapter 1 of this manual, PASCAL programs are made by means of structured programming.

1. Make an outline of the process to be used in solving the problem and divide it into independent subprocesses. This
is equivalent to writing subroutines. Parts which cannot be separated as subprocesses are left for inclusion in the
main routine.

2. Each subprocess constitutes a procedure or function. Name (identify) the procedures and functions in any order.

3. Code PASCAL entries for one of the procedures or functions. It may be useful to break the subprocess into smaller
components for convenience in coding. Declare variables which are used only within one coded block as local varia-

bles.

4. When the first block has been completed, go on the next one. You may consider incorporating previously coded
blocks into a single one at this time.

5. Assign an identifier to each global variable used in coded blocks; make a list of all identifiers for global variables.

6. When all blocks have been completed, combine them into one body.

Building a house Set up the framework Measure Bring in material

MAIN PROGEDURE FUNCTION' PROCEDIRE

~

Insert a comment statement at the beginning of the program to identify it.

(o]

Next, declare global variables which are included in the list.

O

Now write declarations for procedures and functions which have been coded. The order in which these are arranged
can be independent of the order of execution. Arrange them so that the overall program structure is readily ap-
parent.

10. Executable statements come last. The order of these statements is extremely important since they determine the
sequence of execution of the program. Arrange executable statements following the declaration section, starting
them with begin and ending with end. Processes which cannot be broken down during step 1 are coded in this
section.

11

Enter the program and run it to check for errors. If any error messages are output, correct the program according
to the messages. Care must be taken when corrections are made because they may have an influence on other parts

of the program.

Indentation

It is recommended that statements be indented as described on page 59. This not only makes the program easy to
read but also helps prevent errors when the program is entered. Indentation does not require additional memory space.
The number of spaces preceding each statement is not limited, but generally two spaces are used for each statement
level.

Thus, end is indented the same number of spaces as begin, and until the same number of spaces as repeat. else can
be indented the same number of spaces as if or two spaces more than if,

begin
repeat
read (A);
if AK>@ then write (X)
else write (Y)
until A=100

end

93

94

Link with color control system

Load the SB-3000 series cartridge in the cassette deck and turn on the power (start IPL). Then, load PASCAL inter-
preter SB-4515 series into memory.

Three statements and one function are provided for controlling the color control system. These are briefly outlined
below; for details, refer to the Color Control Manual.

1. TRAN

This statement transfers a graphic command to the color display terminal.

©-

tran (| Expression)

Character string

Example 1 :

The following program displays the character string “SHARP” in red on a green background formed of 256 x 192
dots.

0. begin

1. ﬂ‘an (“M’ 07), ‘GB, 277, “C’ 1”) ;
2. tran (“SF, 127,95, 0, SHARP”)
3. end.

Lines 2 and 3 can be placed on one line. For the format of the character string in quotation marks, refer to the
Color Control Manual.
Line 1 can be rewritten to include expressions which result in char data as follows.

tran (‘'M’,",",'0’', chr (13),'B’,", ", '2', chr (13),'C",", ", "'1’, chr (13));

Example 2 :

The following program allows the color of the background and the characters to be specified from the keyboard.

@.{ COLOR CONTROL |
1l.var BACKGND,CHARCOL,CR : char;
R . procedure COLCONT (X, A : char) ;

3 begin

4 tran ('B',",,X,CR) ;

5 tran ('C',",',A,CR) :

6. tran (" SF,50,95,0,SHARP ")
7 . end ;

8 . begin

9. CR : =chr (13) ;

10. write ("G4 4L L =222k SPECIFY BACKGROUND COLOR[0——7] ") :
11. readln (BACKGND) ;

12 . while (BACKGND< @') or (BACKGND>'%7) do readin (BACKGND) ;
13. write ("' 2<SPECIFY CHARACTER COLOR [0——7] ") ;]

14. readin (CHARCOL) ;

15 . while (CHARCOL<'Q®') or (CHARCOL>'?7") do readin (CHA OL) ;
16 tran ("M ,1 ") :

17. COLCONT (BACKGND,CHARCOL)

18 -end.

Look at lines 4 and 5. These statements use expressions which result in char data and are concluded with carriage
returns. Statements including such expressions must always be concluded with carriage returns.

2. REQTR

This'function obtains 1 byte of data from the terminal.
No parameters are used and the result is char type data.

Example:
X :=reqtr

This function obtains 1 byte of data from the terminal and assigns it to char variable X. To convert the
data to integer data, use Y : = ord (reqtr).

3. SYRET

This statement resets the color control display terminal and makes a cold system start.

4. SYRET2

This statement resets the color display terminal and causes the system to wait for entry of a monitor command
(DU-A).

There is no statement corresponding to OTBIN in BASIC which transfers 1 byte of hexadecimal data to color dis-
play terminal, since this can be done using tran.

For example,
tran (chr (62), chr (13))

transfers hexadecimal data $3E to the terminal device, where 62 is the decimal value of $3E and 13 that of the carriage
return. This statement can be rewritten as follows.
tran ('>', chr (13))

where > indicates ASCII code 62.

96

Flowcharts are not used to represent the structure of PASCAL programs because they are not suitable for repre-
senting the structure of such programs. Instead, NS (Nassi Shneider) charts are used to portray the structure of
PASCAL programs. NS charts are convenient for checking the flow of very complex programs. It is strongly recom-
mended that you become familiar with use of these charts.

1. Compound Statement

Consider the compound statement shown below.

hegin / Reads the centigrade temperature.
readin (TEMPC) ; Calculates the equivalent Fahrenheit
TEMPE ; «ooeeeeeees Calls procedure TEMPF, ——~ temperature.
writeln (TEMPEF') -
Displays the result.
end .

Draw a rectangle and divide it into sections corresponding to the program steps shown above. Write the first pro-
gram step executed in the top section, the second program step executed in the second section and so on.

In the above example, the double lines at the ends of the center section indicate that a procedure or function is
called. This is equivalent to representation of a subroutine in a flowchart.

2. IF Statement

Two types of NS charts are used for if statements since this statement is used in two forms.

Type 1
if A<>0Q
if A<> O then
then g
begin
X:=10Q X; =10 ;
Y: =100
Y:=100 end ;

The conditional expression is written in the inverted triangle. Statements to be executed when the condition is
satisfied are written on the left side and the arrow on the right side indicates that the statements are to be bypassed

when the condition is not satisfied.
Only one statement may be written in each section.

Type 2

if A<Q if A<Q@ then write ("END")
else begin
o m— X : =sqrt (A) ;
writeln (X)
end ;
X 3=
write sgrt CAD
("END™ writein (X))

An if statement including else is represented as shown above. Statements executed when the condition is satisfied

are written on the left and statements following else are written on the right.
Let’s try representing the exercise shown on page 59 using an NS chart.

Answer to the exercise

. var A ,6X : infeger;
begin
read (A) ;
if A<19 then X: =1
else if A<10@ then X : =2
else if A<1000@ then X : =3

(o RN W W' NS IR VRN

else X: =4;
write (X : 8)
end .
@ When the value assigned to A is 9 or less, the
read (A execution sequence is
O—-0—-C—®
© (i;) A<10 = When the value assigned to A is 10~99, the
— slse execution sequence is
wie O—-6—-6—-0—®
®
i A<100 When the value assigned to A is 100~999,
® &5 ® the execution sequence is
then e(l;e D—-6—-B—0—1(0—@
@ if A<1000 When the value assigned to A is greater than
O\ @ ; g
% 1000, the execution sequence is
g ="
— — (: :)—»(’| Z)—)
then else O-6-6- @
o ¢ e (&)
' ® ®
Note: The numbers in parentheses are line num-
X e=3
W g = bers from the program.
write (X :8)

97

3. CASE Statement

1 :]
X:=A+B
case 2_'
I - X:=A—-B
of
El
X : =A%B

4. WHILE Statement

do

while N<1 01

N:=N+"1

S:=5+1

5. REPEAT Statement

Y = sqgrt (XD

writein (YY)

X:=X+1.0

untiilt X=10.0

6. FOR Statement

for N:=32 to 255

do

CH:=chr (ND

writein (" CHARCTER
CODE".CH:4)

case I of 1: X: =A+B;
2: X:=A—B;
3: X:=AXB
end ;

The conditional expression is written on the left and the case labels
and their corresponding statements are written on the right. In the above
example, X:=A—B is executed when I is 2.

while N<101 do

begin
N:=N+1;
82 =8+1
end ;

’

Since a while statement begins with a conditional determination,
the conditional expression is written at the top. Statements repeated
while the condition is satisfied are written on the right. When the condi-

tion is no longer satisfied, program execution proceeds through the left
side.

repeat
Y : =sqgrt (X) ;
writeln (Y) ;
X:=X+1.0
until X=10:0;

The form of this NS chart is the inverse of that for the while state-
ment.

for N: =32 to 255 do
begin
CH : =chr (N) ;
writeln (" CHARACTER CODE'",CH: 4)
end ;

’

The loop condition is written at the top and statements after do are
written on the right.

These NS charts allow the structure of a PASCAL program to be represented in a clear manner.

98

One NS chart is used for each procedure and function. Let’s make NS charts for the following program. This pro-
gram reads the value of X and Y from the keyboard, raises X to the Yth power and displays the result.

@.var X : real;Y : integer;
1.function POWER (M : real; N : integer) : real;
- var K : real;
3. begin
4. if N=@ then POWER: =1.0
5. else if N=1 then POWER: =M
B« else begin
7. K: =M;
8. while N<>1 do
9. begin K: =K*kM; N: =N—1 end;
lo. POWER : =K
11. end
12. end ;
13. begin
14. readln (X,Y) ;
15 while (X<0.0) or (Y<@) do readin (X,Y) ;
16. writeln (POWER (X,Y))
17 . end.
function POWER The if statement in the function declaration in-
Parameter M: real N : integer cludes another if statement, which includes a while
statement. Thus, the NS chart of the function de-
claration is as shown at left.
if N=0O The NS chart of the main program is shown
—— esle below.
if N=1
then
=M readie (X ,Y)
POWER POWER .
:=1.0 =y | Whle N<>T while (X< . @) or (Y<®)
K :=K*xM
o do readin (X , Y
N :=N—"1 writein

(POWER (X, Y

POWER =K

100

Recursion can also be represented using NS charts. The followin,
through N.

function SUM (N : infeger) : integer;
begin
if N=1 then SUM: =1
else SUM: =8SUM (N—1) +N

end ;

function WA
parameter N. result WA

g sample program gives the sum of integers 1

if N=1
else
then recursive call
if N=1 ol
e recursive call 5€
if N=" else
then recursive call
if N=1 else
SUM: =1 then recursive call
SUM: =1 .
if N=1 else
SUM: =1 then recursive call
SUM: =1
SUM: =1 recursive call
SUM: =SUM-+N @
S U M = S U M + N @
SUM: =S UM+ Neererrereeenens @
SUM: =S UM+ N eeerreeeeennn D

Take note of the method used to specify N in SUM: =SUM+N.

The value of N is saved in local variable N every

time a recursive call is executed, and it is restored upon return. That is, local variable N is declared every time a recur-

sive call is executed.

Assume that function SUM is designated when N is 5. The program executes N:.=5, then performs a recursive call;
N: =4 is executed and a recursive call is performed again during execution of the first recursive call; N: =3 is executed

and a recursive call is performed during execution of the second recursive call; and so on.
Thus,Nis5at @ ,4at @ ,3at @ and2at @ ,and the result is 15.

Chapter 7

Summary

101

SYNTAX DIAGRAM

IDENTIFIER

A~Z

| - |
&
g
Y
Y
v

0=9

UNSIGNED INTEGER

0~9
Digit -

UNSIGNED REAL

—= Unsigned integer Unsigned integer

102

UNSIGNED CONSTANT

Unsigned real

CONSTANT

Unsigned integer

character

1 character

Unsigned real

SIMPLE TYPE

I’I Unsigned integer

3K

character

1 character

integer

real

TYPE

char

—C
—(
;.C

11y

array

Simple type

Y

[Unsigned integer

\—C file of

Simple type

of

Simple type

103

104

VARIABLE

Variable identifier

Expression

FACTOR
> < Unsigned constant - J(=
L Variable it
(Expression)
Function identifier
[
Y 9
-)
N -@——ﬁ Expression ——@]
— { not Factor > /
TERM
Factor -
A
Qdiv)(mod , (and)
Factor !

SIMPLE EXPRESSION

Term a

EXPRESSION

Term

or

Simple expression 1

>=
|
Simple expression
PARAMETER LIST
(Identifier 2 Simple type
bd
mA
&

Y

105

STATEMENT

Variable

Function identifier

Expression

Expression

=

of

integer
char
boolean

(

music

tran

106

)

(
o

Expression

P (Expression)
Procedure identifier
Y ’
begin Statement —“ end ‘, o
L]
b
;{ if Expression then Statement lﬂ—.bc else Statement 2 |
N -
% w hile Expression do)—» Statement =
repeat Statement until Expression 4.._)
2 to
;—(for i —
Variable identifier Expression 1
downto
{ ~=

(e

Statement

Expression 2

integer
char
boolean

[2]

Constant Statement

9

integer
L=}

)

O

Character string

| Expression

(e

A,

continued

continued

Y
RS

read (Ident ifier |)

readln ’)
Not applicable to type 3 and type

4 read statements.

write (Identifier) - A
Applicable only type 4 and type 5
write statement. b
write Character string A
1 [} .
< O —Lo
writeln 4 . .
Expression 1 Expression 2 Expression 3 y
L]
°
pwrite
char (integer) (integer)
integer
real)
pwriteln Expression 3 can be specified only when expression 1

©Q

Character string

)OO O—F0O

—“ key ,'

¥>‘ close } >]

graph (|) Expression |
(integer)
f -©-
BV,

S J

uset
Expression 1 Expression 2
grset (—o@——» _.®__>—/
(integer) (integer)
position

Character string

O ==

(integer) Expression
(char)
-
line
Expression 1 Expression 2 Expression 3 Expression 4
bline (b) ’)
(integer) (integer) (integer) (integer)
continued

107

108

Expression)
(integer: 80 or 40))
- fN\ s N
N\
- J0) - W
&)
S ’ Expression 1 —-@—— Expression 2 r-)
(integer) (integer)
CUTSOF (Expression 1 —O——. Expression 2 —0@—»——)
(integer) (integer)
0 c Character string
(integer:1~4)
Expression
(char)
O
(integer:1~4)
Character string
N
(integer)
Expression
(char)
% Comment @— e A
Variable identifier 1 Variable identifier 2
call (Expression) ’ ——
(integer) (integer) (integer)
Address HL register DE register)
poke ([Expression ’ Expression 2 ——@— >)
(char) (integer)
Address [
cout (Expression) - M
(char)
Expression 1 Expression 2
% output D—’@——) o N
(char) (integer)
Port address A
|
Empty statement
- J

BLOCK

var Identifier % Type ——@
b

e g -

— L]
- = 2
[Procedure declaration
\—(procedure Identifier Parameter list ;

Variable declaration Composite statement
/
\>L function Parameter list > Simple type
Identifier

Composite statement

begin

Statement

- e

end

109

110

Summary of syntax

1 . Variable declaration

Variable declaration T
real
var lentifier 2 file of
boolean
R .
char

There are two types of variables: global variables and local variables. The former is declared in the variable declara-
tion at the beginning of a program and the latter is declared in a procedure or function declaration. Global variables are
significant throughout the program and local variables are significant only within the procedures and functions in which
they are declared.

Example 1 :
var A,B,SHARP i integer ; . . o v v oot i ettt it ettt e ie i aenenennn integer variable declaration
C,D,DATA ireal ;. ..o oot e et e et e et real variable declaration
E,JUDGMENT : BOOIEAN 5 & « vown s s smumn s s ssssvs wes susisswss s boolean variable declaration
CH MESSAGE S i:sssavenssvsmans €sfiesdsssissssnms char variable declaration

Example 2 : File declaration
var X,Y:fileofreal;0 e file declaration

Note: integer variables range from @ to £32767 in decimal notation; only one character can be assigned to a char
variable; boolean variables take only the values frue and false; and real variables range from +0.27105055E—
19 to £0.92233720E+19.
No variables declared as file can be used as parameters.

2 .Array declaration

Array declaration

var

array Unsigned integer

Array identifier

‘ L’
" Simple type]|

Arrays are declared in the variable declaration section. The size of arrays differs according to data type. The num-
ber of dimensions of an array is not limited. Arrays can be declared in a local variable declaration section.

Example 1 :

var A :array [10] of integer ;t e One-dimensional array declaration
DATA :array [100,10] of real ;cccii i eennnn Two-dimensional array declaration
SHARP : array [10,5,5] of real ;cciv i nnn.. Three-dimensional array declaration
MZ : array [10,5,5, ,nlofchar; ..o o N-dimensional array declaration
Example 2 : file declaration

var X : file of array [50] of real ;
Y : file of array [100, 5] of char ;

Example 3 : Simultaneous declaration of arrays and variables
Q. var DATA :array [100,10] of real ;.. vttt . Array declaration
1. A :file of array [100] of integer ; oottt it i e e Array declaration
2. BibOOIGEH Tow:vsvnmmss s $neon i+ CHREE L5 GRBMEE 8§ SGHRBRN ¢ B 5 » Variable declaration
3. CH, PRINT 26007 cvomnm.c s s s wmama s 95 saem 8 v 54 buBes s sunsuss s ne Variable declaration

Note: The indexes of arrays must be positive integers.

3 .Procedure declaration

Procedure declaration

|

procedure)——- =+ Parameter list ;

Identifier Variable declaration statement Compound statement

Procedures must be declared in the procedure declaration section. Local variables are declared in each procedure
declaration. Their name may be the same as those used for global variables.

Example 1 : when no parameters are used.
procedure DATAOUT ;0iiiiiiiennnneen.. Declares DATAOUT as a procedure identifier.
var N 1 integer ; . oo ii it i it e e e Declares local variable N.
begin
forN:=0to9dowriteDATAN])ovoviienn..t. Displays array data.
end ;
integer
Example 2 : when parameters are used. { Parameter list
procedure MULTI real
(X, Y : real); (:
begin Formal parameter boolean
Z:=XXY 5
end 5 char
No file identifiers can be specified
as parameters. @
N . J

111

4 . Function declaration

Function declaration

b

function)———

Identifier ~ Parameter list Simple type Variable declaration statement Compound
statement

Functions must be declared in the function declaration section.

Example: function AREA (A, H : real) : real ;

begin
AREA : =(A%H)/2.0
end ;

Local variables are declared in each function declaration.

5 .Assignment statement

Assignment statement

| Variable

Expression

Function identifier

The assignment statement assigns the result of the right member to the variable or function.

Example: A:=5 “A” must be an integer variable.
B:=50 “B” must be a real variable.
Z:=X>Y) “Z” must be a boolean variable.
C:="A" “C” must be a char variable.

Note: 1. STR1 : =“ABC” Incorrect because_ a character string cannot be assigned to a char variable.
2. STR2 : =“ABC’ Incorrect because only one character can be placed between single quotation marks.

6 -Compound statement

Compound statement

112

A compound statement consists of many statements. It starts with begin and ends with end.
Example: begin M : =2>M ;SUM : =SUM+M end ;

Although only one statement is allowed after do. then and else, a number of statements can be combined and
written as one compound statement.

7 .1 F statement

if statement

if Expression —-C then Statement 1 else Statement 2

Example1: if A>B then A:=A-1;

If A>Bgives true, A :=A-—1isexecuted, otherwise, execution continues with the next statement.

Example2: if A>B then A:=A-1;
else B:=B-—1

If A>B is true, A : = A — 1 is executed; if false, B : = B — 1 is executed. Only one statement can be specified after
then or else. Use a compound statement if two or more statements are required.

8 .CASE statement

case statement

—DC case

integer
char)
Expression \ boolean

Constant

integer Statement
(char

boolean

Executes the statement with the case label indicated by the expression. If the case label does not exist, the next
statement is executed. The value of the label must be within the range —32767 ~ +32767 when the expression is of the
integer type, one listed in the ASCII code table when it is of the char type and true or false when it is of the boolean
type.

A+B;
A-B;
AXB

Example: case I of

Expres-
sion

W =
Ko X

end ;

113

O .WHILE statement

while statement

while Expression do Statement f|———»

The statement after do is repeated if the expression between while and do is frue, otherwise, the next statement is

executed. The expression gives false from the beginning, the loop is not performed.
Only one statement can be specified after do ; use a compound statement to execute two or more statements.

Example :
while X<>0 do
read (X) ;

Boolean
expression

Statement

10 .REPEAT statement

repeat statement

_—C repeat

Statement | Expression f———e

The statement between repeat and until is executed first, then the
result of the expression after until is checked. If the result is false the
statement is repeated ; otherwise, the next statement is executed. The
statement is executed at least once even if the result of the expression

Statement 1

1

is true from the start. ;
Many statements can be specified between repeat and until; it is '

not necessary to use compound statements. L

Statement n

repeat
read (A) ;
X :=X+A Boolean
until A=0; expression

114

11 . FOR statement

for statement

to
Expression 1 Expression 2
—-DC for)—d @—— do o
Variable identifier (Starting value) (Ending value) Statement
downto

Example 1 :
for N:=1 to 10 do write (“A”);
Assigns 1 to N as the starting value, repeats the statement following do with N incremented by 1 for each repeti-

tion until N becomes 10.
In this case, 10 “A’s” are displayed on the screen.

Example 2 :

for N:=15 downto 1 do write (“A”);

The starting value of N is 15. The statement following do is repeated with N decremented by 1 for each repetition
until N becomes 1.

In this case, 15 “A’s” are displayed on the screen.
Only one statement can be specified after do. Use a compound statement to execute two or more statements.

12 . Procedure statement

Procedure statement

Expression

Procedure identifier

Calls a declared procedure. There are two types of procedure statement: one accompanies parameters and the other

does not.
Example:
DATAIN............. Calls the procedure DATAIN.
SELECT (M) Calls the procedure SELECT with parameter M assigned to the formal parameter.
CURSOR (X,Y)........ Calls the procedure CURSOR with parameters X and Y assigned to formal parameters.

Note: The type of each actual parameter must be the same as that of the corresponding formal parameter.
No file identifier can be specified as a parameter.

115

116

1 3 . Function designation

Function designation

Expression

Function identifier

Program control is returned to the statement which calls the function with the result assigned to the function
identifier. Otherwise this function is similar to the procedure statement.

Example :

FACTORIAL(N) The function FACTORIAL is called with N assigned to the formal parameter. The
result is assigned to FACTORIAL. N must not be declared as file.

14 . WRITE statement
Types 1,2 and 3

write statement

—4

Character string

1,@ "

Expression 2

e)

Expression 3

Expression

II writeln '
pwrite

(integer) (integer)

integer
real

char

{3

b
uExpression 3 can be specified
only when expression 1 is real

This statement displays data or a messge on the CRT screen, outputs it to the printer or writes data on cassette
tape. The codes used are ASCII codes.

write Displays data on the CRT screen. Performs no carriage return.

writeln Displays data on the CRT screen. Performs a carriage return after display.
pwrite Prints data on the printer. Performs no carriage return.

pwriteln Prints data on the printer. Performs a carriage return after printing.
write ('A’:8)

Displays the character “A” at the 8th position from the current
cursor position. . . .

12345678

... (TITT11TAl

wirte (‘A’)

The default value of expression2is15.............. L e i
.................... [:D:]

When X is a real variable and the data is 1.23456,

W R E DS B HRPlAY . ¢ 55 5o mums s sensns i it obbucenwrmmnns s mmmmes

Expression 3 specifies the number of decimal places.

For write (X,Y, Z), the file declaration is only checked for X. When X is not declared as file, Y and Z are assumed

to be other than file also.

Types 4 and 5

write statement (type 4 and 5)

Identifier

write statements of types 4 and 5 store variable and array data in the cassette tape file. No expression can be speci-
fied within parentheses. For write (X, Y, Z), an error results when X is declared as file but Y and Z are not. File declara-
tion is checked only for X.

15 . READ statement
Types 1 and 2

read statement (type 1 and 2)
read
(Identifier)
readln
’
read Reads data from the keyboard. Performs no carriage return after reading.
readin Reads data from the keyboard. Performs a carriage return after reading.

A read statement specified for char variables cannot read a character string. 13 ($0D) is assigned to X when only
the CR key is pressed for read (X). For read (X, Y, Z), file declaration is checked only for X. Therefore, when X is
declared as file, Y and Z are assumed to be declared as file even if they are not.

readin (X, Y, Z) performs a carriage return after the last data has been read. No expression can be specified in
parentheses. 2 CR may be keyed when read (X) is executed and X is a real variable. The data is converted into 2.0
internally.

For read (X, Y, Z), the CR key is not required to be pressed after the entry for each variable;press 5 , 6
and CR.

Types 3 and 4

read statement (type 3 and 4)

Identifier

These statements read data from the cassette tape into variables and arrays. No expression can be specified in
parentheses. For read (X, Y, Z), an erior results when X is declared as file and Y and Z are not.

117

16. FNAME statement

fname statement

character string

fname (" ")

This statement opens a cassette file to allow a sequential data file to be written on or to be read from cassette tape.
“(Character string)” specifies the name of the sequential data file. When the key function is specified instead of
“(character string)”, the system allows entry of file name from the keyboard.

17 .CLOSE statement

close statement

“—‘ close ,‘ —

This statement closes a cassette tape file opened by the frame statement. Closing a cassette file allows fhame state-
ment to be declared for other data files.

18 . GRAPH statement

graph statement

Expression

=0

(integer)

4 <

This statement sets the graphic input or output mode and clears or fills the graphic memory area.
Example: graph (0,0,1,2,C, 1, 1, F, O, 3)

Clears graphic data from the display, puts graphic area 2 in the input mode, clears graphic area 2, puts graphic area
1 in the input mode, fills graphic area 1 and puts graphic areas 1 and 2 in the output mode.

118

19 . GSET.GRSET statement

gset / grset statements

Expression 1 Expression 2

-+ O—

(integer) (integer)

These statements set or reset a dot in any position in a graphic area operating in the input mode. The dot position
is specified with X- and Y-coordinates. The X-coordinate of the graphic area can range from 0 to 319 — from left to
right — and the Y-coordinate from 0 to 199 —from top to bottom.

Example: gser (160, 100)

Displays (Sets) a dot in the center of the screen.

20.LINEBL | NE statement

line / bline statements
Expression 1 Expression 2
b
bline (integer) (integer)
Expression 3 Expn;sion 4
9
(integer) m (integer)
3.5

These statements draw a line or a black line in the graphic area that is in the input mode, by setting dots from the
first set of coordinates to the second set of coordinates. When the operand specifies three or more sets of coordinates,
the system draws corresponding segments one after another.

21 .POSITION statement

position statement

Expression 1 Expression 2

position (. -@_ﬁ

(integer) (integer)

This statement sets the location of the position pointer in the graphic area. The pattern statement is executed start-
ing at position coordinates indicated by the position pointer.

119

22 . PATTERN statement

pattern statement character string
Expression 1 i
pattern () Expression 2
(integer)
A (char)
L%

This statement draws the dot pattern specified by operands in a graphic area which is the input mode. Each dot
pattern unit consists of 8 dots arranged horizontally and corresponds to 8 bits representing a character. Elements are
stacked in the number of layers specified by the value of the operand (Expression 1) and the direction in which layers
are stacked is specified by the sign of the value.

23 . RANGE statement

range statement N\
V’

range (C ’ Expression ,J #@—»

(integer: 80 or 40)

;___,® e y
P—»@— -)

Expression 1 Expression 2

~©-0- : -

(integer) (integer)

This statement changes the character display mode between 80 and 40 characters/line, between reverse mode and
normal mode, or fixes the scrolling area of the display.

Example: range (C, 80, S, 10, 15)

Sets the display in the 8@ characters/line mode and scrolling area to lines 10 through 15.

24 . CURSOR statement

cursor statement

Expression 1 Expression 2

cursor (9 —b@—»

(integer) (integer)

This statement positions the cursor on the display. — Messages issued by a write or a read statement appear begin-
ning at the cursor position.

120

25 . FKEY statement

fkey statement
Expression 1 character string
© G
(integer:1~20) Expression 2
(char)

This statement defines function for any of the ten function keys. A number from 1 through 20 is defined to ex-
pression 1 (function number). A number from 1 through 10 is used to specify each of the function keys in normal
state, and a number from 11 through 20 is used to specify each of these keys in shifted state.

26 .COPY statement

copy statement

O}~

(integer:1~4)

This statement causes the printer to copy an entire frame of data displayed on the computer screen.
Example: copy (1)
Causes the printer to copy the character display.
copy (4)

Causes the printer to copy the dot pattern set in both graphic area 1 and graphic area 2.

27 . | MAGE statement

image statement

character string

Expression

(char)

©

This statement causes the printer to draw a desired dot pattern according to the operating mode.

121

122

28 . CALL

statement This statement calls a user coded subroutine.

call statement

0 Expression Variable 1 ——@—. Variable 2 b—— &
(integer) (integer) (integer)
Address HL register DE register

Example: call (X+Y)B,C

The value of B is loaded into the HL register and the value of C is loaded into the DE register, control is transferred
to the address indicated by X+Y. The expression and variables may be declared as file.

29 . COUT statement

cout statement

0

Expression —o@———b

(char)

This statement displays a character at the current cursor position. The expression is of the char type and the codes
are CIN/COUT codes. It is recommended that this statement be used in conjunction with the cin function.

30 . POKE statement Thisstatement writes data in memory.

poke statement

Expression 1 Expression 2
poke (’)

(char)

(integer)

Address

poke (X,Y)

Stores the value of X in the address indicated by Y. Variables may be declared as file.

Example:

poke (‘A’,24576) Stores ASCII code 65 ($41) corresponding to character A in address 24576 ($6000).

poke ('B', —12288) Stores ASCII code 66 ($42) corresponding to character B in address —12288 ($D000).

31 . OUTPUT statement

This statement outputs data to the specified port.

output statement

G Expression 3 ——@——ﬁ Expression 2 —b@_—V

(char) (integer)
Port address

Example: OUTPUT (X, A)
Outputs the value of X to the port indicated by A. The value of expression 1 is loaded into the accumulator and
the value of expression 2 is loaded into the BC register. Then, machine language instruction OUT (C), A is automatical-

ly executed. Expression 1 must be of the char type and the codes used are the ASCII codes. Expressions 1 and 2 may
be declared as file.

32 . Comment statement This statement outputs a comment.

Comment statement
{ Comment
Example: { AREA OF TRIANGLE |
No { or | symbol can be specified between two other | | symbols. No comment can be specified in any

identifier, expression or instruction.

123

124

33 . Standard function

Q)

)

3

)

®)

(6)

™)

()

ODD (< expression >)

The parameter must be an integer value and boolean result is obtained. This function gives true if the parameter is
odd, otherwise it gives false.

A :=o0dd (5) true is assigned to variable A.

A :=o0dd (6) false is assigned to variable A.

CHR (< expression >)
The parameter specified in this function must be an integer value and a char value is obtained as the result.
This function gives the character whose code value is specified in the parameter.

A : =chr (80) The character ‘P’ is assigned to variable A.

ORD (< expression >)
The parameter specified in this function must be a char value and an integer value is obtained as the result.
This function gives the integer value corresponding to the code for the character specified in the parameter.

A :=ord ('X") 88 (the code for ‘X") is assigned to variable A.

PRED (< expression >)

The parameter specified in this function must be a char value and a char value is obtained as the result.

This function gives the character which has the same code value as that of the character specified in its parameter,
minus 1.

A :=pred ("'Y") The character ‘X’ is assigned to variable A.

SUCC (< expression >>)
The parameter specified in this function must be a char value and a char value is obtained as the result.

This function gives the character which has the same code value as that of the character specified in its parameter
plus 1.

A :=succ ('Y") The character ‘Z" is assigned to variable A.

TRUNC (< expression >)
The parameter specified in this function must be a real value and an integer value is obtained as the result.

This function converts real data values into integer data values.

A :=trunc (3.14) The integer value 3 is assigned to variable A.

FLOAT (< expression >)
The parameter specified in this function must be an integer value and real value is obtained as the result.

This function is the inverse of the frunc function; it converts integer data values to real data values.

A :=float (15) real number 15.0 is assigned to variable A.

ABS (< expression >)

The result is a real value when the value specified in the parameter is real; the result is an integer value when the
value spedified in the parameter is an integer value.

This function gives the absolute value of the value specified in the parameter.

A :=abs (-3.5) real number 3.5 is assigned to variable A.
B : =abs (—36.5) integer number 36.5 is assigned to variable B.

(9) SQRT (< expression >)
The parameter specified in this function must be a real value which is greater than or equal to zero. The result is a

real value,
This function gives the square root of the value specified in the parameter.

A :=3sqrt (2.0) The square root of 2.0 is assigned to variable A.

(10) SIN (< expression >)
The parameter specified in this function must be a real value (expressed in radians) and a real value is obtained as
the result. This function gives the sine of the value specified in the parameter.

To obtain sin 30°, specify
A :=sin (30.0%3.1415927/180.0)

(11) COS (< expression >)
The parameter specified in this function must be a real value (in radians) and a real value is obtained as the result.

A : = cos (200.0>3.1415927/180.0)
The value of cos 200° is assigned to variable A.

(12) TAN (< expression >)
The parameter specified in this function must be a real value (in radians) and a real value is obtained as the result.

result.
A : =tan (30.0% 3.1415927/180.0)
The value of tan 30° is assigned to variable A.

(13) ARCTAN (< expression >)
The parameter specified in this function must be a real value and a real value between —m/2 and 7/2 (in radians)

is obtained as the result.

A :=180.0/3.1415927 % arctan (X)
The value of tan™! X in degrees is assigned to variable A.

(14) EXP (< expression >)
The parameter specified in this function must be a real value and a real value is obtained as the result.
This function gives the value of e*, where e=2.7182818.

A:=exp (1.0) 2.7182818 is assigned to variable A.

(15) LN (< expression >)
The parameter specified in this function must be a real value and a real value is obtained as the result.

This function gives the value of log, X, where X=>0.
A :=In(3.0) 1.0986123 is assigned to variable A.

(16) LOG (< expression >)
The parameter specified in this function must be a real value and a real value is obtained as the result.

This function gives the value of log;o X, where X >0.

A :=log (3.9) 0.47712125 is assigned to variable A.

125

126

(17) RND (< expression >)
The parameter specified in this function must be a real value and a real value is obtained as the result.

This function generates pseudo-random numbers between 0.00000001 and 0.99999999.

A :=rnd (1.0) When the value specified as the parameter is larger than 0, the function gives a pseudo-random
number.
A:=md(—=1.0) When the value is O or negative, the function generates a pseudo-random number group and

gives its initial value.

(18) PEEK (< expression >)
The parameter specified in this function must be an infeger value and a char vlaue is obtained as the result.

This function gives a code (0-255) which corresponds to data stored in the address specified (in decimal) by the

parameter.

A : =peek (4608) The data code stored in address 4608 is assigned to variable A.

(19) CIN
This function has no parameter, and a char value is obtained as the result. This function gives the ASCII code
which corresponds to the character in the position on the CRT screen at which the cursor is located.

A:=cin The ASCII code of the character displayed at the cursor position is assigned to variable A.

(20) INPUT (< expression >)
The parameter specified in this function must be an integer value and a char value is obtained as the result.

This function reads data on the port specified by the parameter. For port specification, refer to the explanation of
the output statement on page 84.

This function executes machine language code $ED78, (i.e. IN A, (C)). The value of X is loaded in the BC register
and data is read into the accumulator.

A :=input (255) Data on port 255 ($FF) is read into variable A.

(21) KEY
This function has no parameter, and a char value is obtained as the result. This function gives the ASCII code

corresponding to that of the key being pressed. If no key is pressed when this function is executed, the code corre-
sponding to zero is obtained.

A : =key The ASCII code corresponding to the key being pressed is assigned to A.

The following statements loop until some key is pressed.

A :=key;
while ord (A) =0 do A: =key;

(22) CSRH
This function has no parameter, and an infeger value is obtained as the result. The integer value indicates the cur-
rent location of the cursor on the horizontal axis. The value of this function takes stays within the following ranges
for each character display mode:
80-character mode: @ < ¢srh < 79
40-character mode: @ £ csrh £ 39

(23) CSRV
This function has no parameter, and an integer value is obtained as the result in the same manner as the csri func-
tion. The value indicates the current location of the cursor on the vertical axis and takes stays within the following
range for both character modes mentioned above:

Q= csrv £ 24

(24) POSH
This function has no parameter, and an integer value is obtained as the result. The integer value indicates current
location on the horizontal axis of the position pointer in the graphic display area. The value takes stays within the
following range:

0 < posh £ 319

(25) POSV
This function has no parameter, and an integer value is obtained as the result in the same manner as the posh func-
tion. The value indicates the current location on the vertical axis of the position pointer in the graphic display area
and takes stays within the following range:

0 £ posv £ 199

(26) POINT (< expression >, < expression >)
This function has two parameters which must be integer value, and an inreger values is obtained as the result. The
value is indicating whether the dot (X, Y) in the graphic display area is set or reset.

Result of the point function Point information
0 Points in both graphic areas 1 and 2 are reset.
1 Only point in graphic area 1 is set.
2 Only point in graphic area 2 is set.
3 Points in both graphic areas 1 and 2 are set.

127

128

34 . Standard constant

true

Boolean value

false

35 . Operator

(1) Integer operators

Operator Meaning Example Precedence
+ Identity +A 1 *
- Sign inversion -B 1 div
+ Addition A+B 1 mod
— Subtraction A-B 2 +
* Multiplication A B 2 =
div Division with truncation A div B
mod Modulus A mod B
(2) Real operators
Operator Meaning Example Precedence
P Identity +A 1 X
— Sign inversion -B 1 }
-+ Addition A+B 2 +
— Subtraction A-B 2 -
* Multiplication A%B
/ Division with truncation A/B
Note: Mixed operations including both integer and real operators are not allowed.
(3) Boolean operators
Operator Meaning Example Precedence
not Logical NOT not (A=B) 1
and Logical AND (A>B) and (A>C) 2
or Logical OR (A>B) or (A>C) 3
xor Exclusive OR (A>B) xor (A>C) 3
NOT A A and B
tru Value of A
Value of A ; e; false it true false
not A true ;
false
A or B A xor B
Value of A V: f
Value of B e false Value of B pua true false
true true
false true

(4) Relational operators
= <>, <=, >=, < and >. All have equal precedence.

The relational operators may be used for any data types; integer, real, char or boolean. For boolean values, true >
false is always satisfied. Character codes are compared for corresponding char type data.

36 . INTEGER and REAL expressions

INTEGER type REAL type
0 0.0
5 5.0
—135 —135.0
10000 10000.0
or 1IE+4

37 . Writing programs by hand

It is recommended that bold faced words such as procedure, begin, end and var be underlined (leg., begin, var).

38 . Indentation

The number of spaces preceding a statement is not prescribed. Use an appropriate number so that the relationship
is maintained between if and else, begin and end, etc. The preceding spaces do not require any memory spaces.

39 . Statement and Function

Care must be taken when using the following statements and functions since they are similar.

Statement: output,poke,cout
Function: input, peek, cin, key

40 . Reserved words

129

130

41 . Statements for the color control system

1. TRAN
This statement transfers a graphic command to the color control terminal.

©

tran (Expression)

Character string

2. REQRT
This is a function and it receives a byte of data from the color control terminal.
This function has no parameter and one character of char data is obtained.

3. SYRET
This statement resets the color control terminal and cold starts the system. It has no parameter.

4. SYRET2
This statement resets the color control terminal and waits for a monitor command. It has no parameter.

42 . MUSIC and TEMPO statements

These statements play music. The tempo statement specifies the tempo and the music statement specifies notes to
be played.

tempo (< expression >)

The expression is of the integer type and must be in range of 1~ 7.

music (< “character string” > | < char expression >)

Notes are specified with the character string or the char expression.

43 . NS chart

if <expression> then < statement>

if <expression>
then
<statement>
/l
X:=A+B
case
I =%
<expression> X :A_B
of
N
X =A%B

if <expression> then < statement 1>
else < statement 2 >

if <statement>

then else

<statement |<statement

1> 2>

case

I of 1: X:=A+B;

<expres- B: Xi=A-Ps
N> 3. X:=A B

for < control variable > : = <initial value > to < final value > do < statement>

for < control variable > : = <initial value > downto

for N:=17 to 1@

do <statement>

while <expression> do < statement>

while < expression>

< final value > do < statement >

for X:=715 downto

do

<statement>

repeat < statement > until < expression >

<statement>
do <statement>
until <expression>
Compound statement begin < statement 1> ;< statement 2> ; < procedure call > ;...... ; < statement n > end

<statement1 >

<statement?2 >

<Procedure statement>

<statementn>

131

APPENDIX

133

ASCIl code tahle
A table of hexadecimal ASCII codes is shown in FIGURE 2.22 of the Owner’s Manual.

105
106
107
108
109
110
111
112
113
114
115
116
117
118

122
26
27

119
120
121
125
1
1

[
P
Q
R
S
T
)
\'
W
X
Y
y4
C
N

81
82
83
8
85
86
7
88
89
90
91
92

93
94
95
99

100

101

102

103

5
6]
7
8
9
H
H

(I [A] [~

®|(</[m]

53
54
56
57
58
59
60

86
61
62
63
64
65
66

67
68
69
70
71
73
76
77

=]

37
28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
45
46
47
4

50
51

CLR
DEL
INST

1
2
3
4
5
6
7
8
9
10
11
12
13
14

CRNCEL

N

15
16
17
18
19
20
21
22
23
24
25

134

135

—[j <] Elclojajo]]n]~]5]>] 3] <|>InNI-1 -] [T

(a2} < v O o~ (o] (o)) (=) — [\ 9g)} <t LAl \O [0 (=)} o ~— N o < g
o o o o o o0 o0 <t <t < < < < < < < <t Ve v v el vy Ug)
(@] N (@] N (@] ()] (@] ()] (] N (o} [\l (o} [\l N N N @\l (@l N o (] (]

O
=
Q
R
i
2
b
El
B

[B o Y o S — — — — —_ - - = &N a4 a4 a4 OO O N [} N N
(o IR o IR o\ N A (o I o\ (@\l N AN AN AN NN N AN AN A [N o\ (@] (@]

B

230
231

5|
6
8
El
H
H
=
Al
B
D
1]

— N o < v \O o~ 0 (o)} o — N o < v \O > o0 (o) o = N o
o0 co o0 o0 o0 0 0 0 o0 (=)} (@) (o)} (o)} (o)) (o)} (o)} (o)} (o)} [o)} o o o [}
— — — — — — — — — — — — — — — — — — — o [\l ()] o

M

20
205

—
-
s
=
H
E
£
H
%0
&
]
A
=
A
[
L

7

) \O e~ o0 [e)] o — o o < v Nel [(o0} (@) o — N o <t v O
e} vy Vel Ve} Vel \O \O \O O \O O O O O \O ©~ e~ o~ b= Lca] e~ e~ o~
— —

178
179

15
H

1
D
-

]

&)
v
4
o
|11

¥

Ll
Ol
ml
|
r

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153

Decimal /Hexadecimal conversion table

%] %)%, 48 240
1 @1 49 31 o7 | 61 145 | 91 193 | C1 241
2 @2 bo 32 08| 62 ||146 | ©2 194 | C2 (|242
3 03 51 g2 99| 63 |[147 | 93 196 | C3 || 243
4 @4 52 34 100 64 (|148] 94 196 | C4 ||[244
5 @5 53 35 101 65 |[149 | 956 197 | CH || 245
6]) 54 36 102 66 [|150 | 96 198 | Co || 246
P4 Q7 B5 37 103 67 || 191 o7 199 | C7 ||[247
8 08 56 38 104 68 ||[1562 | 98 ||[200 | C8 (| 248
9 ©9O 57 39 105 69 ||[163 | 99 ||201 | CO (| 249
10 QA 58 3A 106 BA ||[154 | OA ||202]| CA || 250
11 0B 59 3B 107 | 6B [|155 | 9B || 203 | CB || 251
12 @C 1%, 3C 108 | 6C [|1566 | 9C ||204 | CC || 2562

13 @D 61 30 (|19 | 6D |[157 | 9D ||205| CD || 253
14 QE 62 3E 6E [|158 | 9E (|206 | CE || 254
15 oF 653 3F 6F ||159 | O9F (207 CF (| 255

16 | 10 || 64 | 40 70 ||160@| A0 ||208| DO
17 | 11 || 65 | 41 71 | 161 | A1 ||209]| D1
18 | 12 || 86 | 42 72 ||[162]| A2 ||210@]| D2
19 | 13 || 87 | 43 163| A3 ||211]| D3
20 | 14 || 88 | 44 74 | 164| A4 ||212]| D4
21 | 18 || 89 | 45 75 ||1658| A5 ||213]| DB
22 | 16 || 70 | 46 76 ||166| A6 ||214]| D6
23 | 17 || 71 | 47 77 |167| A7 ||218]| D7
24 | 18 || 72 | 48 78 |1e8| A8 ||216]| D8
25 | 19 || 73 | 49 79 ||169]| A9 ||217| Do
26 | 1A || 74 | 4A 170 | AA ||[218] DA
27 | 18 || 75 | 48 78 ||[171] AB ||219]| DB

1c || 76 | 4c ||124| 7Cc ||172| AC ||220]| DC
20 | 10 || 77 | 4D ||128]| 7D ||173| AD ||221| DD

1E

1F

=, . Y

=% R N N e X =N N I =N X

PG T R T e g $
cCoNOO~MBN|-0O
N
W

=N N SN
NN NN
(OVR\VERN
N
>

TS 4E ||126 | 7E (|174 | AE ||[222 | DE
79 4F | 127 7F (| 175 AF ||223 | DF

s 20 80 | bo ||128]| 80 |[176| BO ||[224 | EO
33 27 81 51 128 | 81 1771 B1 2286 E1
34 22 82 852 130 82 |[178] B2 (|226] E2
35 23 83 53 131 83 [[179] B3 ||227 | E3
36 24 84 54 132 84 [|[180| B4 ||228 | E4
37 285 895 55 133 85 [[181 | Bb ||229 | ED
38 26 86 56 134 | 86 |[182| B6 || 230 | E6
389 27 87 87 13861 87 || 183 87 || 231 | EZF
40 25 88 | 58 (|136| 88 ||184 | B8 ||232| E8
41 29 89 59 137 89 || 185 BO |[233] ES
42 2A S0 | bA 138 8A || 186 | BA ||234 | EA
43 2B 91 1= 139 8B (|187| BB ||235| EB
44 2 o2 5C 140 | 8C ||[188| BC ||[236| EC
45 2D o3 5D 141 | 8D ||189| BD ||[237 | ED
46 FlS 94 | BbE 142 8k (| 190 | BE ||238| EE
47 2F 95 5F 143 8F |[191 | BF (|239| EF

136

Error message tahle

b AW N e

O o0 =N &

10

11
12
13
14
15

16
17
18
19
20

21
59
23
24
25

26
27
28
29
30

31

32

33
34
35

The program is not completed or . is omitted.

An identifier is declared twice.

: is omitted or a character other than : is specified in a place where : should be specified.
Type specified is not allowed.

Other than identifier is specified in a place where an identifier should be specified.

An identifier is too long.
OF is omitted.

) or , is omitted.

(is omitted.

[or , is omitted.

] is omitted.

Other than an integer is specified in a place where an integer should be specified.
An array element is too large or data is out of the declared range.

; is omitted.

, is omitted.

A READ or WRITE statement includes mixed specifications of FILE type variables and other types of variables.
An incorrect type of value is assigned to a variable. .

; or END is omitted.

THEN is omitted.

Other than a BOOLEAN type variable is specified in a place where a BOOLEAN type variable should be specified.

DO is omitted.

:= is omitted.

TO or DOWNTO is omitted.
UNTIL is omitted.

Other than a variable, function or constant is specified in the place where one of these should be specified.

More than one character is included between single quotation marks.

A undeclared identifier is used.

Other than a procedure identifier is specified where one should be specified.
Parameter mismatch or array dimension mismatch.

BEGIN is omitted.

Other than a digit is specified where one should be specified.

Other than REAL is specified where REAL should be specified.

Other than, or CR is keyed in where either of these two should be keyed in.
WRITE error or break during WRITE execution.

READ error or break during READ execution.

137

138

36 The number of digits of data exceeds the specified number of digits in the WRITE statement.
87 $ is omitted.

38 Other than hexadecimal data is specified where hexadecimal data should be specified.
39 Insufficient memory capacity

40 Command error

41 “, ', {or} is omitted.

42 Printer is OFF or is not connected.

43 Printer out of paper

44 Printer mechanical trouble

45 Unallowed symbol is specified.

46 CLOSE is omitted.

47 An unopened file was referenced. FNAME is omitted.

48

49

50

51

52

53

54

55

A program is checked for syntax before execution begins. If an error is found, the following message will be
output.

sk Err < error code > > Line < line number >
* Err < error code > > Run > indicates a non-syntactical error: error code 36 is one of non-syntactical errors.
Note: It may happen that no error can be found on the indicated line even though an error message is output. A possi-
ble cause is erroneous loading of the program. In such cases, display the program list around the indicated line.

Position the cursor on the line in which the error is indicated and perform a carriage return to reload the pro-
gram.

PASCAL SB-4515 specifications

System Cassette tape base interpreter; interpreter; Monitor SB-1511
SIZE csmup s PRERS LS QOEE 5545 Approx. 20K bytes
Required RAM capacity 64K bytes
Cold startaddress $1300
Warm startaddress $1301
Errormessages 47 messages
Datatypes. integer
real
char
boolean
Data range
INTEGER data —32767 ~ 432767 (2 byte data, 2’s complement)
REALdata +0.27105055E—19 ~ +0.92233720E+19
CHARdata One character (corresponding to codes 0~255)
BOOLEANdata true and false (true> false)
Number of array dimensions Up to n dimensions
Range of array index Varies according to data type and memory size
Identifierlength Up to 32 characters
Integer operators %, div, mod, +,
Real operators * , e +, =
Logical operators not, and, or, xor
Relational operators = <> <= >= <, >
Standard functions
ODD ;355 mamacs s TRES 455 Qaa Checking whether odd or even. boolean <« integer
CHR char < integer
ORD: & w5 8 wdr 0 iem 15 0 v integer < char
PRED: : covnazizageessss s Preceding character
SUCC..................... Following character
TRUNC integer < real
FLOAT :puusssssompassspun real < integer
ABS . c:aminiiss aRRRIELE AHD Absolute value of integer or real data
SQRT Square root
SIN sinX
COS ;i vnvasnesswanswsmes wis cosX
TAN ssamenvssssowssiansens tanX
ARCTAN v :zissapnssssanan tan™' X
EXP . . e =4sahidsssthase e*
LN L log.X
LOG conmonspssndeosssspsas log o X
BNI¥ :suairsssanmastessonng Random number
PEEK, Read-out from memory
CIN ... i Read in character at cursor position
INPUT wovmess samuwwss Lumaen Read in from port
REY scensss-seesrnpsissnaass Read in from keyboard
REQTR .. vnmmmescs s mammunss Receive one byte of data from the color control system
CSRH..................... Current location of the cursor on the horizontal axis
CSRY v s sssmmwms i ssommus i 9 Current location of the cursor on the vertical axis.

139

140

POSH .« cv v omimmmm s 825 suasss Current location of the position pointer on the X-axis

POSV Current location of the position pointer on the Y-axis
POINT :::cummmnnsssqnunsss Determine whether specified dots are set or reset
Statements
Assignment statement Variable: =< expression >
Compound statement begin <statement 1 >, <statement2>,..... , <statement n > end;
IF statement Conditional statement (including else)
CASE statement Selective execution
WHILE statement Repetition
REPEAT statement Repetition
FOR statement Repetition (including either to or downto)
WRITE statement Data output
READ statement Data input
FNAME statement Defines the file name of a data file and opens it.
CLOSE statement Closes the data file which was opened by the fname statement.
GRAPH statement Specifies the graphic input/output area, clears or fills graphic area.
GSET statement Sets a dot in the specified position in a graphic area.
GRSET statement Resets a dot in the specified position in a graphic area.
LINE statement Draws lines connecting positions specified by operands
BLINE statement Draws black lines connecting positions specified by operands.
POSITION statement Sets the location of the position pointer in a graphic area.
PATTERN statement Draws the dot pattern specified by operand in a graphic area.
RANGE statement Sets the scrolling area, number of characters/line or reverse/normal.
CURSOR statement Moves the cursor to any position on the screen.
FKEY statement Defines a function for any of the definable function keys.
CALL statement User subroutine call
COUT statement Outputs a character to the cursor position
POKE statement Writes data into memory
OUTPUT statement Outputs data to the specified port
MUSIC statement Plays music (used with the fempo statement).
TEMPO statement Specifies the tempo.
COPY statement Makes a copy of the character display or graphic display.
IMAGE statement Draws the dot pattern specified in the operand on the printer.
TRAN statement Transfers a graphic command to the color terminal.
SYRET statement Resets the color terminal and cold starts the system.
SYRET?2 statement Resets the color terminal and waits for a monitor command.
Others
Q) o A file identifier can include a maximum of 16 significant characters.
() o Statement numbers are automatically assigned by the system.
B) oo Recursive call capability.

Differences between the SB-4515 and standard PASCAL

1. No procedure or function can be declared within another procedure or function declaration.
2. Structured type data cannot be used.

3. Only value parameters can be used.

The memory map is as shown below when the PASCAL interpreter is loaded in a system.

$0000

$1300

$FFFF

(Hexadecimal address)

1} Monitor program area

PASCAL interpreter (approx. 20K bytes)

PASCAL program text and variable area
When this area is divided with the E command to obtain a machine lan-

guage area, locations from the specified address to $FFFF become the
machine language link area.

141

PASCAL SB-4515 configuration

PASCAL SB-4515 is roughly divided into three sections; program control flows as shown in Figure A.1.

User

Commands, etc. Display

G command

Command error, etc.

Syntax error -

Error indication

No syntax error

Execution end or break

Execution error

Figure A.1 SB-4515 CONTROL FLOW

1. EDITING SECTION

The editor is primarily used for executing editing
commands and generating a source programs.

Each line of a source program is converted into an
intermediate code line when it is loaded. (See Figure A.2.)
One intermediate code line corresponds to one source pro-
gram line. Line numbers are omitted in intermediate

codes.

142

a: Number of spaces for indentation (1 byte)
Intermediate codes and identifiers (n bytes : n is
indefinite.)

c¢: ODH indicating line end (1 byte)

[on

Source program lines are converted into the form
shown above. Line number data is omitted.

Figure A.2

Figure A.3 shows a map of the
memory during editing of a source $1300
program. The line numbers only con-

SB-4515
tl‘Ol the contents Of the hne pOlnter Top of source TOP
(LP), which a line may be inserted or program Set of intermisdisie
from which a line may be deleted. e <— codes shown in
The P and H commands reconvert Line pointer (LP) — Fe Figure A.2
intermediate codes into source pro-
gram lines for display. Source program pp,

end pointer

Standard functions are assigned to
intermediate codes. For functions
which operate on parameters, such as

COS (A), one intermediate code is as- Work area

signed to COS (and others are assign-
ed to A and). Therefore, COSCI (A) Approx. 1K bytes
is not handled as the COS function, (SP) —>
but is handled as two identifiers COS Stack area

[0 (A) are converted into interme- Memory end (MEP)
of SB-4515

(can be specified

by the user.)

diate codes as shown in Figure A .4.
$FFFF

Example 1: Figure A.3 Memory Map during Editing

COS (A):- -+ - -

|
as | a | as
1

ao | A | ai | a

ap : Intermediate code for COS (.

A : Identifier....... ASCII code

a; : Intermediate code for the identifier

a, : Flag data representing data type

a3, a4 : Pointer data indicating static address
as : Intermediate code for)

Example 2:
- COos (A - - - -
O represents a space.
T T T T
ClO|S|b | !bs!lbs|os|A]|bs|br)bsibe|ba
1 1 y - 1
COS, A : Identifiers........ ASCII codes

b1, bg : Intermediate codes for the identifiers

b,, by : Flag data representing data types

bs, ba, bg, bg : Pointer data indicating static addresses
bs : Intermediate code for (

ba: Intermediate code for)

When the above two intermediate code lines are displayed with the P command, both source program lines are dis-
played in the form COS(A).........

Figure A 4

143

2. SYNTAX CHECK SECTION
Figure A.5 shows difference in block structure between standard PASCAL and SB-4515. A lexical level of up to 1

is allowed for the SB-4515.
Figure A.6 shows a map of the memory configuration during a syntax check. The syntax check section determines
variable types and static addresses, analyzes the structure of user programs and completes the intermediate code data

section.
Figure A.7 shows an example of identifier analysis and Figure A.8 an example of program structure analysis.

MAIN
SB-4515
TOP
(LP)—> Source program
Level 0 Global variable table

(a) Standard PASCAL block structure Procedure identifier table

Local variable table
AorB

MAIN

Work area
Approx.

1K bytes

Stack area

Level 0

b) SB-4515
()8 bloek eiruotiire Figure A.6 Memory map during syntax check

Figure A.5
The following is the intermediate code for
' — if <expression> then <statement 1>
Ment: |\ 5 | plolu else <statement2>.
Il |
Expres- | State- i -
Identifier : ASCII code of up to a siofl Do | b1 L m:nil co | Cice IS;:;%

32 characters _ f 7 \ i A

a : Code distinguishing
procedure
function
global variable
local variable

b : Flag indicating type

c,d : Address data

a : Code representing if

bo : Code representing then

by, byt Pointer indicating the address following statement 1
¢o : Code representing else

1, Cp ¢ Pointer indicating the address following statement 2

Figure A.7 Figure A.8

144

3. INTERPRETER SECTION

The interpreter section consists of the syntax analyzing section and the virtual stack machine. The virtual stack
machine cannot directly execute intermediate codes which are arranged in the same order as the source program; The

syntax analyzing section interprets the intermediate codes to control the virtual stack machine.

Figure A. 9 Shows a map of the memory configuration during execution of the interpreter section. Note that
two stacks, S and W, are used. The S stack is mainly used by the syntax analyzing section and the W stack by the virtual

stack machine.

Figure A. 9 shows the state when part of the statements of a user defined function have been executed. The stack

buffer stores the S stack contents for the main program at the time the function is called.

Figure A. 10 shows the stack buffer structure. Area A stores the address and the number of bytes of data trans-
ferred from the S stack, and area B stores the contents of various pointers (NP, RB, etc.). Area C stores the S stack

contents.

This data is returned to its original locations*when control is returned to the main program.

SB-4515

Source program

HEAP

(NP) —>

(TOSP)

Unused

Local expression area

Stack buffer

(LB)

Local variable area

Global expression area

(GB)

Global variable area

W stack

(SP) —>

S stack

Figure A. 9

800 bytes

(TOSP)

(LB)

Local expression area

A

Local variable area

Figure A. 10

Stack buffer (size indefinite)

145

The address of A is stored in the S stack.
The remainder is : = B>X&C.

: = is stored in the S stack.
The remainder is Bk C.

TOSP < TOSP-1
The value of B is stored in the W stack.
The remainderis C.

>k is stored in the S stack.
The remainder is C.

TOSP < TOSP-1
The value of C is stored in the W stack.
There is no remainder.

The first element of the S stack is read.
Since it is %k,

TOSP < TSOP+1

(TOSP) < (TOSP) * (TOSP-1)

The next element of the S stack is read.
Since it is : =, the following element of the
S stack (address of A) is also read and the
data of (TOSP) is stored in the address of A.
Then, TOSP < TOSP+1.

(TOSP) =
Address of A <—(SP)
X X X
(TOSP)—> = <— (SP)
Address of A
X X X
(TOSP) = 5
*x <—(SP)
Address of A
X X X
(TOSP) —> 10
(TOSP+1)—> 5
= <— (SP)
(TOSP-1)—> 10 Address of A
(TOSP) —=> 50 X X X
(TOSP) > I ‘
‘ X X X

Figure A.11 Execution of A : =B C where B is assigned 5 and C assigned 1.

’<~<SP)

Figure A.12 shows data formats in the W stack and HEAP area. In the W stack, each data element consists of a type

flag (1 byte) and a data section.

For arrays, data sections are stored in the HEAP area and only array pointer are stored in the W stack.

A : Type flag indicating data type

A | B,

A | B, | B,

A | By |B, | B, | By | By
A By By |8y |

B, : Data from other than arrays

Chaining data to the source program

for arrays

char, boolean
integer
real

array pointer
Source program (intermediate codes)

var A :array [499] of char;

HEAP area

Co, C;: Indicates the top address of the HEAP area.

500 bytes

File declaration

File declaration supported by-the SB-4515 only declares the memory area used for transfer of data to/from the

Figure A.12

cassette tape. This is different file declaration supported by standard PASCAL.

Reference

(1) K. Jensen and N. Wirth, PASCAL User Manual and Report, Springer-Verlag, 1974.
(2) N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall, 1976.

147

Sample Program

149

(1) Hanoi Tower (Application Program 1)

This is the program list for the first application program stored on the PASCAL Applications Tape. The explana-
tions in Chapter 2 are based on this program.

o
-
-

SAMFLE PROGRAM
MASSAGE & HANOI TOWER

Ao
A
e

< e e
-

bt
oy

AsNy X YsDXsDYiinteger:s
ODISEND, DISENUMBER TOWERL » TOWERZ» TOWERZ TOWERNLUMBER: integer
BsCichar;s

Lop o | I = TR I O

v procedure TITLESY cssvanseswononnnsvwnowas sesaswwswswews MESRAGE
7.beain
& DELAY(1000) 3
., write("Qosandlseseessbdeddee)
10. write(" Fefaa|dall);
11. write(sttt Thassp—f bassdl Ln);
12, writeln("tdh — dasajddasldn);
1z, DELAY (S00) 3
14. writeln()s
15 . writeln(" r— — I . — N, Y
146, writeln(" | [| | ! ! I | ")
17« writeln(" et b | L] | | — 1 ")
18. writeln(" | | | ! | | | | ")
12, writeln(" <+ LS e st R
20, ends
Zl.procedure STARWRITESY ... v v vnncnnas casasasssas STARRY SEY

22 var NyPOSITION:integers
2R, beagin

1. var NiintegersUFO:chars
Al begin

24, for Ni:=1 to 150 do

25, beain

260 cursor{truncirnd(1.0)*¥40.0)ytrunc(rnd{1.0)%24.,0));
2 cout{(chr(44&))

2. end

2%, ends

Z0.procedure UFOMOVESL UFO 3

B33 write("0") ;s

24, for Ni=1 to 2% do write("s");
354 for Ni=1 to 4 do write("8#");
ab, UFQi=chr(&£4) 3

27 write(UFO:1);

28, for N:=1 to 2% do

i beain

40, DELAY(100)

41, write("s 22", IF0:1)

4z, ends

4= writei"s 4300480000008 000080)

44, ends
4% ,.procedure DELAY(Dt!integer):
LY var Niinteger;

47 . beain

4, for N:=0 to [do

42, ends

SO.procedure CFSS

21. begin

a2 Cri=csrhiCYi=cery

end;

150

54

LA

D S w S S O T S e O O £) B}

~

RN B O | U O e K

“Oon 00 o0 00 0D 90 a0 0 00 o

R B 5 R B]

~.Q %3

[P
DesDen BNy BTy B 5
Lales!

102,
102,
104,

105

10&.
197 .
108.
109,
110,

111

112,

1132

R I N

-~
—_
. =

BB XU ORI o

0~ O

Xa]
R S IR S SO S

.procedure CMOVE(CH:char);s
bhegin

ends;
.procedure DOW(N:integer)s
beain
CRSSCY:=CY+N+iscursor(CX0Y)
ends
.procedure UF{(Niinteger):
begin
CRPIsCY:i=CY-N-1s3cursor(CXCY)
ends
.Procedure RIGHT(N:integer):
beain
CREsCXi=CX+N+1scursor (CXs0Y)
. end;
.procedure LEFT(N:integer)}:
beain
CRZsCXi=CX-N-ilscursor(CX0Y)
end;

Pprocedure STARTS
var Niinteger:
beain
repeat
beain
write("&E");
RIGHT{(%)3

OOW(S) 3
for =0 to 2 do
beagin
RIGHT (&) s
write("I")3
i RIGHT(11);
write("I")3
RIGHT(11)3s
writeln("I")
ends

writeln():

RIGHT(2)3

read (DISENUMBER)
end

TOWERZ:=03
TOWERZ =03

end;

writeln("Hee HANOI TOWER

writeln(" How many disks")3s
RIGHT(Z)s3write(" do you want to move (Z-4&) ")

for DISENQ:=DISENUMBER downto 1

cout(CHY3if CX4323% then CX:i=CX+13cursor(CX,L0Y)

)

for Ni=i to 40 do write("4«");

until (DIZKNUMBER<7)and (DISKNUMBRER>2) 3
D TOWERL : =03

do DISEW(DOISEND, L)

Procedure DISEW(DISEND TOWERNUMBER::integer)

var Niinteger;
beain
if TOWERNUMEBER=1 then
beagin
write("H")s
. A:=153-TOWER1;
DOW{A) S
. At=A-DISENOS

151

114, RIGHT(A)

115, for N:i=1 to DISENDO do CMOVEC(/#)
114. RIGHT(O) 3

117. for Mi=0 to DISKENO-1 do CMOVE(/#)3
113, TOWER1 :=TOWER1+1

119, end

120, else if TOWERNUMBER=Z then
121. begin

ZZ 4 write("@")3

A:=15-TOWERZ;
DOW(A) 5
Ar=19-DISEND;
RIGHT(A)
for Ni=1 to DISEND do CMOVE(‘#)3
RIGHT(O) 3
for Ni:=0 to DISEMNI-1 do CMOVE(/$7)
TOWERZ :=TIOWERZ+1
end
else begin
write("@");
. P=1E5-TOWERZS
. ODOWCAY S
Ar=32-DISEND;
RIGHT(A)
for N:=1 to DISEND do CMOVE(/#7);
RIGHT{(0Q) 3

S A I
P « =

L
'’
=

[S e T ol ol ol e o = T Sy SR ST N S
Tl el Gl G Dl D0 Dl Y Dl G B pOOBI R BRI RY RI

RO O RN T ¢ I D N]

s for MNi=0 to DISKENOD-1 do CMOVE(/#)3

—
NS
-

TOWERZ :=TOWERZ+1

i4z. end;

14z, DELAY(500)

144, ends

14%.procedure DISED(TOWERNUMEBER:integer)s
1464, var Niintegers

i47. beain

14z, if TOWERNUMBER=1 then

14%, begin
150, write("[");s

11, i=16-TOWERL S

id DOW{A) S

e 3 RIGHT(O)

4, for Ni=1 to & do CMOVEC(’ 7))
&

7

13
15
15
15
155, RIGHT (0)3
1
1
i

5 for Ni=0 to 5 do CMOVE(’ 7))
5 TOWERL:=TOWER1-1

S8, end

152. else if TOWERNUMBER=Z then

160, bhegin
141, write("0");
162, Ai=14-TOWERZ S
143, ODOW(A) S
144, RIGHT(13)3s
145, for Ni=1 to & do CMOVE(Y 73
146, RIGHT(O) s
147, for Ni=0 to 5 do CMOVE(’ “);
162, TOWERZ2:=TOWERZ~1 ‘
1692, end
170, glse 1if TOWERNUMBER=Z then
Ll begin
172 write("[");
173, Ai=14~-TOWERSZS
152

0 O

00D OO 0D OO0 o

Pk ke b ek Pk funk b e foed ek ek ek b b b ph b ek

SO0 N DS U B D) b

end
begin
if DISENUM
bkegin

. DISEDC

0. end
21 ends
2Z.beain I isswan
2. ranage(C»40);
@4, STARWRITES
5. DELAY(ZO000);
@&, TITLES
27 . LUFOMOVE;
dE . writeln("aos
@9, write("
200, Bi=key;
201, while ord(B)
202 repeat

START

DOWCE) S

DOWCA)Y S

RIGHT(2&) 3
for Ni=1 to & do CMOVE(® 7)3
RIGHT(0) 3
for Ni=0 to 5 do CMOVEC(” ‘)3
TOWERZ:=TOWERZ=-1

end

EER<:0 then

T1)3

DISKEMOV(DISENUMBER-1,T1,T2,T2) 3

DISEW(DISKNUMBER T3) 3
ODISEMOV(DISKNUMBER-1:T2,T1,T32)

ZHARF

[Fress a key 1");

=0 do Bi=key}

DISKMOV(DISENUMBER s 19253) 3

write("O")3sDOWCZL1)SRIGHT(S)

204

207. write("
208 read(C)
209 until ‘Y’'<»C
210.end.

Try again

(Y OR NI")3

«procedure DISEMOV(DISENUMBERT1,T2yTZ3tinteaer)

T Y MAIN FROGRAM

CORFORATION®O44") 3

B

&

153

(2) Eight Queens (Application Program 2)

The following sample program arranges 8 queens on a chessboard so that no queen can take any other. There are
92 solutions. This procedure is often used as an example of recursive programming. procedure ARYWRITE calls itself.
This program is the second section of the PASCAL Applications Tape.

0.{ Eight Queens I
l.var AyXtarray[71of inteager;

2. EBEyCiarraylid4lof inteaer:
2. OysFiinteger;

4.procedure CLEARS
T var Niinteger:

2 beain

7. for N:i=0 to 7 do A[NJ:=13

2. for Ni:=0 to 14 do BLNl:=13

8 for Ni=0 to 14 do CINI:=13

10, Fr=0

11. end;

12.procedure ARYWRITE:

13, wvar Ziinteger:

14, begin

1’5, 2:i=03%

i4. repeat

17. if((ALZI+BIP-Z2+71+C[F+Z21)=2)then
12, begin

19, XLF1:=13

20, ALZ]:=03

21. BILF-Z+71:=03

232, CLP+Z1:=0;

23, Fi=p+1;

24, if P=2 then DATACOUT

25, elese ARYWRITE S (. iv e s cennennnnnns A RECURZIVE CALL
267, Pi=p-1;

27. AlZ1:=1;

28, BLF~-Z2+71:=13

s CLP+Z]:=

0. ends}

a1, 1i=7+1

22, until ZI=2

S ends;

24 .procedure RBOARDS

25. var EsMsNrtinteaer:

26 begin

A7 s ODi=03

I8, writeln("Eos *+ EIGHT UEENSZ ##08880v)
3% write(" r'ys

40, for Mi=0 to & do write{"—");

41, writeln("—");s

4z, for E:=0 to 7 do

43z, bkegin

44, write(" "3

45, for-Mi=0 to 7 do write(" |")3
44, writeln();

47, if E<»7 then

45, begin

49, write(" I

20, for Mi=0 to & do write("—");
51 . write("— "}y

A writeln()

154

2. end

4. else beain write(" L*)

TP for =0 to 4 do write("—-")3
G writeln("—")

7. end

S end

2. end;

MR

.Pprocedure DATADOLT:

. var FiMiNsZtinteager;

i beoin

OD:=D+13

. write("Hescdiadn);

write(D:sz2)s

writeln()swriteln()swriteln()s{......... 3 CARRIAGE RETURNS 7
. for =0 to 7 do

LE T I LT T) o8 4 R R) Bl

R BT) T - S DR SN i

' bkeain
write(" e")3
70. for Mi=0 to 7 do
71. beain
72, if XINI=M then
73, begin
74. Fei=M+13
75, write("@e");
7h . music("+AO")
77. end
75, glse write(" &")
K end;
0, writeln("s",FiZz;"8")
end

ends

.beain { W R R R R W R W R W R € R BN W T AW R R EIGHT 2UEENZ MAIN 3
tempo(7)sirange(C,40)

CLEARS

BOARD;

ARYWRITE

S.end.

[I T P O O B]

DRSNS S
“« =

DO I O T w R R R o S
i

s
it
.

155

156

(3) Calendar Program (Application Program 3)

When this sample program is executed, a message appears which requests the operator to enter the year. The pro-
gram displays the calendar for month of January of the specified year and steps. Pressing any key advances the month.
This program is the third section of the PASCAL Applications Tape.

0.¢ Our Calendar
I.var YEARSMONTH»TOFsY:tinteaersLCHR:char:

2.procedure PRINTCALENDAR(Y sMsTiinteger) s & enes e Frint Calendar
Z. wvar NyIsDAYStinteger

4, begin

8. case M of 1,245:s7,58,10,12:DAYS =21

& 4:/;0:11 DAYZ:i=30%

Zs P1f(Y mod 4=0)and(Y mod 100Z:0)or(Y mod 400=0)
s then DAY~-~7?

9. else [DAYSZ:=Z2

10. end;

i1 write("E");s

2 cursor{li,3)swriteln("®® ",Y14," - ", M1Z," S407):

13, FRINTLINE(==’} 3

14, write(" SUN MON TUE WED THU FRI SAT")

15, FRINTLINE(="}

14, writeln("8");

17. for It=1 to T do write(" ")

1&, repeat

1%, if({I<*1)and{(I mod 7=1)then
20, writelpn("8%)

21, write(I-T:5);
225 I:=1+1;

284 until I-TrxDAYS:

24, TOF:=(I-1)mod 73

25 FRINTLINE(=)}
26, music("+3E0");

27. end;s

28.procedure PRINTLINE(LCHR:char)3{Carriage Return & Line FPrint

22.var Miinteager:
20, beain

31 s writeln():

L1 for N:=1 to 2% do

B2 write(LCHR:1)

24 ends;

R eDBEIN § G b mdos om0 5w EE R R R RN R R 6 e g e 8 . Main 2

k. range(C;40)s5tempo({é&) s
27 . while key=chr(0)do

a9, begin

29, cursor(12,22)s5write("Year ")

40, read (YEAR) 3

41, Yi=YEAR-13

4z, TOF:i=(Y+(Y div 4)~(Y div 100)+(Y div 400)+1)mod 73
43z, for MONTH:=1 to 12 do

44, begin

4%, FRINTCALENDARCYEARSMONTH, TOF) 3
44, while key=chr(0)ds

47 . end

4=, end

4% .end,

S50.

(4) Magic Square (Application Program 4)

A square grid is specified and numbers are assigned to all squares of the grid to that the total of the numbers on
any horizontal vertical line or diagonal line are the same. The number of squares on one side of the grid must be an odd
number from 3 to 19. When 9 or greater is specified, the result is output to the printer; otherwise, it is displayed on the
CRT screen.

This program is the fourth section of the PASCAL Applications Tape.

0.{ A Mathematical Game * Magic Square 2

l.var DATA:arrayfl12:s123Jof integer:

2. AREAD » XMAX »ATANs Dy XsYiinteger;

2 CH:chars

4.procedure ARRAYCLEARI Y .. v o v nn e nnnnnsnnes vasna Llears Array
=. wvar IsJitinteger;

b begin

7. for I:=0 to 12 do

2. for Ji=0 to 12 do DATALI,J1:=0

@, ends

10.procedure EEYIN3{ Displays Title and Reads MNumber of Squareg_
11. wvar Niinteger: on a Side X
12. bkegin

13 repeat

14, writeln("E80deeaodagddde MATHEMATICAL GAME ##4#");

15, write(" D

14, for N:=0 to 24 do write("=")3

17. writeln({);

1. writeln("44 Number of squares must be an odd#")3s

1%2. writeln(" number [3-121.");

20, writeln("888 When it is more than or equal to Z,84");
21, writeln(" data is output to the Printer.");

22 write(8484840 Enter number of squares ")
23, read (XMAX);

24, until odd(XMaAX)and{XMAX>Z2)and (XMAXL{Z0)
25, ends;

Zb.procedure WEREGINGS

27. begin

28, Li=(XMAX-1)div 2}

2%, Yei=XMaX-13

a0, DATAN:=1;

31, ARRAYWRITE(DATAN:XY) 3
e DATAN: =0ATAN+1

33, Xi=X+13

24, Yi=03

25, ARRAYWRITE(OATAN, X3 Y)
3h. end;

Z7.procedure ARRAYWRITE(N,XN;YN:integer):
e begin

39, DATALXN;YN]:i=N

40 end;

41 .prrocedure DATAWRITE;

42 var MAXZIZE:integer;

i beagin

44, MAXSIZE:=XMAX%¥XMAX
4%, repeat

44, DATAM:=DATAN+1;

47, Xi=X+13

4z, Yi=Y+13

49, JUDGE

50, until DATAN=MAXSIZE

157

158

SO s O o O O O os O s U0 O 00 oon 0N
R I TN R - P T 5 T eI T T O ¢ Y R P O O

GMAYX:=XMAX-1;
if{X<XMAXYand(Y<XMAX)then
begin
ARRAYREAD(X,Y) 3
if AREAD=0 then ARRAYWRITE(DATAN:X:Y)
else beagin
Xi=X-13%
Yi=Y-23%
ARRAYWRITE(DATAN: X Y)

. end
end
else 1f (X GMAX)and(Y<XMAX)then

. bkegin

. Xi=03

7 & ARRAYWRITE(DATAN: XsY)

0. end
71 else if(X<XMAX)and(Y>GMAX)then

2 begin
7. Yi=03
74, ARRAYWRITE(DATAN: X»Y)
Tois end
76. else 1f(X> GMAX)and(Y:GMAX)then
77 s beain
75, Xi=X-13
79 Yiz=Y-23
20 ARRAYWRITE(DATAN: XY
21. end
2z, end;
Z2Z.procedure ARRAYREAD(XsY:integer);
24, begin
25, AREAD:=DATALX,»Y]
S, ends
27 .procedure DATAOUTI ... eninnsnvnanees Outputs Data to
22. var MsNi:integer:
9. begin
20, writeln("& *¥ MATHEMATICAL GAME DATA *x%x");
o if XMAX>2 then
92, beain
a9, writeln("480808448 Zince data is too larges8");s
24, writeln(" result is output to the Frinter t4")3
95, FRINTERS
Pl end
27 else beain DATAFRINTIEOARD end

':-'-I :3 L]

end;

a2 .procedure DATAFPRINT

100,
101,
102.
102,
104,
105,
104,
107.
108,
109,
110.

var M:N:integer:
begin

Yi=XMAX;S
Bi=03
write("@a8a");
for Mi=1 to XMAX do
begin
Yi=Y-13
1=03
Wl"itE(" n);
for Ni:=1 to XMAX do

a5l end?

SZ.procedure JUDGESS ... in i nnns i E @ & Check Data Area
var GMAX:iinteger:
begin

CRT

-‘.
b

A
&

111, beain

1132, ARRAYREAD(X:Y) 3
113, write(AREAD:4) 3
114. Xi=X+1

135, end;

114, writelpn("84");
117. B:=AREAD+D
112, end

119, end;

120.procedure BOARDS (..o us i e senenensanananssnanssnsens:Write Board 2
121. wvar MsNiinteger:

22, beain

12z, Mi=XMAX~-1}

124, F s
Z5 for N:=1 to M do begin-

26 SIDE;
127. MID
125, end;
SIDES
BOTTOM
end;
Procedure LUF3
« var MiNiinteger:
begin
M:=XMAX-1;
write("O# ")
for Mi=1 to M do write("—— ")}
writeln("——");
end;
140.procedure SIDES
141. var NsZtiinteger:
142, begin
14z, for Ni=1 to 2 do
144, begin
145, write(" |")3
144, for Si=1 to XMAX do write("see|");
147. writeln();
14%, end
14%, end;
150.procedure MID;

-

o
't R
. =

Pk b feh ek b ek b ek ek ek

D0 QDO 0 0 B0 S0 3 0 T I O

DOCEESS I £ S T B O S

G
-

151, var M:Niinteger;
152. bkegin
=% write(" F")3

—

Mi=XMAX~-13
for Ni=1 to M do write("——4}");
write("-——");
writeln()
ends
«Procedure BOTTOMS
var MyNiinteger;

-

L
RN [) [O

H._F‘P.H
L
.

oS O O OO LR OnoonOn

i begin
z write(" “")3
143, Mi=XMAX-1;
144, for Ni=1 to M do write("——=~")3
165, writeln("—")s5writel(" Result")s
144, write(:5)
1647, end;’
148, procedure PRINTERSY ..o n o ns P SRR R VRGeS sewaensmewenws Primter 2

16%., var MsNyPyyRySs Tyl inteqgers
170, bhegin

159

171. Mi=XMAX-13
172. Y:i=XMAX:

173 Hei=03
174. 1203
175. pwriteln();

174, pwriteln{chr(i4):i," #+ MATHEMATICAL GAME ##",chr(20));
177. pwriteln()}

17%. pwrite(chr(27)ilschr(O)2diychr{9)si,s" ")
179. for N:=1 to M do pwrite("——");

120, pwriteln("——");

b for Ri=1 to XMAX do

] beain

RN G R N
» = = & = = & = =

[}

pwritef{" |");3
for i=1 to XMAX do pwrite(" ")
pwriteln(};
Yi=Y~-13
pwrite(™ |")3
for Fi=1 to XMAX do
begin
ARRAYREAD{(X,Y) 3
pwritel{ AREAD:Z," ")
i=X+1
end}
X:=03
" pwriteln();:
Ci=AREAD+LGS
if R<XMAX then
begin
pwrite(" F")3
for Ui=1 to XMAX-1 do pwrite("——-WF")3
. pwritelpn{("——")
it end
203, ends’
204, pwrite(" L")3
205, for Si=1 to M do pwrite("~———-~"}}
204, pwriteln{"——"schr{10));
207. pwriteln{(chr(10));
208, pwrite(chr(id4)si," TOTAL OF NUMBERS ::s::m)gs
20%. pwriteln(R:Sychr(20)lschr(27)tlychr(2)tlschr(12) 513
210, ends
Zll.begin { MR G AR R GG R RGN AR e B I R T Main
212 range(C,40) 3
£12. repeat
214, ARRAYCLEARS
215, EEYINS
214, WBEGIN;
217 DATAWRITE;
212, DATADUT 3

ECa T o O o O

o
-

S R e]

ROy
S N I | RS I X S

"y
!

Db bk b b bk bk b b b bt b bk b b b bt b bt e

ol

ﬁ,

=&

-
.

e

W

219, writeln()s
220, write(" Continue or not (Y OR N) ")
il read(CH}

until CHL =Y
Z.end.

160

- - MATHEMASTIIZAL GSGaME -

192|212 | 224|255 | 2746|297 1318329 260 1) 22 I A4 BEI10L)1E

=
~
—
>
[xx}
—
o

-
—
3"

O
=

ZIZ|233(204 (275|296 217|338 209 19| 21| 42 &% 241105124147 11462189191
LR2 2G| 274|295 (2146|237 358] 18] 20 41 &2 B2I104 125144147188 209 1211

]
n
2
5]
9
&
2t
—
n
L
[0

57| 17| =8 40 A1) SZ{1032)124 11451441187 2081210221

(2}
~l
5
)
Xu]
o3
D
—
5
(%]
L
i
o]
[
o~
—
o~
ox}
~
o)
1
o~
Lo
D]
—

102 (1221144165 1841207 | 228220251

S92 21| 224 255 15| 24 57 99 201101 (122|143 (144|185 204|227 | 229250271

FL2| 2221354 14| 25 541 DB 720100121 1421142124205 | 224|247 2492701291

2353 13| 24| 55 76| 7| 9120141 142|183 | 204|225 | 244|248 | 269290211

sz | 12| 33| s4| 75| 77| 28|119]140| 161|182 203|224 | 245 | 2ee | 2en |20 210|200

1] 22 22| 74| 95 927|112 1291460181 (202222244 | 2AS 247 | 288209 (220251

21 G2 73] %4 L1177 (12159 180|201 | 222245 | 264|205 287302232250 10

1) 72 9311411461237 |158 179200221 | 242|242 28

.0
LU
D
[Xx}
=
~J
I
XX
DX
=
1
LER

71 2211131191261 197 1178199 | 220|241 2422821204 | 206|327 | 242 S 29| 50

FLILIZ|122 (135|186 1177 (198 219240241 | 282|203 | 205 | 224247 71 28] 4% 70

I11 1221124 155|174 197 | 212229 | 260 281 | 202 223|225 244 &1 27 42| &9 20

121152184 (175|196 | 217 | 228|259 | 280|201 | 222|224 | 245 S| Z&| 47} A2 BE91110

1SV 1S3 178 195|214 | 237 (298279300221 (242|244 41 Z5| 44| L7 BE110%)1320

171172198 | 215|224 | 257 278|299 320|241 | 243 I 24) 45 L&) B7H102(1Z29]1150

1721192214 | 235 | 2546|277 (298217240261 21 231 44| &3] 241107 012821149(170

TIOOT &L oF NLUMEBEER= —J- I - =4

161

(5) Hexadecimal-to-decimal Conversion Program

The following sample program performs the step described on page 81.

-

.{ Hexadecimal-to-decimal Conversion 7
.var DATAtarray[10lof chars
Atinteger;
FLUG:kooleans
.procedure DATAIN;S
var Niinteger:;
Xeichar}
beain write("Enter data in hex. $")3
for MNi=0 to 10 do DATALCNI:='0';

-
D)
't

[y
S eI T TR Y o S 3 Y~ O B
- - - L] » - - - -

. Ni=0sXi="%"3
while X<>*chr{i2)do { Y PREpp 1% is CR Z
begin

12 repeat
2. Xi=key
i4. until (X" /" Yand{(X< '+))or{(X>"@ Yand(X</'G'))or(X=chr{132))3
15. if X<schr(i2)then write(X:l);
14, DATALNI:=X;
17. MNi=N+1
1&., ends
19. if N*5 then begin
20, writeln(" Input Error #");
21. ODATAIN
22, end

else begin
case N of 4:beqin
DATAL4]1:=DATALZ];
DATALZ):=DATALZ];
DATALZ1:=DATALL1];

DU NN S | I~ X

a DATALL11:=DATALO]:
Z ODATALOQT:="0"
0, ends

DOV TR O O G T % I U O T

1w 2ibegin
32, DATAL4]:=DATALZ]S

DATALCZ21:s=DATAL1];
DATALZI:=DATALOD;
. DATALL1l:="0";
DATALOY =707
end;
Z2ibeagin
DATAL41:=DATAL1];

0,
.

R I BN B ol 1|

I8 S T T 0 B O I I

0. DATALZ]:=DATALO]

41, DATALZY:="0"3

4z, DATALL1]:="0"3

4z, DATALGl::="0"

44, ends

45, 1:for Ni=0 to 2 do DATALN]l:="073%,
44, end

47 . end

4. ends
4% .procedure TRANSSYcvcvvveeConversion of less than $2000 2
20. begin

-5 I if DATALOI< 2 then
2. begin Ai=(ord(DATALOI)-48)%40%4;
2. if DATAL1I1:'9/then Ar=A+(ord(DATALL1)-55)%254

162

else A:=A+(ord(DATAL1])-42) %2543

if DATALZIX'?'then Ai=A+(ord(DATALZ])-55)%14
else A:=A+(ord(DATALZ])-42)*%1645

if DATALZ21:'9'then At=A+(ord(DATALZ]1)-55)
else Ai=A+(ord(DATALZ2]1)-43);
writeln(" =" At&,"0");

54,

DA,

Y

58

S%.,

L0, if A=0 then FLUG:=false

&1, end

L2, else TRANS1L

L3, ends

L4 .procedure TRANS13L ..cvivveans. Conversion of areater than $7FFF X
L5, var Bireals

&b, bheain

&7 . if(DATALOI="2")and (DATALL1I="0")and(DATALZ)I="0')and(DATALZ21="0")
L. then writeln(" = - [-327&7-118")

L%, else begin

70, if DATALOI>'9'then Bi=float(ord(DATALO])-55)%40%4.0
71. else Bi=float(ord(DATALOQ])-42)%409L.0;3

72. if DATALL1>'2'then Bi:=B+float(ord(DATALL])-55)%254.0
73 else Bi:=B+float(ord(DATAL1])-42)%254.03

74 . if DATALZ1>'2then Bi=E+float{(ord(DATALZ])-55)%14.0
75. else Bi:=RB+float(ord(DATALZ2]1)-42)%14.03

76. if DATALZ]>'2then Bi=RB+float(ord(DATALZ])-55)

3 else Bi=B+float(ord(DATALZ])-45);

75, At=trunc({&o53464,0-B)*(-1)3

79 writeln(" =",A:10)3

20, writeln()

=21, end

a2, ends

EEcbegll § sesissvusi e R AR E BN GEiGueR iR s HEu s naa ens s wna s AIN
24, writeln("&E¢e¢Hexadecimal-to decimal Conversion®#&4");

25. FLUG:=trues

6. repeat

27. DATAINS

2., TRANS

2. until not FLUG

20.end.

2.

163

164

(6) Conversion Program for decimal numbers in the range from —32767 to +32767 into hexadecimals

.

s Var

OO U A I T O N

EE i S
T I O e
. -

.Proc
i beain

0.4{ DNecimal—-to Hexadecimal

AsDATA:integers
[ATAl:reals
FLUG:booleans

edure DATAINI{

write("Enter [Data 1
readln(DATA)
DATAL:=float (DATA)

n Decimal

if DATA=0 then FLUG:=false

else beain

FLUG:=true}
then TRANZSIAR(DATAL)
else begin A:=DATA div 40943TRANS14 end

if DATAZO

end

15 end;

1&4.proc

edure TRANZ1A3{....

17. beain

12,
204
ih P8

3
o |
o
e o

]
2
¥
£
-
2
~y
27
i
Jr
SE
L
-
]
-
]

c
]

oy
- -
- »

write("$ ")

if A0 then hegin
else write("0O");

A:=DATA div 2543

if A< *0 then begin
else write("0");

AI=DATA div 1643

if A<*0 then begin
glse write("0Q") ;s

DISF1I(DATA) S

writeln()

end;
.procedure TRANS1AR(NEG:real)s{ .
var X:Yireal;
beain

X:=A5534, 0+NEGS

At=trunc(X/40946.0)3

Yi=float(A);:

Conversion X

«2:x Fositive Dlata Frocessing

DISFICA)SDNATA:=0ATA mod 40%4 end

DISF1(A)SDATA:=DATA mod 25& end

DISF1I(A)SDATA:=DATA mod 1& end

DATA:=trunc(X-Y*402&£,.0) 3

TRANZ 1A

a8, ends

40, begin

a1,
42,
4z,
44,
45,
4t
47,
43,

if 2>% then case 1

end
else write(Z:1)

4=, ends

0.begin { ..., PR S E D
write("E");

. FLUG:=trues

repeat

DI) I ¢ 1 |

T+ B N P N N

haend.,

1

noon on
~

ODATAIN

until not FLUG

22 .procedure DISFi(Ziinteger);

of 10twrite("A");
11twrite("RB")
1Z2twrite("") s
1Z3twrite("D") s
14twrite("E");
1Stwrite("F")

Negative Data Frocessing

-

7

H

(7) Sierpinski Curve

This sample program controls the graphic display control. Therefore, graphic RAM expansion is required. The num-
ber of size levels of Sierpinski curves is from 1 through 5.

0.{ Sierpinski Curve ¥
l.var FrXsYsX1sY1lsHyIsNtintegers
2 . Richars

wh mENarr A R RERG B R A GRS R RN ARG RN DEE O R R Sierpinski 2
.Procedure AA(I integer;);
begain 1f 130 then
begin AA(I-1)s3Xi=X+H3Y:i=Y-HIPLOTS
BR(I-1)3Xi=X+H+H3FLOT;
DOCI-1)sXi=X+H3Y i=Y+H3FLOT;

I RN N SR

AA(TI-1)
10, end
11 end;
1Z.procedure BRE{(I:integer):

a1

begin 1if I*0 then

14. beain BE(I-1)s3X:i=X~-H3Y:=Y-HIFLOT:

1% CO(I-1)s3Ye=Y~H-HsPLOT;

14 AA(TI-1)sXi=X+HiY :=Y-HSFLOT;

17. ERB(I-1)

12 end

12 ends

20.procedure CC(lfinteger);

21. beain if I>0 then

2 beagin CO(I-1)s3Xe=X~-HiYi=Y+HIFLOT

i ODO(I-1)sXe=X-H-HsFLOT;
BR{I-1)3Xi=X-H3Yi=Y-H3FLOT}

CreI=1Y
end
end;
srrocedure DD(I:integer);

I o B pr S ¢ (R O 1 B O

[ERIDO DT B 50 S5 D0 T O I O

! bkegin if I1>0 then
0, beain DD(I-1)sX:i=X+HsY:=Y+HIPLOTS
1. AA(I-1)s5Yi=Y+H+HPLOT
s CC(I-1) s Xi=X~-HsYi=Y+HSPLOT
Qs ooeI-13
24, end
25, end;

SEb.procediure PLOTIY socassomssmnssmss Ilraw Line between Two Foints
27 % beain

e, line(X1,Y13%X+Y)3

3%, Xti=Xs3Y1l:=Y

401, ends

471 ; procedor® HOWAEYL sevsusenssswannisoviassnassmes Read Zize Number X
4z, beain

4=, repeat

44, writeln{"Edsdenne Sierpinski Curve ")

45, write("a48 INFUTL1-51")3

44, readin{(R);

47 . until(R>'0Yand(R<74&7) 3

4z, Ni=ord(R)-4%

47, end;

By seasariuw PR s R EEN G IR EE S PR eE e e d ® e e SLEERY treld FRAR 2

Sl.begin
.y

a2, range{,40)3
i repeat

165

166

{1 B

L5, AA
Lt EB(
&7 . ¢
L2, RN
&2, until
70. until ke
71 .end.

72

a4, HIWW 5
55 . araph(I,1:C,0,1)3%
Sb . [:=Q3H:=323
a7 . X:=2%H+903
352, Yi=2*¥H+38;
a9, repeat
L0, I:=1+
L1, Xe=X~-
L2, Hi=H v 23
3, Yi=Y
L4, Xli= =
1
I
I
I

i aw wx i SE

+
| we wa ws e >X T2 T~
]
2 DK D on
1
EXT I X<
< < < <<

N D D O v wn M ue un

Sierpinski Curve

INPUTL1-5171

Sierpinski Curve

INPUTLC1-S17?4

=Y-HiPLOTS
=Y-H3PLOT;
=Y+H3FLOT
=Y+H:PLOT;

Sierpinski Curve

INPUTC1-5S172%

Sierpinski Curve

INPUTL1-5175

(8)

Color Hilbert Curve

This sample program is an example of color system control program. The color control program (SB-3000 series)

must be loaded in memory in advance.

Dasd

end}
«procedure TRANS{(AsB:inteager);:
10 begin
11, COLOR(AYstranm(/%)
12. COLOR(R)
15, ends
14.procedure COLOR(X:tinteger)s{ Convert X into ASCII
15 var C100,C10ichar;s
14, begin
17. CLO0s=chr (X div 100+48);
1=2. Xi=X mod 1003

GG 0 S O N S D B e

The number of size levels of the curve is from 1 through 7.

B A o T 1 HILBERT
Svar ParXsYsr X13Y1yHsIsNs XOyYOtintegers
Richars
.procedure TRANSL(AByCsDiinteger)s
begin
tranC‘L’ 77)3
TRANS(AsB)stran(‘s 7)3
TRANS(C DD stran(chr{(13))

CilOs=chr(X div 10+48);
tran(Ci00,C10,chr(X mod 10+42))
end;
procedure AA(I:integer);
beain if 1:0 then

25, beain DOCI-1)3Xi=X-H3FLOT
24 AA(I-1)s3Yi=Y-H3FLOT
27 AA(TI-1) 3 X =X+HIPLOT;
28 BR(I-1)
29 . end
20, ends
Zl.procedure BRB(I:integer);
32 begin 1f I>0 then

: beain CC(I-1)3Y:i=Y+H3PLOT;

BROI-1)3Xs=X+HFPLOT
BEB(I-1)s5Ysi=Y~-H3FLOT;
AACI-1)
end
end;
sprocedure CC(Ifinteger)s
begin 1if I>0 then

41, begin BBR(I-1)sXi=X+HsPLOTS
4z, CC(I-1)sYi=Y+H3FPLOTS
4z, CCeI=-1)sXs=X-HsPLOTS
44, opnpeI-1»

45, end

44 ends;

47 .procedure DD(Ifinteger)

43 begin if I1x0 then

42 begin AA(I-1)3Yi=Y-H3FLOT;
50, DO(I-1)s3Xe=X~-H:FLOT:
a1, DOCI-1)sYe=Y+HSFPLOTS
a2 CoC(I-1)

o end

Code » and

Transfer 7

............ HILBERT

167

54, ends
SS.procedure FLOTS. .o ‘es e Iraw Line between Tow Foints I
5 beain

TRANSL (X YsX1sY1)3

'-
KGR IR AR 8 1

5 Xli=Xs5¥1l:=Y

S ends

LO.procedure HOWS L ... i en v e s s e r e s e Read Size Number
L1, beain

L2, repeat

L3, writeln("E83808eeeeeaglor HILBERT Curve ")
L4, write("8#38eebnter size Number [1--7 1 ")3
L5, readln(R);

b, write("d8000egeceeeccddd Runpning #ee");

-7 until(R>"0)Yand{(R%’'3");

Lo, Ni=ord(R)-4%

L9, ernds;

7L P e e s s x s ks e r s s e r s HILEBERT Main 7
71.begin

72 repeat

73 HW 3

74 . tran{"M, 0", "ByO"}3{ ...+ Color Mode:s Black Rackaround 7
75 for Fi=-1 to & do

7t begin

T s I:=03

. Hi=128;

7%. XO:=H div Z+443

20, YOiI=X0-358

a1, repeat

B2, T:=1+413

23, i=H div 23

24, YOi=YO+H div 23

25, XO:=X0+H div 23

B4, Xi=X03

=27, Yi=YO03

aa. X1:=X3

a9, Y1i=Y3s

20, tran(’'Cs "y schr((P+Iimod 744%9)ychr(13))3
o AACT)

DE. until I=N

23, end

w4, until key=‘E’

Y5.end.

P,

168

(9) Port I/O Program

This sample program transfers data between the computer and the color control terminal via the port by means of

input and output statements.

Procedure COLOR (line 2 through 11) performs almost the same function as fran (A). Refer to the OUTPUT

MODE routine in the Color Control Manual.

Key in M,0 CR B, 2 CR C, 1 CR SF, 127, 95, 0, SHARP CR in succession; the result will be the same as that of

example 1 on page 94.

.4 I/0 Control Froaram
.var AyBsCichar;
.procedure COLOR(A:char)s
var Bichar:

OO SN O U B by O

via Fort *

beain
Bi=chr (1)
. repeat
until B=chr(ord(input(Z3¥)Imod 2)3{ ..ecvenueaa, Check RBit O
output(A,238)54L v ien »aee Dutput Key in Data to Fort $EE
outpPput(chr (&) s239)5¢ i ennnnnnnns Output & to Fort $EF
10, output(chr(7),23%){ W R R exews Hutput 7 to Fort $EF
i1. ends
1Z2.begin
18: HBi=*1"84 sssssaspiniaseadss BT vaa. Dummy for Repetition
14, write("@3H872");
15, repeat
14, repeat
17. Ai=keys
1&i; if A=chr(102)then Ai=chr{13)
12, until A< >chr(0);
20, COLORCA) S
21. if A=chr(13)then begin writeln()swrite("?")end
22. else write(A:l)
EC until B=key
24.end.

LS SO I W}

169

MODEL : MZ8BTO2E
SHARP CORPORATION i L T R R

	Sharp_MZ-80B_PASCAL_Language_Manual_front
	175619
	175629
	175636
	175639
	175645
	175649
	175655
	175658
	175704
	175708
	175714
	175717
	175724
	175727
	175734
	175737
	175743
	175746
	175753
	175756
	175802
	175806
	175812
	175816
	175822
	175825
	175831
	175835
	175841
	175844
	175850
	175854
	175900
	175903
	175910
	175913
	175919
	175923
	175929
	175932
	175938
	175942
	175950
	175953
	180000
	180003
	180009
	180013
	180019
	180022
	180028
	180032
	180038
	180041
	180048
	180051
	180058
	180101
	180107
	180111
	180117
	180120
	180126
	180132
	180139
	180142
	180149
	180152
	180158
	180202
	180208
	180211
	180217
	180221
	180228
	180231
	180237
	180240
	180247
	180250
	180256
	180300
	180306
	180309
	180315
	180323
	180433
	180443
	180449
	180452
	180458
	180502
	180508
	180512
	180518
	180521
	180527
	180531
	180537
	180540
	180546
	180550
	180556
	180600
	180606
	180609
	180615
	180619
	180625
	180628
	180634
	180638
	180645
	180648
	180654
	180657
	180704
	180707
	180713
	180716
	180723
	180726
	180733
	180736
	180742
	180746
	180752
	180755
	180801
	180805
	180811
	180814
	180820
	180824
	180830
	180834
	180840
	180843
	180849
	180853
	180859
	180902
	180908
	180912
	180918
	180922
	180928
	180931
	180937
	180943
	180949
	180953
	180959
	181003
	181009
	181012
	181019
	181022
	181028
	181032
	181038
	181041
	181047
	181051
	181057
	181101
	181107
	181110
	181116
	181120
	181126
	181129
	181135
	181139
	181145
	181149
	181155
	181202
	Sharp_MZ-80B_PASCAL_Language_Manual_back

